1
|
The C-Terminal Domain of RNase H and the C-Terminus Amino Acid Residue Regulate Virus Release and Autoprocessing of a Defective HIV-1 Possessing M50I and V151I Changes in Integrase. Viruses 2022; 14:v14122687. [PMID: 36560691 PMCID: PMC9788298 DOI: 10.3390/v14122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we reported that an HIV-1 variant containing Met-to-Ile change at codon 50 and Val-to-Ile mutation at codon 151 of integrase (IN), HIV(IN:M50I/V151I), was an impaired virus. Despite the mutations being in IN, the virus release was significantly suppressed (p < 0.0001) and the initiation of autoprocessing was inhibited; the mechanism of the defect remains unknown. In the current study, we attempted to identify the critical domains or amino acid (aa) residue(s) that promote defects in HIV(IN:M50I/V151I), using a series of variants, including truncated or aa-substituted RNase H (RH) or IN. The results demonstrated that virus release and the initiation of autoprocessing were regulated by the C-terminal domains (CTDs) of RH and IN. Further studies illustrated that Asp at codon 109 of RH CTD and Asp at the C terminus of IN induces the defect. This result indicated that the CTDs of RH and IN in GagPol and particular aa positions in RH and IN regulated the virus release and the initiation of autoprocessing, and these sites could be potential targets for the development of new therapies.
Collapse
|
2
|
Shema Mugisha C, Dinh T, Kumar A, Tenneti K, Eschbach JE, Davis K, Gifford R, Kvaratskhelia M, Kutluay SB. Emergence of Compensatory Mutations Reveals the Importance of Electrostatic Interactions between HIV-1 Integrase and Genomic RNA. mBio 2022; 13:e0043122. [PMID: 35975921 PMCID: PMC9601147 DOI: 10.1128/mbio.00431-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023] Open
Abstract
HIV-1 integrase (IN) has a noncatalytic function in virion maturation through its binding to the viral RNA genome (gRNA). Class II IN substitutions inhibit IN-gRNA binding and result in the formation of virions with aberrant morphologies marked by mislocalization of the gRNA between the capsid lattice and the lipid envelope. These viruses are noninfectious due to a block at an early reverse transcription stage in target cells. HIV-1 IN utilizes basic residues within its C-terminal domain (CTD) to bind to the gRNA; however, the molecular nature of how these residues mediate gRNA binding and whether other regions of IN are involved remain unknown. To address this, we have isolated compensatory substitutions in the background of a class II IN mutant virus bearing R269A/K273A substitutions within the IN-CTD. We found that the nearby D256N and D270N compensatory substitutions restored the ability of IN to bind gRNA and led to the formation of mature infectious virions. Reinstating the local positive charge of the IN-CTD through individual D256R, D256K, D278R, and D279R substitutions was sufficient to specifically restore IN-gRNA binding and reverse transcription for the IN R269A/K273A as well as the IN R262A/R263A class II mutants. Structural modeling suggested that compensatory substitutions in the D256 residue created an additional interaction interface for gRNA binding, whereas other substitutions acted locally within the unstructured C-terminal tail of IN. Taken together, our findings highlight the essential role of CTD in gRNA binding and reveal the importance of pliable electrostatic interactions between the IN-CTD and the gRNA. IMPORTANCE In addition to its catalytic function, HIV-1 integrase (IN) binds to the viral RNA genome (gRNA) through positively charged residues (i.e., R262, R263, R269, K273) within its C-terminal domain (CTD) and regulates proper virion maturation. Mutation of these residues results in the formation of morphologically aberrant viruses blocked at an early reverse transcription stage in cells. Here we show that compensatory substitutions in nearby negatively charged aspartic acid residues (i.e., D256N, D270N) restore the ability of IN to bind gRNA for these mutant viruses and result in the formation of accurately matured infectious virions. Similarly, individual charge reversal substitutions at D256 as well as other nearby positions (i.e., D278, D279) are all sufficient to enable the respective IN mutants to bind gRNA, and subsequently restore reverse transcription and virion infectivity. Taken together, our findings reveal the importance of highly pliable electrostatic interactions in IN-gRNA binding.
Collapse
Affiliation(s)
- Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tung Dinh
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abhishek Kumar
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Aulicino PC, Momin Z, Rozenszajn M, Monzon A, Arazi-Caillaud S, Bologna R, Mangano A, Kimata JT. HIV-1 subtype F integrase polymorphisms external to the catalytic core domain contribute to severe loss of replication capacity in context of the integrase inhibitor resistance mutation Q148H. J Antimicrob Chemother 2022; 77:2793-2802. [PMID: 35897124 PMCID: PMC9989736 DOI: 10.1093/jac/dkac238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In prior studies, HIV-1 BF recombinants with subtype F integrases failed to develop resistance to raltegravir through the Q148H mutational pathway. We aimed to determine the role of subtype-specific polymorphisms in integrase on drug susceptibility, viral replication and integration. METHODS Integrase sequences were retrieved from the Los Alamos Database or obtained from the Garrahan HIV cohort. HIV-1 infectious molecular clones with or without Q148H (+ G140S) resistance mutations were constructed using integrases of subtype B (NL4-3) or F1(BF) ARMA159 and URTR23. Integrase chimeras were generated by reciprocal exchanges of a 200 bp fragment spanning amino acids 85-150 of the catalytic core domain (CCD) of NL4-3-Q148H and either ARMA159-Q148H or URTR23-Q148H. Viral infections were quantified by p24 ELISA and Alu-gag integration PCR assay. RESULTS At least 18 different polymorphisms distinguish subtype B from F1(BF) recombinant integrases. In phenotypic experiments, p24 at Day 15 post-infection was high (105-106 pg/mL) for WT and NL4-3-Q148H; by contrast, it was low (102-104 pg/mL) for both F1(BF)-Q148H + G140S viruses, and undetectable for the Q148H mutants. Compared with WT viruses, integrated DNA was reduced by 5-fold for NL4-3-Q148H (P = 0.05), 9-fold for URTR23-Q148H (P = 0.01) and 16000-fold for ARMA159-Q148H (P = 0.01). Reciprocal exchange between B and F1(BF) of an integrase CCD region failed to rescue the replicative defect of F1(BF) integrase mutants. CONCLUSIONS The functional impairment of Q148H in the context of subtype F integrases from BF recombinants explains the lack of selection of this pathway in vivo. Non-B polymorphisms external to the integrase CCD may influence the pathway to integrase strand transfer inhibitor resistance.
Collapse
Affiliation(s)
- Paula C Aulicino
- Laboratory of Cellular Biology and Retroviruses, Unit of Virology and Molecular Epidemiology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Zoha Momin
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mijael Rozenszajn
- Laboratory of Cellular Biology and Retroviruses, Unit of Virology and Molecular Epidemiology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Monzon
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Solange Arazi-Caillaud
- Unit of Epidemiology and Infectology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Rosa Bologna
- Unit of Epidemiology and Infectology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratory of Cellular Biology and Retroviruses, Unit of Virology and Molecular Epidemiology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jason T Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Abstract
A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.
Collapse
|
6
|
Yang J, Hao M, Khan MA, Rehman MT, Highbarger HC, Chen Q, Goswami S, Sherman BT, Rehm CA, Dewar RL, Chang W, Imamichi T. A Combination of M50I and V151I Polymorphic Mutations in HIV-1 Subtype B Integrase Results in Defects in Autoprocessing. Viruses 2021; 13:2331. [PMID: 34835137 PMCID: PMC8625782 DOI: 10.3390/v13112331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
We have recently reported that a recombinant HIV-1NL4.3 containing Met-to-Ile change at codon 50 of integrase (IN) (IN:M50I) exhibits suppression of the virus release below 0.5% of WT HIV, and the released viral particles are replication-incompetent due to defects in Gag/GagPol processing by inhibition of the initiation of autoprocessing of GagPol polyproteins in the virions and leads to replication-incompetent viruses. The coexisting Ser-to-Asn change at codon 17 of IN or Asn-to-Ser mutation at codon 79 of RNaseH (RH) compensated the defective IN:M50I phenotype, suggesting that both IN and RH regulate an HIV infectability. In the current study, to elucidate a distribution of the three mutations during anti-retroviral therapy among patients, we performed a population analysis using 529 plasma virus RNA sequences obtained through the MiSeq. The result demonstrated that 14 plasma HIVs contained IN:M50I without the compensatory mutations. Comparing the sequences of the 14 viruses with that of the defective virus illustrated that only Val-to-Ile change at codon 151 of IN (IN:V151I) existed in the recombinant virus. This IN:V151I is known as a polymorphic mutation and was derived from HIVNL4.3 backbone. A back-mutation at 151 from Ile-to-Val in the defective virus recovered HIV replication capability, and Western Blotting assay displayed that the back-mutation restored Gag/GagPol processing in viral particles. These results demonstrate that a combination of IN:M50I and IN:V151I mutations, but not IN:M50I alone, produces a defective virus.
