1
|
Lobb B, Shapter A, Doxey AC, Nissimov JI. Functional Profiling and Evolutionary Analysis of a Marine Microalgal Virus Pangenome. Viruses 2023; 15:v15051116. [PMID: 37243202 DOI: 10.3390/v15051116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host-virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack of functional information, stemming from the surprising number of hypothetical genes of unknown function. It is also unclear how many of these genes are widely shared within the clade. Using one of the most extensively characterized genera, Coccolithovirus, as a case study, we combined pangenome analysis, multiple functional annotation tools, AlphaFold structural modeling, and literature analysis to compare the core and accessory pangenome and assess support for novel functional predictions. We determined that the Coccolithovirus pangenome shares 30% of its genes with all 14 strains, making up the core. Notably, 34% of its genes were found in at most three strains. Core genes were enriched in early expression based on a transcriptomic dataset of Coccolithovirus EhV-201 algal infection, were more likely to be similar to host proteins than the non-core set, and were more likely to be involved in vital functions such as replication, recombination, and repair. In addition, we generated and collated annotations for the EhV representative EhV-86 from 12 different annotation sources, building up information for 142 previously hypothetical and putative membrane proteins. AlphaFold was further able to predict structures for 204 EhV-86 proteins with a modelling accuracy of good-high. These functional clues, combined with generated AlphaFold structures, provide a foundational framework for the future characterization of this model genus (and other giant viruses) and a further look into the evolution of the Coccolithovirus proteome.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Anson Shapter
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Abstract
Most DNA viruses selfishly exploit the cellular transcription machinery of infected cells. Poxviruses are unique among DNA viruses in that they encode the majority of the enzymes required for RNA synthesis. Poxviruses are large DNA viruses that replicate entirely within the cytoplasmic compartment of the cell, and they encode their own multisubunit RNA polymerase and gene-specific transcription and termination factors. The virus-encoded RNA polymerase has sequence and structural homology to eukaryotic RNA polymerases. Virus-encoded and cellular proteins regulate promoter specificity by recruiting the viral RNA polymerase to one of three different classes of genes. Functional interplay between viral and cellular transcription factors in viral gene regulation represents a new frontier in poxvirus biology. Targeting these transcription systems may serve as an undeveloped and potent antiviral strategy to combat poxvirus infections.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce A Knutson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109–1024, USA
| |
Collapse
|
3
|
Dellis S, Strickland KC, McCrary WJ, Patel A, Stocum E, Wright CF. Protein interactions among the vaccinia virus late transcription factors. Virology 2005; 329:328-36. [PMID: 15518812 DOI: 10.1016/j.virol.2004.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 07/23/2004] [Accepted: 08/17/2004] [Indexed: 11/18/2022]
Abstract
The viral proteins A1L, A2L, G8R, and H5R positively modulate vaccinia virus late gene expression. Host-encoded proteins hnRNP A2 and RBM3 may also interact with these viral factors to influence late gene expression. In these studies, a yeast two-hybrid screen and in vitro pulldown and crosslinking experiments were used to investigate protein--protein interactions among these factors. These studies confirmed a previous observation that G8R interacts with itself and A1L. However, self-interactions of A1L and H5R, and interactions between A2L and G8R, A2L and H5R, and H5R and G8R were also observed. In addition, the proteins hnRNP A2 and RBM3 both showed some interaction with A2L. Illustration of these interactions is a step toward understanding the architecture of the late gene transcription complex as it occurs in poxviruses.
Collapse
Affiliation(s)
- Stephanie Dellis
- Biology Department, College of Charleston, Charleston, SC 29401, USA
| | | | | | | | | | | |
Collapse
|
4
|
Katsafanas GC, Moss B. Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. J Biol Chem 2004; 279:52210-7. [PMID: 15471883 DOI: 10.1074/jbc.m411033200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the DNA genome of vaccinia virus occurs in the cytoplasm and is temporally programmed by early, intermediate, and late stage-specific transcription factors in conjunction with a viral multisubunit RNA polymerase. The RNA polymerase, capping enzyme, and three factors (VITF-1, VITF-2, and VITF-3) are sufficient for in vitro transcription of a DNA template containing an intermediate stage promoter. Vaccinia virus intermediate transcription factor (VITF)-1 and -3 are virus-encoded, whereas VITF-2 was partially purified from extracts of uninfected HeLa cells. Using purified and recombinant viral proteins, we showed that the HeLa cell factor was required for transcription of linear or nicked circular templates but not of super coiled DNA. HeLa cell polypeptides of approximately 110 and 66 kDa copurified with VITF-2 activity through multiple chromatographic steps. The polypeptides were separated by SDS-polyacrylamide gel electrophoresis and identified by mass spectrometry as Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and p137, recently named cytoplasmic activation/proliferation-associated protein-1. The co-purification of the two polypeptides with transcription-complementing activity was confirmed with specific antibodies, and their association with each other was demonstrated by affinity chromatography of tagged recombinant forms. Furthermore, recombinant G3BP and p137 expressed individually or together in mammalian or bacterial cells complemented the activity of the viral RNA polymerase and transcription factors. The involvement of cellular proteins in transcription of intermediate stage genes may regulate the transition between early and late phases of vaccinia virus replication.
