1
|
Hayward JA, Tian S, Tachedjian G. GALV-KoRV-related retroviruses in diverse Australian and African rodent species. Virus Evol 2024; 10:veae061. [PMID: 39175839 PMCID: PMC11341202 DOI: 10.1093/ve/veae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
The enigmatic origins and transmission events of the gibbon ape leukemia virus (GALV) and its close relative the koala retrovirus (KoRV) have been a source of enduring debate. Bats and rodents are each proposed as major reservoirs of interspecies transmission, with ongoing efforts to identify additional animal hosts of GALV-KoRV-related retroviruses. In this study, we identified nine rodent species as novel hosts of GALV-KoRV-related retroviruses. Included among these hosts are two African rodents, revealing the first appearance of this clade beyond the Australian and Southeast Asian region. One of these African rodents, Mastomys natalensis, carries an endogenous GALV-KoRV-related retrovirus that is fully intact and potentially still infectious. Our findings support the hypothesis that rodents are the major carriers of GALV-KoRV-related retroviruses.
Collapse
Affiliation(s)
- Joshua A Hayward
- Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, Wellington Rd, Clayton, VIC 3168, Australia
| | - Shuoshuo Tian
- Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Gilda Tachedjian
- Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, Wellington Rd, Clayton, VIC 3168, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Abstract
Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.
Collapse
|
3
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
4
|
Endogenous Gibbon Ape Leukemia Virus Identified in a Rodent (Melomys burtoni subsp.) from Wallacea (Indonesia). J Virol 2016; 90:8169-80. [PMID: 27384662 DOI: 10.1128/jvi.00723-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa.
Collapse
|
5
|
Bøttger P, Pedersen L. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS J 2005; 272:3060-74. [PMID: 15955065 DOI: 10.1111/j.1742-4658.2005.04720.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammalian members of the inorganic phosphate (P(i)) transporter (PiT) family, the type III sodium-dependent phosphate (NaP(i)) transporters PiT1 and PiT2, have been assigned housekeeping P(i) transport functions and are suggested to be involved in chondroblastic and osteoblastic mineralization and ectopic calcification. The PiT family members are conserved throughout all kingdoms and use either sodium (Na+) or proton (H+) gradients to transport P(i). Sequence logo analyses revealed that independent of their cation dependency these proteins harbor conserved signature sequences in their N- and C-terminal ends with the common core consensus sequence GANDVANA. With the exception of 10 proteins from extremophiles all 109 proteins analyzed carry an aspartic acid in one or both of the signature sequences. We changed either of the highly conserved aspartates, Asp28 and Asp506, in the N- and C-terminal signature sequences, respectively, of human PiT2 to asparagine and analyzed P(i) uptake function in Xenopus laevis oocytes. Both mutant proteins were expressed at the cell surface of the oocytes but exhibited knocked out NaP(i) transport function. Human PiT2 is also a retroviral receptor and we have previously shown that this function can be exploited as a control for proper processing and folding of mutant proteins. Both mutant transporters displayed wild-type receptor functions implying that their overall architecture is undisturbed. Thus the presence of an aspartic acid in either of the PiT family signature sequences is critical for the Na+-dependent P(i) transport function of human PiT2. The conservation of the aspartates among proteins using either Na+- or H+-gradients for P(i) transport suggests that they are involved in H+-dependent P(i) transport as well. Current results favor a membrane topology model in which the N- and C-terminal PiT family signature sequences are positioned in intra- and extracellular loops, respectively, suggesting that they are involved in related functions on either side of the membrane. The present data are in agreement with a possible role of the signature sequences in translocation of cations.
