1
|
Wen L, Rong F, Dai G, Liu Y, Lv Y, Luo Q, Liu DX, Chen R. Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis. Int J Biol Macromol 2025; 295:139218. [PMID: 39755310 DOI: 10.1016/j.ijbiomac.2024.139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles. In this study, we report the identification of 120 NSP2-interacting host proteins by co-immunoprecipitation coupled liquid chromatography mass spectrometry, via rescuing and utilizing a recombinant PRRSV expressing an HA-tagged NSP2. By comparing and subtracting with cells infected with parental virus, a comprehensive interactome was constructed. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulation, metabolism, signal transduction and innate immunity signaling pathways. Selection of five host proteins (CtBP1, CtBP2, HSPA2, PPP1CA, SH3KBP1) for further verification and characterization confirmed their interactions with NSP2 and differential effects on PRRSV replication. Intriguingly, interaction of NSP2 and SH3KBP1 led to specific cleavage of SH3KBP1, antagonizing its pro-apoptotic activity. Taken together, this study provides overarching views on the NSP2-host interactome, paving a solid foundation for functional studies of host proteins in PRRSV biology and their potential as targets for novel therapeutics development.
Collapse
Affiliation(s)
- Lianghai Wen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Fang Rong
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Guo Dai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yufu Liu
- School of Life Sciences, Zhaoqing University, Zhaoqing 526061, China
| | - Yadi Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China
| | - Ding Xiang Liu
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China.
| |
Collapse
|
2
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023; 65:429-443. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Zhang X, Chen Y, Li S, Wang J, He Z, Yan J, Liu X, Guo C. MARCO Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection through Intensifying Viral GP5-Induced Apoptosis. Microbiol Spectr 2023; 11:e0475322. [PMID: 37078873 PMCID: PMC10269733 DOI: 10.1128/spectrum.04753-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
Studying viral glycoprotein-host membrane protein interactions contributes to the discovery of novel cell receptors or entry facilitators for viruses. Glycoprotein 5 (GP5), which is a major envelope protein of porcine reproductive and respiratory syndrome virus (PRRSV) virions, is a key target for the control of the virus. Here, the macrophage receptor with collagenous structure (MARCO), which is a member of the scavenger receptor family, was identified as one of the host interactors of GP5 through a DUALmembrane yeast two-hybrid screening. MARCO was specifically expressed on porcine alveolar macrophages (PAMs), and PRRSV infection downregulated MARCO expression both in vitro and in vivo. MARCO was not involved in viral adsorption and internalization processes, indicating that MARCO may not be a PRRSV-entry facilitator. Contrarily, MARCO served as a host restriction factor for PRRSV. The knockdown of MARCO in PAMs enhanced PRRSV proliferation, whereas overexpression suppressed viral proliferation. The N-terminal cytoplasmic region of MARCO was responsible for its inhibitory effect on PRRSV. Further, we found that MARCO was a proapoptotic factor in PRRSV-infected PAMs. MARCO knockdown weakened virus-induced apoptosis, whereas overexpression aggravated apoptosis. MARCO aggravated GP5-induced apoptosis, which may result in its proapoptotic function in PAMs. The interaction between MARCO and GP5 may contribute to the intensified apoptosis induced by GP5. Additionally, the inhibition of apoptosis during PRRSV infection weakened the antiviral function of MARCO, suggesting that MARCO inhibits PRRSV through the regulation of apoptosis. Taken together, the results of this study reveal a novel antiviral mechanism of MARCO and suggest a molecular basis for the potential development of therapeutics against PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been one of the most serious threats to the global swine industry. Glycoprotein 5 (GP5) exposed on the surface of PRRSV virions is a major glycoprotein, and it is involved in viral entry into host cells. A macrophage receptor with collagenous structure (MARCO), which is a member of the scavenger receptor family, was identified to interact with PRRSV GP5 in a DUALmembrane yeast two-hybrid screening. Further investigation demonstrated that MARCO may not serve as a potential receptor to mediate PRRSV entry. Instead, MARCO was a host restriction factor for the virus, and the N-terminal cytoplasmic region of MARCO was responsible for its anti-PRRSV effect. Mechanistically, MARCO inhibited PRRSV infection through intensifying virus-induced apoptosis in PAMs. The interaction between MARCO and GP5 may contribute to GP5-induced apoptosis. Our work reveals a novel antiviral mechanism of MARCO and advances the development of control strategies for the virus.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongjie Chen
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
| | - Songbei Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
| | - Jinling Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
| | - Zhan He
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
| | - Jiecong Yan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Chunhe Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, People’s Republic of China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Research Progress on Glycoprotein 5 of Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13050813. [PMID: 36899670 PMCID: PMC10000246 DOI: 10.3390/ani13050813] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an acute, febrile, and highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Glycoprotein 5 (GP5) is a glycosylated envelope protein encoded by the PRRSV ORF5, which has good immunogenicity and can induce the body to produce neutralizing antibodies. Therefore, study of GP5 protein is of great significance in the diagnosis, prevention, and control of PRRSV and the development of new vaccines. We reviewed GP5 protein genetic variation, immune function, interaction with viral protein and host proteins, induction of cell apoptosis, and stimulation of neutralizing antibodies. GP5 protein's influence on virus replication and virulence, as well as its use as a target for viral detection and immunization are reviewed.