Collapse
Affiliation(s)
- Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Muhammad A. Khan
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Muhammad T. Rehman
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Helene C. Highbarger
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Catherine A. Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA;
| | - Robin L. Dewar
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| |
Collapse
|
7
|
Imamichi T, Bernbaum JG, Laverdure S, Yang J, Chen Q, Highbarger H, Hao M, Sui H, Dewar R, Chang W, Lane HC. Natural Occurring Polymorphisms in HIV-1 Integrase and RNase H Regulate Viral Release and Autoprocessing. J Virol 2021; 95:e0132321. [PMID: 34523971 PMCID: PMC8577372 DOI: 10.1128/jvi.01323-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy-naive patients reported that 14 naturally occurring nonsynonymous single-nucleotide polymorphisms (SNPs) in HIV derived from antiretrovirus drug-naive patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing a Met-to-Ile change at codon 50 in integrase [HIV(IN:M50I)] was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P < 0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster resonance energy transfer (FRET) assay displayed that GagPol containing IN:M50I forms a homodimer with a similar efficiency with GagPol (wild type). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase and Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are regulated by not only integrase but also RNase H. IMPORTANCE Nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging nonsynonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Other coexisting SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - John G. Bernbaum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Helene Highbarger
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Sui H, Hao M, Chang W, Imamichi T. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front Cell Infect Microbiol 2021; 11:761983. [PMID: 34746031 PMCID: PMC8566972 DOI: 10.3389/fcimb.2021.761983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | | | | | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
9
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
10
|
NKNK: a New Essential Motif in the C-Terminal Domain of HIV-1 Group M Integrases. J Virol 2020; 94:JVI.01035-20. [PMID: 32727879 DOI: 10.1128/jvi.01035-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Using coevolution network interference based on comparison of two phylogenetically distantly related isolates, one from the main group M and the other from the minor group O of HIV-1, we identify, in the C-terminal domain (CTD) of integrase, a new functional motif constituted by four noncontiguous amino acids (N222K240N254K273). Mutating the lysines abolishes integration through decreased 3' processing and inefficient nuclear import of reverse-transcribed genomes. Solution of the crystal structures of wild-type (wt) and mutated CTDs shows that the motif generates a positive surface potential that is important for integration. The number of charges in the motif appears more crucial than their position within the motif. Indeed, the positions of the K's could be permutated or additional K's could be inserted in the motif, generally without affecting integration per se Despite this potential genetic flexibility, the NKNK arrangement is strictly conserved in natural sequences, indicative of an effective purifying selection exerted at steps other than integration. Accordingly, reverse transcription was reduced even in the mutants that retained wt integration levels, indicating that specifically the wt sequence is optimal for carrying out the multiple functions that integrase exerts. We propose that the existence of several amino acid arrangements within the motif, with comparable efficiencies of integration per se, might have constituted an asset for the acquisition of additional functions during viral evolution.IMPORTANCE Intensive studies of HIV-1 have revealed its extraordinary ability to adapt to environmental and immunological challenges, an ability that is also at the basis of antiviral treatment escape. Here, by deconvoluting the different roles of the viral integrase in the various steps of the infectious cycle, we report how the existence of alternative equally efficient structural arrangements for carrying out one function opens up the possibility of adapting to the optimization of further functionalities exerted by the same protein. Such a property provides an asset to increase the efficiency of the infectious process. On the other hand, though, the identification of this new motif provides a potential target for interfering simultaneously with multiple functions of the protein.
Collapse
|
11
|
Elliott JL, Eschbach JE, Koneru PC, Li W, Puray-Chavez M, Townsend D, Lawson DQ, Engelman AN, Kvaratskhelia M, Kutluay SB. Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. eLife 2020; 9:54311. [PMID: 32960169 PMCID: PMC7671690 DOI: 10.7554/elife.54311] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/22/2020] [Indexed: 01/29/2023] Open
Abstract
A large number of human immunodeficiency virus 1 (HIV-1) integrase (IN) alterations, referred to as class II substitutions, exhibit pleiotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of the three distinct mechanisms: (i) markedly reducing IN levels thus precluding the formation of IN complexes with viral RNA; (ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; and (iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in the mislocalization of viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.
Collapse
Affiliation(s)
- Jennifer L Elliott
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Pratibha C Koneru
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
12
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
13
|
Ran X, Ao Z, Olukitibi T, Yao X. Characterization of the Role of Host Cellular Factor Histone Deacetylase 10 during HIV-1 Replication. Viruses 2019; 12:v12010028. [PMID: 31888084 PMCID: PMC7020091 DOI: 10.3390/v12010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022] Open
Abstract
To date, a series of histone deacetylases have been documented to restrict HIV-1 replication at different steps. In this study, we identified histone deacetylase 10 (HDAC10) as an inhibitory factor against HIV-1 replication. Our results showed that endogenous HDAC10 is downregulated at the transcriptional level during HIV-1 replication. By knocking down HDAC10 in CD4+ T cells with specific shRNAs, we observed that the downregulation of HDAC10 significantly facilitates viral replication. Moreover, RQ-PCR analysis revealed that the downregulation of HDAC10 increased viral integrated DNA. Further, we identified that HDAC10 interacts with the HIV-1 integrase (IN) and that the region of residues from 55 to 165 in the catalytic domain of IN is required for HDAC10 binding. Interestingly, we found that the interaction between HDAC10 and IN specifically decreases the interaction between IN and cellular protein lens epithelium-derived growth factor (LEDGF/p75), which consequently leads to the inhibition of viral integration. In addition, we have investigated the role of HDAC10 in the late stage of viral replication by detecting the infectiousness of progeny virus produced from HDAC10 knockdown cells or HDAC10 overexpressing cells and revealed that the progeny virus infectivity is increased in the HDAC10 downregulated cells, but decreased in the HDAC10 overexpressed cells. Overall, these findings provide evidence that HDAC10 acts as a cellular inhibitory factor at the early and late stages of HIV-1 replication.
Collapse
|
14
|
Hakata Y, Li J, Fujino T, Tanaka Y, Shimizu R, Miyazawa M. Mouse APOBEC3 interferes with autocatalytic cleavage of murine leukemia virus Pr180gag-pol precursor and inhibits Pr65gag processing. PLoS Pathog 2019; 15:e1008173. [PMID: 31830125 PMCID: PMC6907756 DOI: 10.1371/journal.ppat.1008173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Mouse APOBEC3 (mA3) inhibits murine leukemia virus (MuLV) replication by a deamination-independent mechanism in which the reverse transcription is considered the main target process. However, other steps in virus replication that can be targeted by mA3 have not been examined. We have investigated the possible effect of mA3 on MuLV protease-mediated processes and found that mA3 binds both mature viral protease and Pr180gag-pol precursor polyprotein. Using replication-competent MuLVs, we also show that mA3 inhibits the processing of Pr65 Gag precursor. Furthermore, we demonstrate that the autoprocessing of Pr180gag-pol is impeded by mA3, resulting in reduced production of mature viral protease. This reduction appears to link with the above inefficient Pr65gag processing in the presence of mA3. Two major isoforms of mA3, exon 5-containing and -lacking ones, equally exhibit this antiviral activity. Importantly, physiologically expressed levels of mA3 impedes both Pr180gag-pol autocatalysis and Pr65gag processing. This blockade is independent of the deaminase activity and requires the C-terminal region of mA3. These results suggest that the above impairment of Pr180gag-pol autoprocessing may significantly contribute to the deaminase-independent antiretroviral activity exerted by mA3. Soon after the identification of the polynucleotide cytidine deaminase APOBEC3 as a host restriction factor against vif-deficient HIV, it was noticed that deamination-independent mechanisms are involved in the inhibition of viral replication in addition to the deaminase-dependent mechanism. We previously showed that mouse APOBEC3 (mA3) physiologically restricted mouse retrovirus replication in their natural hosts without causing significant G-to-A hypermutations. Inhibition of reverse transcription is reported to be the most plausible mechanism for the deamination-independent antiretroviral function. However, it remains unknown whether the inhibition of reverse transcription is the only way to explain the whole picture of deamination-independent antiviral activity exerted by APOBEC3. Here we show that mA3 targets the autoprocessing of Pr180gag-pol polyprotein. This activity does not require the deaminase catalytic center and mainly exerted by the C-terminal half of mA3. mA3 physically interacts with murine retroviral protease and its precursor Pr180gag-pol. mA3-induced disruption of the autocatalytic Pr180gag-pol cleavage leads to a significant reduction of mature viral protease, resulting in the inhibition of Pr65gag processing to mature Gag proteins. As the Pr180gag-pol autoprocessing is necessary for the maturation of other viral enzymes including the reverse transcriptase, its inhibition by host APOBEC3 may precede the previously described impairment of reverse transcription. Our discovery may lead to the development of novel antiretroviral drugs through the future identification of detailed molecular interfaces between retroviral Gag-Pol polyprotein and APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail: (YH); (MM)
| | - Jun Li
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Ijunkai Medical Oncology, Endoscopy Clinic, Sakai-ku, Sakai, Osaka, Japan
| | - Takahiro Fujino
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Tanaka
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Rie Shimizu
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Kindai University Anti-Aging Center, Higashiosaka, Osaka, Japan
- * E-mail: (YH); (MM)
| |
Collapse
|
15
|
Pornillos O, Ganser-Pornillos BK. Maturation of retroviruses. Curr Opin Virol 2019; 36:47-55. [PMID: 31185449 PMCID: PMC6730672 DOI: 10.1016/j.coviro.2019.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023]
Abstract
During retrovirus maturation, cleavage of the precursor structural Gag polyprotein by the viral protease induces architectural rearrangement of the virus particle from an immature into a mature, infectious form. The structural rearrangement encapsidates the viral RNA genome in a fullerene capsid, producing a diffusible viral core that can initiate infection upon entry into the cytoplasm of a host cell. Maturation is an important therapeutic window against HIV-1. In this review, we highlight recent breakthroughs in understanding of the structures of retroviral immature and mature capsid lattices that define the boundary conditions of maturation and provide novel insights on capsid transformation. We also discuss emerging insights on encapsidation of the viral genome in the mature capsid, as well as remaining questions for further study.