Collapse
|
6
|
Farrell KB, Eiden MV. Dissection of gammaretroviral receptor function by using type III phosphate transporters as models. J Virol 2005; 79:9332-6. [PMID: 15994829 PMCID: PMC1168779 DOI: 10.1128/jvi.79.14.9332-9336.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses that enter cells via binding to a surface receptor use one of two fundamental mechanisms. In the first, binding of the virus particle to its cognate receptor is followed by fusion and internalization. The second, less common mechanism requires the addition of an accessory protein in order to achieve fusion and entry into the target cells; this protein is usually the soluble form of the envelope protein containing the receptor-binding domain (RBD). For some viruses, such as amphotropic murine leukemia virus (A-MLV), particles with fusion-defective envelope proteins can enter cells in the presence of their own RBD or that of another viral envelope, regardless of its cognate receptor, suggesting that these viruses share a common entry mechanism. A notable exception is gibbon ape leukemia virus (GALV). Fusion-impaired GALV envelope mutants can be trans-activated for infectivity only by GALV RBDs. Using dually functional GALV/A-MLV receptors, we examined the role of receptor with respect to which RBD could overcome fusion impaired virus entry.
Collapse
Affiliation(s)
- Karen B Farrell
- National Institute of Mental Health, Laboratory of Cellular and Molecular Biology, Section on Molecular Virology, Building 49, Room 5A32, 49 Convent Dr., MSC 4483, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Abstract
The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function, a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both viruses, unequivocally narrowing down the identification of the sequence that is sufficient to specify the receptor functions of Pit2 to its N-terminal 182 amino acids and C-terminal 170 amino acids.
Collapse
Affiliation(s)
- Pernille Bøttger
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
8
|
Feldman SA, Farrell KB, Murthy RK, Russ JL, Eiden MV. Identification of an extracellular domain within the human PiT2 receptor that is required for amphotropic murine leukemia virus binding. J Virol 2004; 78:595-602. [PMID: 14694091 PMCID: PMC368782 DOI: 10.1128/jvi.78.2.595-602.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human PiT2 (PiT2) is a multiple-membrane-spanning protein that functions as a type III sodium phosphate cotransporter and as the receptor for amphotropic murine leukemia virus (A-MuLV). Human PiT1 (PiT1), another type III sodium phosphate cotransporter, is a highly related protein that functions as a receptor for gibbon ape leukemia virus but not for A-MuLV. The ability of PiT1 and PiT2 to function as discrete viral receptors with unique properties presumably is reflected in critical residue differences between these two proteins. Early efforts to map the region(s) within PiT2 that is important for virus binding and/or entry relied on infection results obtained with PiT1-PiT2 chimeric cDNAs expressed in Chinese hamster ovary (CHOK1) cells. These attempts to localize the PiT2 virus-binding site were hampered because they were based on infectivity, not binding, assays, and therefore, receptors that bound but failed to facilitate virus entry could not be distinguished from receptors that did not bind virus. Using a more accurate topological model for PiT2 as well as an A-MuLV receptor-binding assay, we have identified extracellular domain one (ECD1) of the human PiT2 receptor as being important for A-MuLV binding and infection.