Collapse
Affiliation(s)
- George C Katsafanas
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
5
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
6
|
Wright CF, Oswald BW, Dellis S. Vaccinia virus late transcription is activated in vitro by cellular heterogeneous nuclear ribonucleoproteins. J Biol Chem 2001; 276:40680-6. [PMID: 11546759 DOI: 10.1074/jbc.m102399200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus gene expression is temporally regulated, and three gene classes have been identified: early, intermediate, and late. Several virus-encoded proteins and an activity designated VLTF-X are required for maximum transcription in vitro of a template containing a late promoter. VLTF-X is present in both cytoplasmic and nuclear extracts prepared from uninfected mammalian cells and co-purifies with a late promoter DNA-binding activity. Here, extensive purification of VLTF-X has revealed that heterogeneous nuclear ribonucleoproteins A2/B1 and RBM3 co-purified with in vitro late transcription stimulation. Overexpression and purification of these proteins from Escherichia coli demonstrated that they both complemented for VLTF-X activity in in vitro transcription reactions. These studies identify two host cell factors potentially contributing to poxvirus replication in vivo.
Collapse
Affiliation(s)
- C F Wright
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
7
|
Abstract
The genome sequence of Yaba-like disease virus (YLDV), an unclassified member of the yatapoxvirus genus, has been determined. Excluding the terminal hairpin loops, the YLDV genome is 144,575 bp in length and contains inverted terminal repeats (ITRs) of 1883 bp. Within 20 nucleotides of the termini, there is a sequence that is conserved in other poxviruses and is required for the resolution of concatemeric replicative DNA intermediates. The nucleotide composition of the genome is 73% A+T, but the ITRs are only 63% A+T. The genome contains 151 tightly packed open reading frames (ORFs) that either are > or =180 nucleotides in length or are conserved in other poxviruses. ORFs within 23 kb of each end are transcribed toward the termini, whereas ORFs within the central region of the genome are encoded on either DNA strand. In the central region ORFs have a conserved position, orientation, and sequence compared with vaccinia virus ORFs and encode many enzymes, transcription factors, or structural proteins. In contrast, ORFs near the termini are more divergent and in seven cases are without counterparts in other poxviruses. The YLDV genome encodes several predicted immunomodulators; examples include two proteins with similarity to CC chemokine receptors and predicted secreted proteins with similarity to MHC class I antigen, OX-2, interleukin-10/mda-7, poxvirus growth factor, serpins, and a type I interferon-binding protein. Phylogenic analyses indicated that YLDV is very closely related to yaba monkey tumor virus, but outside the yatapoxvirus genus YLDV is more closely related to swinepox virus and leporipoxviruses than to other chordopoxvirus genera.
Collapse
Affiliation(s)
- H J Lee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
8
|
Abstract
Vaccinia virus genes are expressed in a sequential fashion, suggesting a role for negative as well as positive regulatory mechanisms. A potential down regulator of gene expression was mapped by transfection assays to vaccinia virus open reading frame D10, which encodes a protein with no previously known function. Inhibition was independent of the promoter type used for the reporter gene, indicating that the mechanism did not involve promoter sequence recognition. The inhibition was overcome, however, when the open reading frame of the reporter gene was preceded by the encephalomyocarditis virus internal ribosome entry site, which excludes the possibility of nonspecific metabolic or other antiviral effects and suggests that capped mRNAs or cap-dependent translation might be the target of the D10 product. The inducible overexpression of the D10 gene by a recombinant vaccinia virus severely inhibited viral protein synthesis, decreased the steady-state level of viral late mRNA, and blocked the formation of infectious virus.