Collapse
Affiliation(s)
- Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018; 15:35. [PMID: 29716635 PMCID: PMC5930818 DOI: 10.1186/s12977-018-0417-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Collapse
Affiliation(s)
- Paul D. Bieniasz
- Howard Hughes Medical Institute and Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065 USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
17
|
Hoyte AC, Jamin AV, Koneru PC, Kobe MJ, Larue RC, Fuchs JR, Engelman AN, Kvaratskhelia M. Resistance to pyridine-based inhibitor KF116 reveals an unexpected role of integrase in HIV-1 Gag-Pol polyprotein proteolytic processing. J Biol Chem 2017; 292:19814-19825. [PMID: 28972144 PMCID: PMC5712621 DOI: 10.1074/jbc.m117.816645] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/27/2017] [Indexed: 11/06/2022] Open
Abstract
The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs.
Collapse
Affiliation(s)
- Ashley C Hoyte
- From the Center for Retrovirus Research and
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | - Augusta V Jamin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Pratibha C Koneru
- From the Center for Retrovirus Research and
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | | | | | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Mamuka Kvaratskhelia
- From the Center for Retrovirus Research and
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| |
Collapse
|
18
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding. Drug Target Insights 2017. [DOI: 10.1177/117739280700200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
- Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
| |
Collapse
|
19
|
Allosteric HIV-1 Integrase Inhibitors Lead to Premature Degradation of the Viral RNA Genome and Integrase in Target Cells. J Virol 2017; 91:JVI.00821-17. [PMID: 28615207 DOI: 10.1128/jvi.00821-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that inhibition of HIV-1 integrase (IN) binding to the viral RNA genome by allosteric integrase inhibitors (ALLINIs) or through mutations within IN yields aberrant particles in which the viral ribonucleoprotein complexes (vRNPs) are eccentrically localized outside the capsid lattice. These particles are noninfectious and are blocked at an early reverse transcription stage in target cells. However, the basis of this reverse transcription defect is unknown. Here, we show that the viral RNA genome and IN from ALLINI-treated virions are prematurely degraded in target cells, whereas reverse transcriptase remains active and stably associated with the capsid lattice. The aberrantly shaped cores in ALLINI-treated particles can efficiently saturate and be degraded by a restricting TRIM5 protein, indicating that they are still composed of capsid proteins arranged in a hexagonal lattice. Notably, the fates of viral core components follow a similar pattern in cells infected with eccentric particles generated by mutations within IN that inhibit its binding to the viral RNA genome. We propose that IN-RNA interactions allow packaging of both the viral RNA genome and IN within the protective capsid lattice to ensure subsequent reverse transcription and productive infection in target cells. Conversely, disruption of these interactions by ALLINIs or mutations in IN leads to premature degradation of both the viral RNA genome and IN, as well as the spatial separation of reverse transcriptase from the viral genome during early steps of infection.IMPORTANCE Recent evidence indicates that HIV-1 integrase (IN) plays a key role during particle maturation by binding to the viral RNA genome. Inhibition of IN-RNA interactions yields aberrant particles with the viral ribonucleoprotein complexes (vRNPs) eccentrically localized outside the conical capsid lattice. Although these particles contain all of the components necessary for reverse transcription, they are blocked at an early reverse transcription stage in target cells. To explain the basis of this defect, we tracked the fates of multiple viral components in infected cells. Here, we show that the viral RNA genome and IN in eccentric particles are prematurely degraded, whereas reverse transcriptase remains active and stably associated within the capsid lattice. We propose that IN-RNA interactions ensure the packaging of both vRNPs and IN within the protective capsid cores to facilitate subsequent reverse transcription and productive infection in target cells.
Collapse
|
20
|
Kessl JJ, Kutluay SB, Townsend D, Rebensburg S, Slaughter A, Larue RC, Shkriabai N, Bakouche N, Fuchs JR, Bieniasz PD, Kvaratskhelia M. HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell 2016; 166:1257-1268.e12. [PMID: 27565348 DOI: 10.1016/j.cell.2016.07.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/16/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
While an essential role of HIV-1 integrase (IN) for integration of viral cDNA into human chromosome is established, studies with IN mutants and allosteric IN inhibitors (ALLINIs) have suggested that IN can also influence viral particle maturation. However, it has remained enigmatic as to how IN contributes to virion morphogenesis. Here, we demonstrate that IN directly binds the viral RNA genome in virions. These interactions have specificity, as IN exhibits distinct preference for select viral RNA structural elements. We show that IN substitutions that selectively impair its binding to viral RNA result in eccentric, non-infectious virions without affecting nucleocapsid-RNA interactions. Likewise, ALLINIs impair IN binding to viral RNA in virions of wild-type, but not escape mutant, virus. These results reveal an unexpected biological role of IN binding to the viral RNA genome during virion morphogenesis and elucidate the mode of action of ALLINIs.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie Rebensburg
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Ross C Larue
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Nikoloz Shkriabai
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Nordine Bakouche
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - James R Fuchs
- College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA; Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
An Essential Role of INI1/hSNF5 Chromatin Remodeling Protein in HIV-1 Posttranscriptional Events and Gag/Gag-Pol Stability. J Virol 2016; 90:9889-9904. [PMID: 27558426 PMCID: PMC5068538 DOI: 10.1128/jvi.00323-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
INI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. INI1 binds to SAP18 (Sin3a-associated protein, 18 kDa), and both INI1 and SAP18 are incorporated into HIV-1 virions. To determine the significance of INI1 and the INI1-SAP18 interaction during HIV-1 replication, we isolated a panel of SAP18-interaction-defective (SID)-INI1 mutants using a yeast reverse two-hybrid screen. The SID-INI1 mutants, which retained the ability to bind to IN, cMYC, and INI1 but were impaired for binding to SAP18, were tested for their effects on HIV-1 particle production. SID-INI1 dramatically reduced the intracellular Gag/Gag-Pol protein levels and, in addition, decreased viral particle production. The SID-INI1-mediated effects were less dramatic in trans complementation assays using IN deletion mutant viruses with Vpr-reverse transcriptase (RT)-IN. SID-INI1 did not inhibit long-terminal-repeat (LTR)-mediated transcription, but it marginally decreased the steady-state gag RNA levels, suggesting a posttranscriptional effect. Pulse-chase analysis indicated that in SID-INI1-expressing cells, the pr55Gag levels decreased rapidly. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production. These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Interfering INI1 leads to a decrease in particle production and Gag/Gag-Pol protein levels. Understanding the role of INI1 and SAP18 in HIV-1 replication is likely to provide novel insight into the stability of Gag/Gag-Pol, which may lead to the development of novel therapeutic strategies to inhibit HIV-1 late events.
IMPORTANCE Significant gaps exist in our current understanding of the mechanisms and host factors that influence HIV-1 posttranscriptional events, including gag RNA levels, Gag/Gag-Pol protein levels, assembly, and particle production. Our previous studies suggested that the IN-binding host factor INI1 plays a role in HIV-1 assembly. An ectopically expressed minimal IN-binding domain of INI1, S6, potently and selectively inhibited HIV-1 Gag/Gag-Pol trafficking and particle production. However, whether or not endogenous INI1 and its interacting partners, such as SAP18, are required for late events was unknown. Here, we report that endogenous INI1 and its interaction with SAP18 are necessary to maintain intracellular levels of Gag/Gag-Pol and for particle production. Interfering INI1 or the INI1-SAP18 interaction leads to the impairment of these processes, suggesting a novel strategy for inhibiting posttranscriptional events of HIV-1 replication.