Collapse
Affiliation(s)
- Steven A Feldman
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29-106. [PMID: 12932075 DOI: 10.1007/978-3-642-19012-4_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence obtained during the last few years has greatly extended our understanding of the cell surface receptors that mediate infections of retroviruses and has provided many surprising insights. In contrast to other cell surface components such as lectins or proteoglycans that influence infections indirectly by enhancing virus adsorption onto specific cells, the true receptors induce conformational changes in the viral envelope glycoproteins that are essential for infection. One surprise is that all of the cell surface receptors for gamma-retroviruses are proteins that have multiple transmembrane (TM) sequences, compatible with their identification in known instances as transporters for important solutes. In striking contrast, almost all other animal viruses use receptors that exclusively have single TM sequences, with the sole proven exception we know of being the coreceptors used by lentiviruses. This evidence strongly suggests that virus genera have been prevented because of their previous evolutionary adaptations from switching their specificities between single-TM and multi-TM receptors. This evidence also implies that gamma-retroviruses formed by divergent evolution from a common origin millions of years ago and that individual viruses have occasionally jumped between species (zoonoses) while retaining their commitment to using the orthologous receptor of the new host. Another surprise is that many gamma-retroviruses use not just one receptor but pairs of closely related receptors as alternatives. This appears to have enhanced viral survival by severely limiting the likelihood of host escape mutations. All of the receptors used by gamma-retroviruses contain hypervariable regions that are often heavily glycosylated and that control the viral host range properties, consistent with the idea that these sequences are battlegrounds of virus-host coevolution. However, in contrast to previous assumptions, we propose that gamma-retroviruses have become adapted to recognize conserved sites that are important for the receptor's natural function and that the hypervariable sequences have been elaborated by the hosts as defense bulwarks that surround the conserved viral attachment sites. Previously, it was believed that binding to receptors directly triggers a series of conformational changes in the viral envelope glycoproteins that culminate in fusion of the viral and cellular membranes. However, new evidence suggests that gamma-retroviral association with receptors triggers an obligatory interaction or cross-talk between envelope glycoproteins on the viral surface. If this intermediate step is prevented, infection fails. Conversely, in several circumstances this cross-talk can be induced in the absence of a cell surface receptor for the virus, in which case infection can proceed efficiently. This new evidence strongly implies that the role of cell surface receptors in infections of gamma-retroviruses (and perhaps of other enveloped animal viruses) is more complex and interesting than was previously imagined. Recently, another gammaretroviral receptor with multiple transmembrane sequences was cloned. See Prassolov, Y., Zhang, D., Ivanov, D., Lohler, J., Ross, S.R., and Stocking, C. Sodium-dependent myo-inositol transporter 1 is a receptor for Mus cervicolor M813 murine leukemia virus.
Collapse
Affiliation(s)
- C S Tailor
- Infection, Immunity Injury and Repair Program, Hospital for Sick Children, Toronto, ON M5G 1XB, Canada
| | | | | | | |
Collapse
|
10
|
Faix PH, Feldman SA, Overbaugh J, Eiden MV. Host range and receptor binding properties of vectors bearing feline leukemia virus subgroup B envelopes can be modulated by envelope sequences outside of the receptor binding domain. J Virol 2002; 76:12369-75. [PMID: 12414980 PMCID: PMC136888 DOI: 10.1128/jvi.76.23.12369-12375.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate host range differences between two different strains of feline leukemia virus subgroup B (FeLV-B), we compared the binding and infectivity patterns of retrovirus vectors bearing either FeLV-B-90Z or FeLV-B-GA envelopes. We report here that the ability of these envelopes to utilize different Pit1 orthologs is mediated primarily by the receptor binding domain; however, in the case of FeLV-B-90Z, the C terminus also contributes to the recognition of certain Pit1 orthologs.
Collapse
Affiliation(s)
- Peggy Ho Faix
- Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The mammalian gammaretroviruses gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B) can use the same receptor, Pit1, to infect human cells. A highly polymorphic nine-residue sequence within Pit1, designated region A, has been proposed as the virus binding site, because mutations in this region abolish Pit1-mediated cellular infection by GALV and FeLV-B. However, a direct correlation between region A mutations deleterious for infection and loss of virus binding has not been established. We report that cells expressing a Pit1 protein harboring mutations in region A that abolish receptor function retain the ability to bind virus, indicating that Pit1 region A is not the virus binding site. Furthermore, we have now identified a second region in Pit1, comprising residues 232 to 260 (region B), that is required for both viral entry and virus binding. Epitope-tagged Pit1 proteins were used to demonstrate that mutations in region B result in improper orientation of Pit1 in the cell membrane. Compensatory mutations in region A can restore proper orientation and full receptor function to these region B mutants. Based on these results, we propose that region A of Pit1 confers competence for viral entry by influencing the topology of the authentic binding site in the membrane and hence its accessibility to a viral envelope protein. Based on glycosylation studies and results obtained by using N- and C-terminal epitope-tagged Pit1, region A and region B mutants, and the transmembrane helices predicted with the PHD PredictProtein algorithm, we propose a new Pit1 topology model.