Collapse
Affiliation(s)
- T Shors
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | | | |
Collapse
|
9
|
Gunasinghe SK, Hubbs AE, Wright CF. A vaccinia virus late transcription factor with biochemical and molecular identity to a human cellular protein. J Biol Chem 1998; 273:27524-30. [PMID: 9765284 DOI: 10.1074/jbc.273.42.27524] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A factor designated VLTF-X is required to support vaccinia virus late transcription in vitro. It has been found that a late promoter DNA binding activity cochromatographs and cosediments with VLTF-X activity. Current experiments show that VLTF-X activity is present in a variety of uninfected mammalian cell types and is indistinguishable from that recovered from infected cells based upon several criteria. VLTF-X activity from both sources displays the same purification profile over phosphocellulose and DNA affinity resins and has the same sedimentation coefficient. In addition, the factors purified from both infected and uninfected cells form protein-DNA complexes of identical electrophoretic mobility in the presence of vaccinia virus late promoter-containing DNA. The affinity of these factors for the late promoter probes is identical and late promoter-specific based on competition experiments. Moreover, VLTF-X purified from both sources bound to late promoter-containing DNA in the presence or absence of MgCl2 and ATP and formed complexes resistant to heat inactivation. These experiments offer proof that vaccinia virus factor VLTF-X is a host cell protein that supports transcription of the viral late genes.
Collapse
Affiliation(s)
- S K Gunasinghe
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
10
|
Black EP, Moussatche N, Condit RC. Characterization of the interactions among vaccinia virus transcription factors G2R, A18R, and H5R. Virology 1998; 245:313-22. [PMID: 9636370 DOI: 10.1006/viro.1998.9166] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that there may exist an interaction between the products of the vaccinia virus genes A18R, a putative negative transcription elongation factor, and G2R, a putative positive transcription elongation factor. In addition, affinity purification of polyhistidine-tagged G2R protein overexpressed in vaccinia virus-infected cells, reported here, results in copurification of the vaccinia H5R protein, previously characterized as a late viral transcription factor. We have therefore used several methods to screen further for interactions among the G2R, A18R, and H5R proteins. Methods include copurification or co-immunoprecipitation of proteins overexpressed during vaccinia virus infection, activation of the gal 4 promoter by gal 4 fusions in the yeast two-hybrid system, and co-immunoprecipitation of proteins synthesized in vitro in a rabbit reticulocyte lysate. The results reveal interactions which include all possible pairwise combinations of the three proteins G2R, A18R, and H5R; however, not all possible permutations of the interactions are observed and the interactions are not observed in all environments tested. The results suggest that the vaccinia virus proteins G2R, A18R, and H5R interact as part of a higher order transcription complex.
Collapse
Affiliation(s)
- E P Black
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | |
Collapse
|
11
|
Zhu M, Moore T, Broyles SS. A cellular protein binds vaccinia virus late promoters and activates transcription in vitro. J Virol 1998; 72:3893-9. [PMID: 9557674 PMCID: PMC109614 DOI: 10.1128/jvi.72.5.3893-3899.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Available evidence indicates that the transcription of the late class of vaccinia virus genes requires the participation of several virus-encoded proteins in addition to the viral RNA polymerase. In this report we describe the identification of a protein present in extracts of uninfected HeLa cells that binds avidly to viral late promoter DNA. The protein bound specifically to several different vaccinia virus late promoters but not an early nor an intermediate promoter. DNase I footprinting localized the protein's binding site to nucleotides surrounding the transcriptional start site of the I1L promoter. Optimal promoter binding required sequences in the highly conserved TAAAT motif at the transcriptional start site as well as sequences immediately upstream; however, one variation on the motif's sequence did not affect promoter binding by the protein. Partially purified late promoter binding protein (LPBP) was capable of stimulating the transcription activity of extracts depleted of LPBP on a late promoter-driven template, establishing LPBP as a transcription activator in vitro. These results suggest that a cellular protein is responsible for targeting vaccinia virus late promoters for initiation of transcription.