Collapse
|
22
|
Identification of interaction between HIV-1 glycoprotein 41 and integrase. Virol Sin 2016; 31:415-424. [PMID: 27681265 DOI: 10.1007/s12250-016-3820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/30/2016] [Indexed: 10/20/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes 15 viral proteins. Protein-protein interactions play a large role in the function of these proteins. In this study, we attempted to identify novel interactions between the HIV-1 proteins to better understand the role played by viral protein-protein interactions in the life cycle of HIV-1. Genes encoding the 15 viral proteins from the HIV-1 strain AD8 were inserted into the plasmids of a yeast two-hybrid system. By screening 120 pairs of proteins, interactions between seven pairs were found. This led to the discovery of an interaction between the HIV-1 proteins integrase (IN) and glycoprotein 41 (gp41), which was confirmed by both co-immunoprecipitation (Co-IP) assays and fluorescence resonance energy transfer (FRET) imaging in live cells. In addition, it was found that the amino acids at positions 76-100 of gp41 are required for it to bind to IN. Deletion of this region from gp41 prevented its interaction with IN and reduced the production of HIV-1 in 293T cells. This study provides new information on HIV-1 protein-protein interactions which improves the understanding of the biological functions of gp41 and IN during the virus life cycle.
Collapse
|
23
|
Fontana J, Jurado KA, Cheng N, Ly NL, Fuchs JR, Gorelick RJ, Engelman AN, Steven AC. Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation. J Virol 2015; 89:9765-80. [PMID: 26178982 PMCID: PMC4577894 DOI: 10.1128/jvi.01522-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/09/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED During virion maturation, HIV-1 capsid protein assembles into a conical core containing the viral ribonucleoprotein (vRNP) complex, thought to be composed mainly of the viral RNA and nucleocapsid protein (NC). After infection, the viral RNA is reverse transcribed into double-stranded DNA, which is then incorporated into host chromosomes by integrase (IN) catalysis. Certain IN mutations (class II) and antiviral drugs (allosteric IN inhibitors [ALLINIs]) adversely affect maturation, resulting in virions that contain "eccentric condensates," electron-dense aggregates located outside seemingly empty capsids. Here we demonstrate that in addition to this mislocalization of electron density, a class II IN mutation and ALLINIs each increase the fraction of virions with malformed capsids (from ∼ 12% to ∼ 53%). Eccentric condensates have a high NC content, as demonstrated by "tomo-bubblegram" imaging, a novel labeling technique that exploits the susceptibility of NC to radiation damage. Tomo-bubblegrams also localized NC inside wild-type cores and lining the spherical Gag shell in immature virions. We conclude that eccentric condensates represent nonpackaged vRNPs and that either genetic or pharmacological inhibition of IN can impair vRNP incorporation into mature cores. Supplying IN in trans as part of a Vpr-IN fusion protein partially restored the formation of conical cores with internal electron density and the infectivity of a class II IN deletion mutant virus. Moreover, the ability of ALLINIs to induce eccentric condensate formation required both IN and viral RNA. Based on these observations, we propose a role for IN in initiating core morphogenesis and vRNP incorporation into the mature core during HIV-1 maturation. IMPORTANCE Maturation, a process essential for HIV-1 infectivity, involves core assembly, whereby the viral ribonucleoprotein (vRNP, composed of vRNA and nucleocapsid protein [NC]) is packaged into a conical capsid. Allosteric integrase inhibitors (ALLINIs) affect multiple viral processes. We have characterized ALLINIs and integrase mutants that have the same phenotype. First, by comparing the effects of ALLINIs on several steps of the viral cycle, we show that inhibition of maturation accounts for compound potency. Second, by using cryoelectron tomography, we find that ALLINIs impair conical capsid assembly. Third, by developing tomo-bubblegram imaging, which specifically labels NC protein, we find that ALLINIs block vRNP packaging; instead, vRNPs form "eccentric condensates" outside the core. Fourth, malformed cores, typical of integrase-deleted virus, are partially replaced by conical cores when integrase is supplied in trans. Fifth, vRNA is necessary for ALLINI-induced eccentric condensate formation. These observations suggest that integrase is involved in capsid morphogenesis and vRNP packaging.
Collapse
Affiliation(s)
- Juan Fontana
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kellie A Jurado
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ngoc L Ly
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alan N Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. J Virol 2015; 89:12058-69. [PMID: 26401032 DOI: 10.1128/jvi.01471-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.
Collapse
|
25
|
Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. HIV-1 integrase multimerization as a therapeutic target. Curr Top Microbiol Immunol 2015; 389:93-119. [PMID: 25778682 PMCID: PMC4791179 DOI: 10.1007/82_2015_439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multimeric HIV-1 integrase (IN) plays an essential, multifunctional role in virus replication and serves as an important therapeutic target. Structural and biochemical studies have revealed the importance of the ordered interplay between IN molecules for its function. In the presence of viral DNA ends, individual IN subunits assemble into a tetramer and form a stable synaptic complex (SSC), which mediates integration of the reverse transcribed HIV-1 genome into chromatin. Cellular chromatin-associated protein LEDGF/p75 engages the IN tetramer in the SSC and directs HIV-1 integration into active genes. A mechanism to deregulate the productive interplay between IN subunits with small molecule inhibitors has recently received considerable attention. Most notably, allosteric IN inhibitors (ALLINIs) have been shown to bind to the IN dimer interface at the LEDGF/p75 binding pocket, stabilize interacting IN subunits, and promote aberrant, higher order IN multimerization. Consequently, these compounds impair formation of the SSC and associated LEDGF/p75-independent IN catalytic activities as well as inhibit LEDGF/p75 binding to the SSC in vitro. However, in infected cells, ALLINIs more potently impaired correct maturation of virus particles than the integration step. ALLINI treatments induced aberrant, higher order IN multimerization in virions and resulted in eccentric, non-infectious virus particles. These studies have suggested that the correctly ordered IN structure is important for virus particle morphogenesis and highlighted IN multimerization as a plausible therapeutic target for developing new inhibitors to enhance treatment options for HIV-1-infected patients.
Collapse
Affiliation(s)
- Lei Feng
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C. Larue
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jacques J. Kessl
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Mamuka Kvaratskhelia
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Slaughter A, Jurado KA, Deng N, Feng L, Kessl JJ, Shkriabai N, Larue RC, Fadel HJ, Patel PA, Jena N, Fuchs JR, Poeschla E, Levy RM, Engelman A, Kvaratskhelia M. The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase. Retrovirology 2014; 11:100. [PMID: 25421939 PMCID: PMC4251946 DOI: 10.1186/s12977-014-0100-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an important new class of anti-HIV-1 agents. ALLINIs bind at the IN catalytic core domain (CCD) dimer interface occupying the principal binding pocket of its cellular cofactor LEDGF/p75. Consequently, ALLINIs inhibit HIV-1 IN interaction with LEDGF/p75 as well as promote aberrant IN multimerization. Selection of viral strains emerging under the inhibitor pressure has revealed mutations at the IN dimer interface near the inhibitor binding site. RESULTS We have investigated the effects of one of the most prevalent substitutions, H171T IN, selected under increasing pressure of ALLINI BI-D. Virus containing the H171T IN substitution exhibited an ~68-fold resistance to BI-D treatment in infected cells. These results correlated with ~84-fold reduced affinity for BI-D binding to recombinant H171T IN CCD protein compared to its wild type (WT) counterpart. However, the H171T IN substitution only modestly affected IN-LEDGF/p75 binding and allowed HIV-1 containing this substitution to replicate at near WT levels. The x-ray crystal structures of BI-D binding to WT and H171T IN CCD dimers coupled with binding free energy calculations revealed the importance of the Nδ- protonated imidazole group of His171 for hydrogen bonding to the BI-D tert-butoxy ether oxygen and establishing electrostatic interactions with the inhibitor carboxylic acid, whereas these interactions were compromised upon substitution to Thr171. CONCLUSIONS Our findings reveal a distinct mechanism of resistance for the H171T IN mutation to ALLINI BI-D and indicate a previously undescribed role of the His171 side chain for binding the inhibitor.