Collapse
Affiliation(s)
- Karen B Farrell
- Unit on Molecular Virology, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
12
|
Lauring AS, Cheng HH, Eiden MV, Overbaugh J. Genetic and biochemical analyses of receptor and cofactor determinants for T-cell-tropic feline leukemia virus infection. J Virol 2002; 76:8069-78. [PMID: 12134012 PMCID: PMC155116 DOI: 10.1128/jvi.76.16.8069-8078.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry by retroviruses is mediated through interactions between the viral envelope glycoprotein and the host cell receptor(s). We recently identified two host cell proteins, FeLIX and Pit1, that are necessary for infection by cytopathic, T-cell-tropic feline leukemia viruses (FeLV-T). Pit1 is a classic multiple transmembrane protein used as a receptor by several other simple retroviruses, including subgroup B FeLV (FeLV-B), and FeLIX is a secreted cellular protein expressed from endogenous FeLV-related sequences (enFeLV). FeLIX is nearly identical to FeLV-B envelope sequences that encode the N-terminal half of the viral surface unit (SU), because these FeLV-B sequences are acquired by recombination with enFeLV. FeLV-B SUs can functionally substitute for FeLIX in mediating FeLV-T infection. Both of these enFeLV-derived cofactors can efficiently facilitate FeLV-T infection only of cells expressing Pit1, not of cells expressing the related transport protein Pit2. We therefore have used chimeric Pit1/Pit2 receptors to map the determinants for cofactor binding and FeLV-T infection. Three distinct determinants appear to be required for cofactor-dependent infection by FeLV-T. We also found that Pit1 sequences within these same domains were required for binding by FeLIX to the Pit receptor. In contrast, these determinants were not all required for receptor binding by the FeLV-B SU cofactors used in this study. These data indicate that cofactor binding is not sufficient for FeLV-T infection and suggest that there may be a direct interaction between FeLV-T and the Pit1 receptor.
Collapse
Affiliation(s)
- Adam S Lauring
- Program in Molecular and Cellular Biology, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
13
|
Farrell KB, Ting YT, Eiden MV. Fusion-defective gibbon ape leukemia virus vectors can be rescued by homologous but not heterologous soluble envelope proteins. J Virol 2002; 76:4267-74. [PMID: 11932392 PMCID: PMC155069 DOI: 10.1128/jvi.76.9.4267-4274.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.
Collapse
Affiliation(s)
- Karen B Farrell
- Unit on Molecular Virology, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
14
|
Anderson MM, Lauring AS, Robertson S, Dirks C, Overbaugh J. Feline Pit2 functions as a receptor for subgroup B feline leukemia viruses. J Virol 2001; 75:10563-72. [PMID: 11602698 PMCID: PMC114638 DOI: 10.1128/jvi.75.22.10563-10572.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different subgroups of feline leukemia virus (FeLV) use different host cell receptors for entry. Subgroup A FeLV (FeLV-A) is the virus that is transmitted from cat to cat, suggesting that cells expressing the FeLV-A receptor are important targets at the earliest stages of infection. FeLV-B evolves from FeLV-A in the infected cat through acquisition of cellular sequences that are related to the FeLV envelope gene. FeLV-Bs have been shown to infect cells using the Pit1 receptor, and some variants can infect cells at a lower efficiency using Pit2. Because these observations were made using receptor proteins of human or rodent origin, the role that Pit1 and Pit2 may play in FeLV-B replication in the cat is unclear. In this study, the feline Pit receptors were cloned and tested for their ability to act as receptors for different FeLV-Bs. Some FeLV-Bs infected cells expressing feline Pit2 and feline Pit1 with equal high efficiency. Variable region A (VRA) in the putative receptor-binding domain (RBD) was a critical determinant for both feline Pit1 and feline Pit2 binding, although other domains in the RBD appear to influence how efficiently the FeLV-B surface unit can bind to feline Pit2 and promote entry via this receptor. An arginine residue at position 73 in VRA was found to be important for envelope binding to feline Pit2 but not feline Pit1. Interestingly, this arginine is not found in endogenous FeLV sequences or in recombinant viruses recovered from feline cells infected with FeLV-A. Thus, while FeLV-Bs that are able to use feline Pit2 can evolve by recombination with endogenous sequences, a subsequent point mutation during reverse transcription may be needed to generate a virus that can efficiently enter the cells using the feline Pit2 as its receptor. These studies suggest that cells expressing the feline Pit2 protein are likely to be targets for FeLV-B infection in the cat.