Collapse
Affiliation(s)
- M Zhu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
12
|
Wright CF, Hubbs AE, Gunasinghe SK, Oswald BW. A vaccinia virus late transcription factor copurifies with a factor that binds to a viral late promoter and is complemented by extracts from uninfected HeLa cells. J Virol 1998; 72:1446-51. [PMID: 9445047 PMCID: PMC124625 DOI: 10.1128/jvi.72.2.1446-1451.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously described a vaccinia virus late transcription factor, VLTF-X, which we found to be present in cells at early and late times in infection. In this study, transcription complementation assays were used to demonstrate that VLTF-X activity is also present in virion extracts and in the cytoplasm of uninfected HeLa cells. Mobility shift assays performed on various VLTF-X preparations revealed that a late promoter DNA-binding activity cochromatographed and cosedimented with VLTF-X activity. Competition experiments demonstrated that this binding was specific for the late promoter region of the probe and that late transcription was dramatically reduced by an oligonucleotide that blocked factor-DNA complex formation but was only minimally affected by an oligonucleotide that did not inhibit complex formation. These results suggest that a cellular factor may participate in vaccinia virus late transcription. These findings also confirm the requirement for VLTF-X and distinguish it from any of the previously described vaccinia virus late transcription factors, which have all been mapped to the viral genome. Finally, these studies also suggest that the biochemical role for VLTF-X may be in late promoter recognition.
Collapse
Affiliation(s)
- C F Wright
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | |
Collapse
|
13
|
Kovacs GR, Moss B. The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J Virol 1996; 70:6796-802. [PMID: 8794318 PMCID: PMC190724 DOI: 10.1128/jvi.70.10.6796-6802.1996] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The vaccinia virus late stage-specific transcription factor P3 was purified to homogeneity from HeLa cells that were infected in the presence of an inhibitor of viral DNA replication. The purified 36-kDa protein was digested with trypsin, and the peptides were analyzed by mass spectroscopy and amino-terminal sequencing. The purified factor was identified as the product of the vaccinia virus H5R open reading frame by both methods. A recombinant baculovirus was engineered to express the H5R open reading frame. The partially purified recombinant protein could replace the vaccinia virus P3 factor in transcription assays. On the basis of these findings, we assigned the H5R gene product the name viral late gene transcription factor 4 (VLTF-4). Unlike VLTF-1, -2, and -3, which are synthesized exclusively after viral DNA replication, VLTF-4 is synthesized before and after viral DNA synthesis. Indirect immunofluorescence of infected cells with anti-H5R protein antiserum demonstrated that VLTF-4 is diffusely distributed in the cytoplasm when DNA replication is blocked but is localized to discrete viral DNA-containing factories during a productive infection. Its expression pattern and subcellular distribution suggest that the H5R gene product may have multiple roles in the viral life cycle.
Collapse
Affiliation(s)
- G R Kovacs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Passarelli AL, Kovacs GR, Moss B. Transcription of a vaccinia virus late promoter template: requirement for the product of the A2L intermediate-stage gene. J Virol 1996; 70:4444-50. [PMID: 8676468 PMCID: PMC190378 DOI: 10.1128/jvi.70.7.4444-4450.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Evidence is presented that a 26-kDa protein encoded by the vaccinia virus A2L open reading frame, originally shown to be one of three intermediate-stage genes that together can transactivate late-stage gene expression in transfection assays (J. G. Keck, C. J. Baldick, and B. Moss, Cell 61:801-809, 1990), is required for in vitro transcription of a template with a late promoter. The critical step in this analysis was the preparation of an extract containing all the required factors except for the A2L protein. This extract was prepared from cells infected with a recombinant vaccinia virus expressing the bacteriophage T7 RNA polymerase in the presence of the DNA synthesis inhibitor cytosine arabinoside and transfected with plasmids containing the two other known transactivator genes, A1L and G8R, under T7 promoter control. Reaction mixtures made with extracts of these cells had background levels of late transcription activity, unless they were supplemented with extracts of cells transfected with the A2L gene. Active transcription mixtures were also made by mixing extracts from three sets of cells, each transfected with a gene (A1L, A2L, or G8R) encoding a separate factor, indicating the absence of any requirement for their coexpression. To minimize the possibility that the A2L protein functions indirectly by activating another viral or cellular protein, this gene was expressed in insect cells by using a baculovirus vector. The partially purified recombinant protein complemented the activity of A2L-deficient cell extracts. Recombinant A1L, A2L, and G8R proteins, all produced in insect cells, together complemented extracts from mammalian cells containing only viral early proteins, concordant with previous in vivo transfection data.
Collapse
Affiliation(s)
- A L Passarelli
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|