Collapse
Affiliation(s)
- Alison Slaughter
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Kellie A Jurado
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| | - Nanjie Deng
- Department of Chemistry and Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Lei Feng
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Ross C Larue
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Hind J Fadel
- Department of Molecular Medicine & Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Pratiq A Patel
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Nivedita Jena
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Eric Poeschla
- Department of Molecular Medicine & Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Ronald M Levy
- Department of Chemistry and Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| |
Collapse
|
27
|
Shkriabai N, Dharmarajan V, Slaughter A, Kessl JJ, Larue RC, Feng L, Fuchs JR, Griffin PR, Kvaratskhelia M. A critical role of the C-terminal segment for allosteric inhibitor-induced aberrant multimerization of HIV-1 integrase. J Biol Chem 2014; 289:26430-26440. [PMID: 25118283 DOI: 10.1074/jbc.m114.589572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising class of antiretroviral agents for clinical development. Although ALLINIs promote aberrant IN multimerization and inhibit IN interaction with its cellular cofactor LEDGF/p75 with comparable potencies in vitro, their primary mechanism of action in infected cells is through inducing aberrant multimerization of IN. Crystal structures have shown that ALLINIs bind at the IN catalytic core domain dimer interface and bridge two interacting subunits. However, how these interactions promote higher-order protein multimerization is not clear. Here, we used mass spectrometry-based protein footprinting to monitor surface topology changes in full-length WT and the drug-resistant A128T mutant INs in the presence of ALLINI-2. These experiments have identified protein-protein interactions that extend beyond the direct inhibitor binding site and which lead to aberrant multimerization of WT but not A128T IN. Specifically, we demonstrate that C-terminal residues Lys-264 and Lys-266 play an important role in the inhibitor induced aberrant multimerization of the WT protein. Our findings provide structural clues for exploiting IN multimerization as a new, attractive therapeutic target and are expected to facilitate development of improved inhibitors.
Collapse
Affiliation(s)
- Nikoloz Shkriabai
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | | | - Alison Slaughter
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Jacques J Kessl
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Lei Feng
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210,.
| |
Collapse
|
28
|
van Bel N, van der Velden Y, Bonnard D, Le Rouzic E, Das AT, Benarous R, Berkhout B. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome. PLoS One 2014; 9:e103552. [PMID: 25072705 PMCID: PMC4114784 DOI: 10.1371/journal.pone.0103552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Collapse
Affiliation(s)
- Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yme van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Atze T. Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
29
|
Altered viral fitness and drug susceptibility in HIV-1 carrying mutations that confer resistance to nonnucleoside reverse transcriptase and integrase strand transfer inhibitors. J Virol 2014; 88:9268-76. [PMID: 24899199 DOI: 10.1128/jvi.00695-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTI) and integrase (IN) strand transfer inhibitors (INSTI) are key components of antiretroviral regimens. To explore potential interactions between NNRTI and INSTI resistance mutations, we investigated the combined effects of these mutations on drug susceptibility and fitness of human immunodeficiency virus type 1 (HIV-1). In the absence of drug, single-mutant viruses were less fit than the wild type; viruses carrying multiple mutations were less fit than single-mutant viruses. These findings were explained in part by the observation that mutant viruses carrying NNRTI plus INSTI resistance mutations had reduced amounts of virion-associated RT and/or IN protein. In the presence of efavirenz (EFV), a virus carrying RT-K103N together with IN-G140S and IN-Q148H (here termed IN-G140S/Q148H) mutations was fitter than a virus with a RT-K103N mutation alone. Similarly, in the presence of EFV, the RT-E138K plus IN-G140S/Q148H mutant virus was fitter than one with the RT-E138K mutation alone. No effect of INSTI resistance mutations on the fitness of RT-Y181C mutant viruses was observed. Conversely, RT-E138K and -Y181C mutations improved the fitness of the IN-G140S/Q148H mutant virus in the presence of raltegravir (RAL); the RT-K103N mutation had no effect. The NNRTI resistance mutations had no effect on RAL susceptibility. Likewise, the IN-G140S/Q148H mutations had no effect on EFV or RPV susceptibility. However, both the RT-K103N plus IN-G140S/Q148H and the RT-E138K plus IN-G140S/Q148H mutant viruses had significantly greater fold increases in 50% inhibitory concentration (IC50) of EFV than viruses carrying a single NNRTI mutation. Likewise, the RT-E138K plus IN-G140S/Q148H mutant virus had significantly greater fold increases in RAL IC50 than that of the IN-G140S/Q148H mutant virus. These results suggest that interactions between RT and IN mutations are important for NNRTI and INSTI resistance and viral fitness. IMPORTANCE Nonnucleoside reverse transcriptase inhibitors and integrase inhibitors are used to treat infection with HIV-1. Mutations that confer resistance to these drugs reduce the ability of HIV-1 to reproduce (that is, they decrease viral fitness). It is known that reverse transcriptase and integrase interact and that some mutations can disrupt their interaction, which is necessary for proper functioning of these two enzymes. To determine whether resistance mutations in these enzymes interact, we investigated their effects on drug sensitivity and viral fitness. Although individual drug resistance mutations usually reduced viral fitness, certain combinations of mutations increased fitness. When present in certain combinations, some integrase inhibitor resistance mutations increased resistance to nonnucleoside reverse transcriptase inhibitors and vice versa. Because these drugs are sometimes used together in the treatment of HIV-1 infection, these interactions could make viruses more resistant to both drugs, further limiting their clinical benefit.
Collapse
|
30
|
Natural single-nucleotide polymorphisms in the 3' region of the HIV-1 pol gene modulate viral replication ability. J Virol 2014; 88:4145-60. [PMID: 24478432 DOI: 10.1128/jvi.01859-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED We previously showed that prototype macaque-tropic human immunodeficiency virus type 1 (HIV-1) acquired nonsynonymous growth-enhancing mutations within a narrow genomic region during the adaptation process in macaque cells. These adaptive mutations were clustered in the 3' region of the pol gene, encoding a small portion of the C-terminal domain of integrase (IN). Mutations in HIV-1 IN have been reported to have pleiotropic effects on both the early and late phases in viral replication. cis-acting functions in the IN-coding sequence for viral gene expression have also been reported. We here demonstrated that the adaptive mutations promoted viral growth by increasing virion production with no positive effects on the early replication phase. Synonymous codon alterations in one of the adaptive mutations influenced virion production levels, which suggested nucleotide-dependent regulation. Indeed, when the single-nucleotide natural polymorphisms observed in the 3' regions of 196 HIV-1/simian immunodeficiency virus (SIVcpz) pol genes (nucleotides [nt] 4895 to 4929 for HIV-1 NL4-3) were introduced into macaque- and human-tropic HIV-1 clones, more than half exhibited altered replication potentials. Moreover, single-nucleotide mutations caused parallel increases or decreases in the expression levels of viral late proteins and viral replication potentials. We also showed that the overall expression profiles of viral mRNAs were markedly changed by single-nucleotide mutations. These results demonstrate that the 3' region of the HIV-1 pol gene (nt 4895 to 4929) can alter viral replication potential by modulating the expression pattern of viral mRNAs in a nucleotide-dependent manner. IMPORTANCE Viruses have the plasticity to adapt themselves under various constraints. HIV-1 can mutate and evolve in growth-restrictive cells by acquiring adaptive changes in its genome. We have previously identified some growth-enhancing mutations in a narrow region of the IN-coding sequence, in which a number of cis-acting elements are located. We now focus on the virological significance of this pol gene region and the mechanistic basis underlying its effects on viral replication. We have found several naturally occurring synonymous mutations within this region that alter viral replication potentials. The effects caused by these natural single-nucleotide polymorphisms are linked to the definite expression patterns of viral mRNAs. We show here that the nucleotide sequence of the pol gene (nucleotides 4895 to 4929 for HIV-1 NL4-3) plays an important role in HIV-1 replication by modulating viral gene expression.
Collapse
|
31
|
Mathew S, Nguyen M, Wu X, Pal A, Shah VB, Prasad VR, Aiken C, Kalpana GV. INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 2013; 10:66. [PMID: 23799881 PMCID: PMC3708822 DOI: 10.1186/1742-4690-10-66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 01/10/2023] Open
Abstract
Background Retroviral integrase catalyzes integration of viral DNA into the host genome. Integrase interactor (INI)1/hSNF5 is a host factor that binds to HIV-1 IN within the context of Gag-Pol and is specifically incorporated into HIV-1 virions during assembly. Previous studies have indicated that INI1/hSNF5 is required for late events in vivo and for integration in vitro. To determine the effects of disrupting the IN-INI1 interaction on the assembly and infectivity of HIV-1 particles, we isolated mutants of IN that are defective for binding to INI1/hSNF5 and tested their effects on HIV-1 replication. Results A reverse yeast two-hybrid system was used to identify INI1-interaction defective IN mutants (IID-IN). Since protein-protein interactions depend on the surface residues, the IID-IN mutants that showed high surface accessibility on IN crystal structures (K71R, K111E, Q137R, D202G, and S147G) were selected for further study. In vitro interaction studies demonstrated that IID-IN mutants exhibit variable degrees of interaction with INI1. The mutations were engineered into HIV-1NL4-3 and HIV-Luc viruses and tested for their effects on virus replication. HIV-1 harboring IID-IN mutations were defective for replication in both multi- and single-round infection assays. The infectivity defects were correlated to the degree of INI1 interaction of the IID-IN mutants. Highly defective IID-IN mutants were blocked at early and late reverse transcription, whereas partially defective IID-IN mutants proceeded through reverse transcription and nuclear localization, but were partially impaired for integration. Electron microscopic analysis of mutant particles indicated that highly interaction-defective IID-IN mutants produced morphologically aberrant virions, whereas the partially defective mutants produced normal virions. All of the IID-IN mutant particles exhibited normal capsid stability and reverse transcriptase activity in vitro. Conclusions Our results demonstrate that a severe defect in IN-INI1 interaction is associated with production of defective particles and a subsequent defect in post-entry events. A partial defect in IN-INI1 interaction leads to production of normal virions that are partially impaired for early events including integration. Our studies suggest that proper interaction of INI1 with IN within Gag-Pol is necessary for proper HIV-1 morphogenesis and integration.