Collapse
Affiliation(s)
- M M Anderson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, 98109-1024, USA
| | | | | | | | | |
Collapse
|
15
|
Salaün C, Rodrigues P, Heard JM. Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J Virol 2001; 75:5584-92. [PMID: 11356966 PMCID: PMC114271 DOI: 10.1128/jvi.75.12.5584-5592.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Accepted: 03/16/2001] [Indexed: 12/19/2022] Open
Abstract
PiT-1 and PiT-2 are related multiple transmembrane proteins which function as sodium-dependent phosphate transporters and as the cell receptors of several oncoretroviruses. Two copies of a homology domain that is found in distantly related species assign these proteins to a large family of phosphate transporters. A current membrane topology model of PiT-1 and PiT-2 predicts 10 transmembrane domains. However, the validity of this model has not been addressed experimentally. We addressed this issue by a comprehensive study of human PiT-2. Evidence was obtained for glycosylation of asparagine 81. Epitope tagging showed that the N- and C-terminal extremities are extracellular. The orientation of C-terminal-truncation mutants expressed in cell-free translation assays and incorporated into microsomal membranes was examined by immunoprecipitation. Data were interpreted with respect to previous knowledge about retrovirus binding sites, to the existence of repeated homology domains, and to predictions made in family members. A model in which PiT-2 has 12 transmembrane domains and extracellular N- and C-terminal extremities is proposed. This model, which differs significantly from previous predictions about PiT-2 topology, may be useful for further investigations of PiT-2 interactions with other proteins and for the understanding of PiT-2 transporter and virus receptor functions.
Collapse
Affiliation(s)
- C Salaün
- Laboratoire Rétrovirus et Transfert Génétique, CNRS URA 1930, Institut Pasteur, 75724 Paris, France
| | | | | |
Collapse
|
16
|
Dreyer K, Pedersen FS, Pedersen L. A 13-amino-acid Pit1-specific loop 4 sequence confers feline leukemia virus subgroup B receptor function upon Pit2. J Virol 2000; 74:2926-9. [PMID: 10684313 PMCID: PMC111787 DOI: 10.1128/jvi.74.6.2926-2929.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline leukemia virus subgroup B (FeLV-B) and gibbon ape leukemia virus (GALV) utilize the human protein Pit1 but not the related protein, Pit2, as receptor. A stretch of 9 amino acids, named region A, was identified in the putative fourth extracellular loop of Pit1 (residues 550 through 558) as critical for FeLV-B and GALV receptor function. However, the presence of Pit1 region A did not confer receptor function for FeLV-B upon Pit2, while it did so for GALV. We have here shown that the presence of two Pit1-specific loop 4 residues (tyrosine 546 and valine 548) in addition to Pit1 region A is sufficient to make Pit2 an efficient FeLV-B receptor; that is, a stretch of 13 amino acids encompassing all loop 4 amino acid differences between Pit1 and Pit2 comprises a C-terminal determinant for FeLV-B receptor function. Thus, the same limited receptor region is sufficient to confer receptor function for both viruses upon Pit2.