Collapse
Affiliation(s)
- Sheeba Mathew
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A 2013; 110:8690-5. [PMID: 23610442 DOI: 10.1073/pnas.1300703110] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Integration is essential for HIV-1 replication, and the viral integrase (IN) protein is an important therapeutic target. Allosteric IN inhibitors (ALLINIs) that engage the IN dimer interface at the binding site for the host protein lens epithelium-derived growth factor (LEDGF)/transcriptional coactivator p75 are an emerging class of small molecule antagonists. Consistent with the inhibition of a multivalent drug target, ALLINIs display steep antiviral dose-response curves ex vivo. ALLINIs multimerize IN protein and concordantly block its assembly with viral DNA in vitro, indicating that the disruption of two integration-associated functions, IN catalysis and the IN-LEDGF/p75 interaction, determines the multimode mechanism of ALLINI action. We now demonstrate that ALLINI potency is unexpectedly accounted for during the late phase of HIV-1 replication. The compounds promote virion IN multimerization and, reminiscent of class II IN mutations, block the formation of the electron-dense viral core and inhibit reverse transcription and integration in subsequently infected target cells. Mature virions are recalcitrant to ALLINI treatment, and compound potency during virus production is independent of the level of LEDGF/p75 expression. We conclude that cooperative multimerization of IN by ALLINIs together with the inability for LEDGF/p75 to effectively engage the virus during its egress from cells underscores the multimodal mechanism of ALLINI action. Our results highlight the versatile nature of allosteric inhibitors to primarily inhibit viral replication at a step that is distinct from the catalytic requirement for the target enzyme. The vulnerability of IN to small molecules during the late phase of HIV-1 replication unveils a pharmacological Achilles' heel for exploitation in clinical ALLINI development.
Collapse
|
33
|
Abstract
Retroviruses are distinguished from other viruses by two characteristic steps in the viral replication cycle. The first is reverse transcription, which results in the production of a double-stranded DNA copy of the viral RNA genome, and the second is integration, which results in covalent attachment of the DNA copy to host cell DNA. The initial catalytic steps of the integration reaction are performed by the virus-encoded integrase (IN) protein. The chemistry of the IN-mediated DNA breaking and joining steps is well worked out, and structures of IN-DNA complexes have now clarified how the overall complex assembles. Methods developed during these studies were adapted for identification of IN inhibitors, which received FDA approval for use in patients in 2007. At the chromosomal level, HIV integration is strongly favored in active transcription units, which may promote efficient viral gene expression after integration. HIV IN binds to the cellular factor LEDGF/p75, which promotes efficient infection and tethers IN to favored target sites. The HIV integration machinery must also interact with many additional host factors during infection, including nuclear trafficking and pore proteins during nuclear entry, histones during initial target capture, and DNA repair proteins during completion of the DNA joining steps. Models for some of the molecular mechanisms involved have been proposed, but important details remain to be clarified.
Collapse
Affiliation(s)
- Robert Craigie
- Molecular Virology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
34
|
Pan YY, Wang SM, Huang KJ, Chiang CC, Wang CT. Placement of leucine zipper motifs at the carboxyl terminus of HIV-1 protease significantly reduces virion production. PLoS One 2012; 7:e32845. [PMID: 22396796 PMCID: PMC3291649 DOI: 10.1371/journal.pone.0032845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
Natural HIV-1 protease (PR) is homodimeric. Some researchers believe that interactions between HIV-1 Gag-Pol molecules trigger the activation of embedded PR (which mediates Gag and Gag-Pol cleavage), and that Gag-Pol assembly domains outside of PR may contribute to PR activation by influencing PR dimer interaction in a Gag-Pol context. To determine if the enhancement of PR dimer interaction facilitates PR activation, we placed single or tandem repeat leucine zippers (LZ) at the PR C-terminus, and looked for a correlation between enhanced Gag processing efficiency and increased Gag-PR-LZ multimerization capacity. We found significant reductions in virus-like particles (VLPs) produced by HIV-1 mutants, with LZ fused to the end of PR as a result of enhanced Gag cleavage efficiency. Since VLP production can be restored to wt levels following PR activity inhibition, this assembly defect is considered PR activity-dependent. We also found a correlation between the LZ enhancement effect on Gag cleavage and enhanced Gag-PR multimerization. The results suggest that PR dimer interactions facilitated by forced Gag-PR multimerization lead to premature Gag cleavage, likely a result of premature PR activation. Our conclusion is that placement of a heterologous dimerization domain downstream of PR enhances PR-mediated Gag cleavage efficiency, implying that structural conformation, rather than the primary sequence outside of PR, is a major determinant of HIV-1 PR activation.
Collapse
Affiliation(s)
- Yen-Yu Pan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shiu-Mei Wang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Jung Huang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Cheng Chiang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Tien Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Correlation of recombinant integrase activity and functional preintegration complex formation during acute infection by replication-defective integrase mutant human immunodeficiency virus. J Virol 2012; 86:3861-79. [PMID: 22278243 DOI: 10.1128/jvi.06386-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies characterized two types of replication-defective human immunodeficiency virus type 1 (HIV-1) integrase mutants: class I, which are specifically blocked at the integration step, and class II, which harbor additional virion production and/or reverse transcription defects. Class I mutant enzymes supported little if any metal ion-dependent 3'-processing and DNA strand transfer activities in vitro, whereas class II enzymes displayed partial or full catalytic function in studies with simplified assay designs, suggesting that defective interaction(s) with heterologous integrase binding proteins might underlie the class II mutant viral phenotype. To address this hypothesis, class I and II mutant enzymes were interrogated under expanded sets of in vitro conditions. The majority failed to catalyze the concerted integration of two viral DNA ends into target DNA, highlighting defective integrase function as the root cause of most class II in addition to all class I mutant virus infection defects. One mutant protein, K264E, in contrast, could support the wild-type level of concerted integration activity. After accounting for its inherent reverse transcription defect, HIV-1(K264E) moreover formed preintegration complexes that supported the efficient integration of endogenous viral DNA in vitro and normal levels and sequences of 2-long terminal repeat-containing circle junctions during acute infection. K264E integrase furthermore efficiently interacted in vitro with two heterologous binding partners, LEDGF/p75 and reverse transcriptase. Our results underscore the physiological relevance of concerted integration assays for tests of integrase mutant function and suggest that the K264E mutation disrupts an interaction with an intranuclear integrase binding partner that is important for HIV-1 integration.
Collapse
|
36
|
Chiang CC, Tseng YT, Huang KJ, Pan YY, Wang CT. Mutations in the HIV-1 reverse transcriptase tryptophan repeat motif affect virion maturation and Gag-Pol packaging. Virology 2011; 422:278-87. [PMID: 22104208 DOI: 10.1016/j.virol.2011.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 08/30/2011] [Accepted: 11/01/2011] [Indexed: 11/29/2022]
Abstract
Our goal was to determine the contribution of HIV-1 reverse transcriptase tryptophan repeat motif residues to virion maturation. With the exception of W402A, we found none of the single substitution mutations exerted major impacts on virus assembly or processing. However, all mutants except for W410A exhibited significant decreases in virus-associated RT, presumably a result of unstable RT mutant degradation. Mutations W398A, W401A and W406A decreased the enhancement effect of efavirenz on PR-mediated Gag processing efficiency, which is in agreement with their destabilizing RT effects. Furthermore, combined double or triple W398, W401 and W406 mutations significantly affected virus processing and Gag-Pol packaging. Further analyses suggest that inefficient PR-mediated Gag cleavage partly accounts for the virion processing defect. Our results support the idea that in addition to playing a role in RT heterodimer stabilization, the RT Trp repeat motif in the Gag-Pol context is also involved in PR activation via Gag-Pol/Gag-Pol interaction.
Collapse
Affiliation(s)
- Chien-Cheng Chiang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Nishitsuji H, Yokoyama M, Sato H, Yamauchi S, Takaku H. Identification of amino acid residues in HIV-1 reverse transcriptase that are critical for the proteolytic processing of Gag-Pol precursors. FEBS Lett 2011; 585:3372-7. [PMID: 22004763 DOI: 10.1016/j.febslet.2011.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
Abstract
The efficient processing of human immunodeficiency virus type 1 Gag-Pol requires not only protease activity but also specific reverse transcriptase (RT) and integrase sequences. However, the critical amino acid residues of the HIV-1 Pol gene involved in protease-mediated Gag-Pol processing have not been precisely defined. Here, we found that the substitution of Thr-128 or Tyr-146 with Ala markedly impaired the proteolytic processing of the MA/CA, p66/p51 and RT/IN sites but did not affect the normal processing of other sites. Moreover, a Thr-128 or Tyr-146 mutation in RT abolished RT dimerization in vitro. These results suggest that Thr-128 and Tyr-146 within the RT region play important roles in protease-mediated Gag-Pol processing.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.
| | | | | | | | | |
Collapse
|
38
|
Zamborlini A, Coiffic A, Beauclair G, Delelis O, Paris J, Koh Y, Magne F, Giron ML, Tobaly-Tapiero J, Deprez E, Emiliani S, Engelman A, de Thé H, Saïb A. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J Biol Chem 2011; 286:21013-22. [PMID: 21454548 PMCID: PMC3121452 DOI: 10.1074/jbc.m110.189274] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/23/2011] [Indexed: 11/06/2022] Open
Abstract
HIV-1 integrase (IN) orchestrates the integration of the reverse transcribed viral cDNA into the host cell genome and participates also in other steps of HIV-1 replication. Cellular and viral factors assist IN in performing its multiple functions, and post-translational modifications contribute to modulate its activities. Here, we show that HIV-1 IN is modified by SUMO proteins and that phylogenetically conserved SUMOylation consensus motifs represent major SUMO acceptor sites. Viruses harboring SUMOylation site IN mutants displayed a replication defect that was mapped during the early stages of infection, before integration but after reverse transcription. Because SUMOylation-defective IN mutants retained WT catalytic activity, we hypothesize that SUMOylation might regulate the affinity of IN for co-factors, contributing to efficient HIV-1 replication.
Collapse
Affiliation(s)
- Alessia Zamborlini
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
- the Conservatoire des Arts et Métiers, Paris, France
| | - Audrey Coiffic
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Guillaume Beauclair
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Olivier Delelis
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, CNRS UMR8113, Ecole Normale Supérieure, 94235 Cachan, France
| | - Joris Paris
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Yashuiro Koh
- the Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Fabian Magne
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
- the Conservatoire des Arts et Métiers, Paris, France
| | - Marie-Lou Giron
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Joelle Tobaly-Tapiero
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Eric Deprez
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, CNRS UMR8113, Ecole Normale Supérieure, 94235 Cachan, France
| | - Stephane Emiliani
- INSERM U1016, CNRS UMR8104, Université Paris Descartes, Institut Cochin, 75014 Paris, France, and
| | - Alan Engelman
- the Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Hugues de Thé
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Ali Saïb
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
- the Conservatoire des Arts et Métiers, Paris, France
| |
Collapse
|
39
|
Sequential deletion of the integrase (Gag-Pol) carboxyl terminus reveals distinct phenotypic classes of defective HIV-1. J Virol 2011; 85:4654-66. [PMID: 21367893 DOI: 10.1128/jvi.02374-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A requisite step in the life cycle of human immunodeficiency virus type 1 (HIV-1) is the insertion of the viral genome into that of the host cell, a process catalyzed by the 288-amino-acid (32-kDa) viral integrase (IN). IN recognizes and cleaves the ends of reverse-transcribed viral DNA and directs its insertion into the chromosomal DNA of the target cell. IN function, however, is not limited to integration, as the protein is required for other aspects of viral replication, including assembly, virion maturation, and reverse transcription. Previous studies demonstrated that IN is comprised of three domains: the N-terminal domain (NTD), catalytic core domain (CCD), and C-terminal domain (CTD). Whereas the CCD is mainly responsible for providing the structural framework for catalysis, the roles of the other two domains remain enigmatic. This study aimed to elucidate the primary and subsidiary roles that the CTD has in protein function. To this end, we generated and tested a nested set of IN C-terminal deletion mutants in measurable assays of virologic function. We discovered that removal of up to 15 residues (IN 273) resulted in incremental diminution of enzymatic function and infectivity and that removal of the next three residues resulted in a loss of infectivity. However, replication competency was surprisingly reestablished with one further truncation, corresponding to IN 269 and coinciding with partial restoration of integration activity, but it was lost permanently for all truncations extending N terminal to this position. Our analyses of these replication-competent and -incompetent truncation mutants suggest potential roles for the IN CTD in precursor protein processing, reverse transcription, integration, and IN multimerization.
Collapse
|
40
|
Human immunodeficiency virus type 1 and related primate lentiviruses engage clathrin through Gag-Pol or Gag. J Virol 2011; 85:3792-801. [PMID: 21289110 DOI: 10.1128/jvi.02329-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gag-Pol polyprotein of human immunodeficiency virus type 1 (HIV-1) is not required for efficient viral particle production. However, premature termination codons in pol, particularly in the integrase (IN)-coding region, can markedly impair HIV-1 particle formation, apparently due to the premature activation of the viral protease (PR). We now report that the IN domain of Gag-Pol is required for the incorporation of clathrin into HIV-1 virions. Significantly, PR-dependent effects of point mutations in IN on particle production correlated strictly with their effects on clathrin incorporation. A possible interpretation of these findings is that certain IN mutations impair particle production in a PR-dependent manner by promoting Gag-Pol dimerization, which also occludes a binding site for clathrin. Consistently with this model, the reverse transcriptase (RT) inhibitor efavirenz, which is thought to promote Gag-Pol dimerization, inhibited the incorporation of clathrin into HIV-1 virions. Clathrin-depleted cells produced normal amounts of HIV-1 virions; however, their infectivity was reduced. We also observed that HIV-2 and the simian immunodeficiency virus SIVmac interact with clathrin through one or two copies of a peptide motif in the p6 domain of Gag that resembles the clathrin box of cellular adaptor proteins. Furthermore, the substitution of the hydrophobic residues in the single clathrin box motif of SIVmac caused a replication defect in primary cells. Taken together, our results indicate that primate lentiviruses from two different subgroups functionally interact with clathrin during assembly.
Collapse
|
41
|
Yamamoto SP, Okawa K, Nakano T, Sano K, Ogawa K, Masuda T, Morikawa Y, Koyanagi Y, Suzuki Y. Huwe1, a novel cellular interactor of Gag-Pol through integrase binding, negatively influences HIV-1 infectivity. Microbes Infect 2010; 13:339-49. [PMID: 21167302 DOI: 10.1016/j.micinf.2010.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 11/24/2022]
Abstract
Integration, an indispensable step for retrovirus replication, is executed by integrase (IN), which is expressed as a part of a Gag-Pol precursor. Although mechanistic detail of the IN-catalyzed integration reaction is well defined, numerous evidence have demonstrated that IN is involved in multiple steps of retrovirus replication other than integration. In this study, Huwe1, a HECT-type E3 ubiquitin ligase, was identified as a new cellular interactor of human immunodeficiency virus type 1 (HIV-1) IN. The interaction was mediated through the catalytic core domain of IN and a wide-range region of Huwe1. Interestingly, although depletion of Huwe1 in target cells did not affect the early phase of HIV-1 infection in a human T cell line, we found that infectivity of HIV-1 released from the Huwe1 knockdown cells was significantly augmented more than that of virus produced from control cells. The increase in infectivity occurred in proviral DNA synthesis. Further analysis revealed that Huwe1 interacted with HIV-1 Gag-Pol precursor protein through an IN domain. Our results suggest that Huwe1 in HIV-1 producer cells has a negative impact on early post-entry events during the next round of virus infection via association with an IN region of Gag-Pol.
Collapse
Affiliation(s)
- Seiji P Yamamoto
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ceccherini-Silberstein F, Malet I, Fabeni L, Dimonte S, Svicher V, D'Arrigo R, Artese A, Costa G, Bono S, Alcaro S, d'Arminio Monforte A, Katlama C, Calvez V, Antinori A, Marcelin AG, Perno CF. Specific HIV-1 integrase polymorphisms change their prevalence in untreated versus antiretroviral-treated HIV-1-infected patients, all naive to integrase inhibitors. J Antimicrob Chemother 2010; 65:2305-18. [DOI: 10.1093/jac/dkq326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
|
44
|
Briones MS, Dobard CW, Chow SA. Role of human immunodeficiency virus type 1 integrase in uncoating of the viral core. J Virol 2010; 84:5181-90. [PMID: 20219923 PMCID: PMC2863833 DOI: 10.1128/jvi.02382-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
After membrane fusion with a target cell, the core of human immunodeficiency virus type 1 (HIV-1) enters into the cytoplasm, where uncoating occurs. The cone-shaped core is composed of the viral capsid protein (CA), which disassembles during uncoating. The underlying factors and mechanisms governing uncoating are poorly understood. Several CA mutations can cause changes in core stability and a block at reverse transcription, demonstrating the requirement for optimal core stability during viral replication. HIV-1 integrase (IN) catalyzes the insertion of the viral cDNA into the host genome, and certain IN mutations are pleiotropic. Similar to some CA mutants, two IN mutants, one with a complete deletion of IN (NL-DeltaIN) and the other with a Cys-to-Ser substitution (NL-C130S), were noninfectious, with a replication block at reverse transcription. Compared to the wild type (WT), the cytoplasmic CA levels of the IN mutants in infected cells were reduced, suggesting accelerated uncoating. The role of IN during uncoating was examined by isolating and characterizing cores from NL-DeltaIN and NL-C130S. Both IN mutants could form functional cores, but the core yield and stability were decreased. Also, virion incorporation of cyclophilin A (CypA), a cellular peptidyl-prolyl isomerase that binds specifically to CA, was decreased in the IN mutants. Cores isolated from WT virus depleted of CypA had an unstable-core phenotype, confirming a role of CypA in promoting optimal core stability. Taken together, our results indicate that IN is required during uncoating for maintaining CypA-CA interaction, which promotes optimal stability of the viral core.