Collapse
Affiliation(s)
- K Dreyer
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
17
|
Chaudry GJ, Farrell KB, Ting YT, Schmitz C, Lie SY, Petropoulos CJ, Eiden MV. Gibbon ape leukemia virus receptor functions of type III phosphate transporters from CHOK1 cells are disrupted by two distinct mechanisms. J Virol 1999; 73:2916-20. [PMID: 10074140 PMCID: PMC104050 DOI: 10.1128/jvi.73.4.2916-2920.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chinese hamster cell lines E36 and CHOK1 dramatically differ in susceptibility to amphotropic murine leukemia virus (A-MuLV) and gibbon ape leukemia virus (GALV); E36 cells are highly susceptible to both viruses, CHOK1 cells are not. We have previously shown that GALV can infect E36 cells by using both its own receptor, HaPit1, and the A-MuLV receptor, HaPit2. Given that the two cell lines are from the same species, the loss of function of both of these receptors in CHOK1 cells is surprising. Other studies have shown that CHOK1 cells secrete proteins that block A-MuLV entry into CHOK1 as well as E36, suggesting the two A-MuLV receptors are functionally identical. However, CHOK1 conditioned medium does not block GALV entry into E36, indicating the secreted inhibitors do not block HaPit1. HaPit1 and ChoPit1 therefore differ as receptors for GALV; ChoPit1 is either inactivated by secreted factors or intrinsically nonfunctional. To determine why GALV cannot infect CHOK1, we cloned and sequenced ChoPit1 and ChoPit2. ChoPit2 is almost identical to HaPit2, which explains why CHOK1 conditioned medium blocks A-MuLV entry via both receptors. Although ChoPit1 and HaPit1 are 91% identical, a notable difference is at position 550 in the fourth extracellular region, shown by several studies to be crucial for GALV infection. Pit1 and HaPit1 have aspartate at 550, whereas ChoPit1 has threonine at this position. We assessed the significance of this difference for GALV infection by replacing the aspartate 550 in Pit1 with threonine. This single substitution rendered Pit1 nonfunctional for GALV and suggests that threonine at 550 inactivates ChoPit1 as a GALV receptor. Whether native ChoPit1 functions for GALV was determined by interference assays using Lec8, a glycosylation-deficient derivative of CHOK1 that is susceptible to both viruses and that has the same receptors as CHOK1. Unlike with E36, GALV and A-MuLV exhibited reciprocal interference when infecting Lec8, suggesting that they use the same receptor. We conclude both viruses can use ChoPit2 in the absence of the inhibitors secreted by CHOK1 and ChoPit1 is nonfunctional.
Collapse
Affiliation(s)
- G J Chaudry
- Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Lundorf MD, Pedersen FS, O'Hara B, Pedersen L. Amphotropic murine leukemia virus entry is determined by specific combinations of residues from receptor loops 2 and 4. J Virol 1999; 73:3169-75. [PMID: 10074169 PMCID: PMC104079 DOI: 10.1128/jvi.73.4.3169-3175.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pit2 is the human receptor for amphotropic murine leukemia virus (A-MuLV); the related human protein Pit1 does not support A-MuLV entry. Interestingly, chimeric proteins in which either the N-terminal or the C-terminal part of Pit2 was replaced by the Pit1 sequence all retained A-MuLV receptor function. A possible interpretation of these observations is that Pit1 harbors sequences which can specify A-MuLV receptor function when presented in a protein context other than Pit1, e.g., in Pit1-Pit2 hybrids. We reasoned that such Pit1 sequences might be identified if presented in the Neurospora crassa protein Pho-4. This protein is distantly related to Pit1 and Pit2, predicted to have a similar membrane topology with five extracellular loops, and does not support A-MuLV entry. We show here that introduction of the Pit1-specific loop 2 sequence conferred A-MuLV receptor function upon Pho-4. Therefore, we conclude that (i) a functional A-MuLV receptor can be constructed by combining sequences from two proteins each lacking A-MuLV receptor function and that (ii) a Pit1 sequence can specify A-MuLV receptor function when presented in another protein context than that provided by Pit1 itself. Previous results indicated a role of loop 4 residues in A-MuLV entry, and the presence of a Pit2-specific loop 4 sequence was found here to confer A-MuLV receptor function upon Pho-4. Moreover, the introduction of a Pit1-specific loop 4 sequence, but not of a Pit2-specific loop 4 sequence, abolished the A-MuLV receptor function of a Pho-4 chimera harboring the Pit1-specific loop 2 sequence. Together, these data suggest that residues in both loop 2 and loop 4 play a role in A-MuLV receptor function. A-MuLV is, however, not dependent on the specific Pit2 loop 2 and Pit2 loop 4 sequences for entry; rather, the role played by loops 2 and 4 in A-MuLV entry can be fulfilled by several different combinations of loop 2 and loop 4 sequences. We predict that the residues in loops 2 and 4, identified in this study as specifying A-MuLV receptor function, are to be found among those not conserved among Pho-4, Pit1, and Pit2.
Collapse
Affiliation(s)
- M D Lundorf
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
19
|
Herchenröder O, Moosmayer D, Bock M, Pietschmann T, Rethwilm A, Bieniasz PD, McClure MO, Weis R, Schneider J. Specific binding of recombinant foamy virus envelope protein to host cells correlates with susceptibility to infection. Virology 1999; 255:228-36. [PMID: 10069948 DOI: 10.1006/viro.1998.9570] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of simian foamy viruses (FVs) with their putative cellular receptor(s) was studied with two types of recombinant envelope protein (Env). Transient expression of full-length Env in BHK-21 cells induced syncytia formation. However, selected stable transfectants fused with naive cells but not with each other. A soluble fusion protein of the Env surface domain with the Fc fragment of a human IgG1 heavy chain (EnvSU-Ig) was produced in the baculovirus expression system, purified to homogeneity, and used for binding and competition analyses. EnvSU-Ig but not unrelated Ig fusion proteins bound to cells specifically. Neutralizing serum blocked binding of EnvSU-Ig and, vice versa, serum-mediated neutralization was abrogated by the chimeric protein. Concomitant reduction of EnvSU-Ig binding and FV susceptibility was seen in Env-expressing target cells. Although EnvSU-Ig did not inhibit FV infection, very likely due to its displacement by multivalent virus-cell interactions, this divalent ligand should help to characterize functionally and to identify the ubiquitous FV receptor.
Collapse
Affiliation(s)
- O Herchenröder
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lundorf MD, Pedersen FS, O'Hara B, Pedersen L. Single amino acid insertion in loop 4 confers amphotropic murine leukemia virus receptor function upon murine Pit1. J Virol 1998; 72:4524-7. [PMID: 9557753 PMCID: PMC109699 DOI: 10.1128/jvi.72.5.4524-4527.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch of amino acids named region A was identified in Pit1 (residues 550 to 558 in loop 4) as critical for GALV and FeLV-B receptor function. We have here investigated the role of region A in A-MuLV and 10A1 entry. Insertion of a single amino acid in region A of mouse Pit1 resulted in a functional A-MuLV receptor, showing that region A plays a role in A-MuLV infection. Moreover, the downregulation of 10A1 receptor function by changes in region A of human Pit1 indicates that this region is also involved in 10A1 entry. Therefore, region A seems to play a role in infection by all viruses utilizing Pit1 and/or Pit2 as receptors.