Collapse
Affiliation(s)
- Marisa S. Briones
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Charles W. Dobard
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Samson A. Chow
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095
- Corresponding author. Mailing address: Molecular and Medical Pharmacology, 650 Charles E. Young Dr., CHS 23-133, Los Angeles, CA 90095. Phone: (310) 825-9600. Fax: (310) 825-6267. E-mail:
| |
Collapse
|
45
|
The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J Virol 2009; 84:2832-42. [PMID: 20032182 DOI: 10.1128/jvi.02435-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Foamy viruses are a member of the spumavirus subfamily of retroviruses with unique mechanisms of virus replication. Foamy virus replication is cell cycle dependent; however, the genome is found in the nuclei of cells arrested in the G(1)/S phase. Despite the presence of genome in the nuclei of growth-arrested cells, there is no viral gene expression, thus explaining its dependency on cell cycle. This report shows that the foamy virus genome remains unintegrated in G(1)/S phase-arrested cells. The foamy virus genome is detected by confocal microscopy in the nuclei of both dividing and growth-arrested cells. Alu PCR revealed foamy virus-specific DNA amplification from genomic DNA isolated in cycling cells at 24 h postinfection. In arrested cells no foamy virus DNA band was detected in cells harvested at 1 or 7 days after infection, and a very faint band that is significantly less than DNA amplified from cycling cells was observed at day 15. After these cells were arrested at the G(1)/S phase for 1, 7, or 15 days they were allowed to cycle, at which time foamy virus-specific DNA amplification was readily observed. Taken together, these results suggest that the foamy virus genome persists in nondividing cells without integrating. We have also established evidence for the first time that the foamy virus genome and Gag translocation into the nucleus are dependent on integrase in cycling cells, implicating the role of integrase in transport of the preintegration complex into the nucleus. Furthermore, despite the presence of a nuclear localization signal sequence in Gag, we observed no foamy virus Gag importation into the nucleus in the absence of integrase.
Collapse
|
46
|
A single amino acid substitution in HIV-1 reverse transcriptase significantly reduces virion release. J Virol 2009; 84:976-82. [PMID: 19889767 DOI: 10.1128/jvi.01532-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 protease (PR) mediates the proteolytic processing of virus particles during or after virus budding. PR activation is thought to be triggered by appropriate Gag-Pol/Gag-Pol interaction; factors affecting this interaction either enhance or reduce PR-mediated cleavage efficiency, resulting in markedly reduced virion production or the release of inadequately processed virions. We previously showed that a Gag-Pol deletion mutation involving the reverse transcriptase tryptophan (Trp) repeat motif markedly impairs PR-mediated virus maturation and that an alanine substitution at W401 (W401A) or at both W401 and W402 (W401A/W402A) partially or almost completely negates the enhancement effect of efavirenz (a nonnucleoside reverse transcriptase inhibitor) on PR-mediated virus processing efficiency. These data suggest that the Trp repeat motif may contribute to the PR activation process. Here we demonstrate that due to enhanced Gag cleavage efficiency, W402 alanine or leucine substitution significantly reduces virus production. However, W402 replacement with phenylalanine does not significantly affect virus particle assembly or processing, but it does markedly impair viral infectivity in a single-cycle infection assay. Our results demonstrate that a single amino acid substitution at HIV-1 RT can radically affect virus assembly by enhancing Gag cleavage efficiency, suggesting that in addition to contributing to RT biological function during the early stages of virus replication, the HIV-1 RT tryptophan repeat motif in a Gag-Pol context may play an important role in suppressing the premature activation of PR during late-stage virus replication.
Collapse
|
47
|
Abstract
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.
Collapse
|
48
|
Ott DE, Coren LV, Shatzer T. The nucleocapsid region of human immunodeficiency virus type 1 Gag assists in the coordination of assembly and Gag processing: role for RNA-Gag binding in the early stages of assembly. J Virol 2009; 83:7718-27. [PMID: 19457986 PMCID: PMC2708646 DOI: 10.1128/jvi.00099-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/15/2009] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag-RNA interactions are required for virus assembly. However, our prior study found that a defect in particle production exhibited by an HIV-1 proviral mutant with a severe deletion in the RNA-binding nucleocapsid (NC) region of Gag, NX, could be reversed by eliminating its protease activity. While our follow-up study indicated that a secondary RNA-binding site in Gag can also provide the required RNA-binding function, how protease activity inhibits NX virion production is still unclear. Therefore, we tested three possible mechanisms: NX virions are unstable and fall apart after budding; NX Gag assembly is slowed, allowing protease processing to start before particle formation; or the protease region within NX Gag-Pol becomes activated prematurely and processes the assembling Gag. We found that NX particles were as stable as wild-type virions. Furthermore, even a modest slowing of protease activity could rescue NX. Pulse-chase analysis revealed that the initial particle production by NC-deleted Gag was delayed compared to that of wild type Gag, but once started, the rate of production was similar, revealing a defect in the initiation of assembly. Wild-type Gag particle production was not eliminated or decreased in the presence of excess NX Gag-Pol, inconsistent with a premature activation of protease. Overall, these results indicate that the particle formation defect of NX is due to delayed initiation of assembly caused by the absence of NC in Gag, making it vulnerable to protease processing before budding can occur. Therefore, NC plays an important initiating role in Gag assembly.
Collapse
Affiliation(s)
- David E Ott
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
49
|
Abstract
The Ty1 retrotransposon of Saccharomyces cerevisiae is comprised of structural and enzymatic proteins that are functionally similar to those of retroviruses. Despite overall sequence divergence, certain motifs are highly conserved. We have examined the Ty1 integrase (IN) zinc binding domain by mutating the definitive histidine and cysteine residues and thirteen residues in the intervening (X(32)) sequence between IN-H22 and IN-C55. Mutation of the zinc-coordinating histidine or cysteine residues reduced transposition by more than 4,000-fold and led to IN and reverse transcriptase (RT) instability as well as inefficient proteolytic processing. Alanine substitution of the hydrophobic residues I28, L32, I37 and V45 in the X(32) region reduced transposition 85- to 688-fold. Three of these residues, L32, I37, and V45, are highly conserved among retroviruses, although their effects on integration or viral infectivity have not been characterized. In contrast to the HHCC mutants, all the X(32) mutants exhibited stable IN and RT, and protein processing and cDNA production were unaffected. However, glutathione S-transferase pulldowns and intragenic complementation analysis of selected transposition-defective X(32) mutants revealed decreased IN-IN interactions. Furthermore, virus-like particles with in-L32A and in-V45A mutations did not exhibit substantial levels of concerted integration products in vitro. Our results suggest that the histidine/cysteine residues are important for steps in transposition prior to integration, while the hydrophobic residues function in IN multimerization.
Collapse
|
50
|
Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 2009; 83:6522-33. [PMID: 19369352 DOI: 10.1128/jvi.02061-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to traverse an intact nuclear envelope and productively infect nondividing cells is a salient feature of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses, but the viral factors and mechanism of nuclear entry have not been defined. HIV-1 integrase (IN) is implicated to play a role in the nuclear import of the virus, but the cellular pathway for IN trafficking and the role of IN in mediating the nuclear import of viral particles are unknown. Using a semipermeabilized cell assay, we observed that the nuclear import of IN was not the result of passive diffusion but occurred independently of cytosolic factors, metabolic energy, and the classical receptor-mediated, Ran-dependent import pathways. To determine if IN enters the nucleus by interacting with the nucleopore complex (NPC), we found that IN bound directly with the FxFG-rich C-terminal domain of nucleoporin 153 (NUP153C). When added in excess to the import assay, NUP153C inhibited the nuclear import of IN. Known binding partners of NUP153C competed with IN for binding with NUP153 and also inhibited the nuclear import of IN. In cultured cells, overexpression of NUP153C reduced the infectivity of an HIV-derived vector by interfering with the nuclear translocation of the viral cDNA. These results support a functional role for the IN-NUP153 interaction in HIV-1 replication and suggest that HIV-1 subviral particles gain access to the nucleus by interacting directly with the NPC via the binding of particle-associated IN to NUP153C.
Collapse
|