Collapse
Affiliation(s)
- M D Lundorf
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | |
Collapse
|
21
|
Han JY, Cannon PM, Lai KM, Zhao Y, Eiden MV, Anderson WF. Identification of envelope protein residues required for the expanded host range of 10A1 murine leukemia virus. J Virol 1997; 71:8103-8. [PMID: 9343159 PMCID: PMC192265 DOI: 10.1128/jvi.71.11.8103-8108.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 10A1 murine leukemia virus (MuLV) is a recombinant type C retrovirus isolated from a mouse infected with amphotropic MuLV (A-MuLV). 10A1 and A-MuLV have 91% amino acid identity in their envelope proteins yet display different host ranges. For example, CHO-K1 cells are resistant to A-MuLV but susceptible to infection by 10A1. We have now determined that retroviral vectors bearing altered A-MuLV envelope proteins containing 10A1-derived residues at positions 71 (A71G), 74 (Q74K), and 139 (V139M) transduce CHO-K1 cells at efficiencies similar to those achieved with 10A1 enveloped vectors. A-MuLV enveloped retroviral vectors with these three 10A1 residues were also able to transduce A-MuLV-infected NIH 3T3 cells. This observation is consistent with the ability of vectors bearing this altered A-MuLV envelope protein to recognize the 10A1-specific receptor present on NIH 3T3 cells and supports the possibility that residues at positions 71, 74, and 139 of the 10A1 envelope SU protein account for the expanded host range of 10A1.
Collapse
Affiliation(s)
- J Y Han
- Gene Therapy Laboratories, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | |
Collapse
|
22
|
Pedersen L, van Zeijl M, Johann SV, O'Hara B. Fungal phosphate transporter serves as a receptor backbone for gibbon ape leukemia virus. J Virol 1997; 71:7619-22. [PMID: 9311843 PMCID: PMC192110 DOI: 10.1128/jvi.71.10.7619-7622.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pit1, the receptor for gibbon ape leukemia virus (GALV), is proposed to be an integral membrane protein with five extracellular loops. Chimeras made between Pit1 homologs differing in permissivity for infection and between Pit1 and the related protein Pit2 have shown that the fourth extracellular loop plays a critical role in infection. However, further elucidation of the roles of the extracellular loops in infection is hampered by the high level of sequence similarity among these proteins. The sodium-dependent phosphate transporter, Pho-4, from the filamentous fungus Neurospora crassa is distantly related to Pit1 and -2, showing an amino acid identity of only 35% to Pit1 in the putative extracellular loops. We show here that Pho-4 itself does not function as a receptor for GALV. Introduction of 12 Pit1-specific amino acid residues in the putative fourth extracellular loop of Pho-4 resulted in a functional GALV receptor. Therefore, the presence of a Pit1 loop 4-specific sequence is sufficient to confer receptor function for the mammalian retrovirus GALV on the fungal phosphate transporter Pho-4.
Collapse
Affiliation(s)
- L Pedersen
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
23
|
Chaudry GJ, Eiden MV. Mutational analysis of the proposed gibbon ape leukemia virus binding site in Pit1 suggests that other regions are important for infection. J Virol 1997; 71:8078-81. [PMID: 9311908 PMCID: PMC192175 DOI: 10.1128/jvi.71.10.8078-8081.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Region A of Pit1 (residues 550 to 558 in domain IV) and related receptors has remained the only sequence implicated in gibbon ape leukemia virus (GALV) infection, and an acidic residue at the first position appeared indispensable. The region has also been proposed to be the GALV binding site, but this lacks empirical support. Whether an acidic residue at the first position in this sequence is a definitive requirement for GALV infection has also remained unclear; certain receptors retain function even in the absence of this acidic residue. We report here that in Pit1 an acidic residue is dispensable not only at position 550 but also at 553 alone and at both positions. Further, the virus requires no specific residue at either position. Mutations generated a collection of region A sequences, often with fundamentally different physicochemical properties (overall hydrophobicity or hydrophilicity and net charge of -1, or 0, or +1), and yet Pit1 remained an efficient GALV receptor. A comparison of these sequences and a few previously published ones from highly efficient GALV receptors revealed that every position in region A can vary without affecting GALV entry. Even Pit2 is nonfunctional for GALV only because it has lysine at the first position in its region A, which is otherwise highly diverse from region A of Pit1. We propose that region A itself is not the GALV binding motif and that other sequences are required for virus entry. Indeed, certain Pit1/Pit2 chimeras revealed that sequences outside domain IV are specifically important for GALV infection.
Collapse
Affiliation(s)
- G J Chaudry
- Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892-4068, USA
| | | |
Collapse
|