Collapse
|
6
|
Frias-De-Diego A, Gilbertie JM, Scholle F, Dejarnette S, Crisci E. Effect of BIO-PLY TM, a Platelet-Rich Plasma Derived Biologic on PRRSV-2-Infected Macrophages. Viruses 2022; 14:v14122666. [PMID: 36560670 PMCID: PMC9783555 DOI: 10.3390/v14122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is the one of the most devastating diseases impacting the swine industry worldwide. Control and prevention methods rely on biosafety measures and vaccination. As an RNA virus with a high rate of mutation, vaccines are only partially effective against circulating and newly emerging strains. To reduce the burden of this disease, research on alternative control methods is needed. Here, we assess the in vitro antiviral effect of a novel platelet-rich plasma-derived biologic termed BIO-PLYTM (for the BIOactive fraction of Platelet-rich plasma LYsate) from both swine and equine origin. Our results show that BIO-PLYTM significantly reduces the amount of PRRSV viral load determined by RT-qPCR and the number of infectious viral particles measured by TCID50 in infected porcine alveolar and parenchymal macrophages. This study also showed limited toxicity of BIO-PLYTM in vitro and aspects of its immunomodulatory capacity evaluating the regulation of reactive oxygen species and cytokines production in infected cells. Finally, this study presents promising data on the effect of BIO-PLYTM on other RNA viruses such as human A influenza viruses and coronavirus.
Collapse
Affiliation(s)
- Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Jessica M. Gilbertie
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Sarah Dejarnette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-513-6255
| |
Collapse
|
7
|
Garmendia AE, Mwangi W, Renukaradhya GJ. Porcine Reproductive and Respiratory Syndrome. VETERINARY VACCINES 2021:355-370. [DOI: 10.1002/9781119506287.ch26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Chaudhari J, Liew CS, Workman AM, Riethoven JJM, Steffen D, Sillman S, Vu HLX. Host Transcriptional Response to Persistent Infection with a Live-Attenuated Porcine Reproductive and Respiratory Syndrome Virus Strain. Viruses 2020; 12:v12080817. [PMID: 32731586 PMCID: PMC7474429 DOI: 10.3390/v12080817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus (PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs were upregulated and 2444 DEGs were downregulated. Specifically, genes involved in innate immune responses and chemokines and receptors associated with T-cell homing to lymphoid tissues were down regulated. As a result, homing of virus-specific T-cells to lymphoid tissues seems to be ineffective, evidenced by the lower frequencies of virus-specific T-cell in lymphoid tissue than in peripheral blood. Genes associated with T-cell exhaustion were upregulated. Likewise, genes involved in the anti-apoptotic pathway were upregulated. Collectively, the data suggested that the live-attenuated PRRSV strain establishes a pro-survival microenvironment in lymphoid tissue by suppressing innate immune responses, T-cell homing, and preventing cell apoptosis.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - Aspen M. Workman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
9
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination. Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|
10
|
Fan L. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Genes 2019; 55:433-439. [PMID: 31004277 DOI: 10.1007/s11262-019-01665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory syndrome (PRRS), a devastating disease of swine that poses a serious threat to the swine industry worldwide. The induction of apoptosis in host cells is suggested to be the key cellular mechanism that contributes to the pathogenesis of PRRS. Various signaling pathways have been identified to be involved in regulating PRRSV-induced apoptosis. In this review, we summarize the potential signaling pathways that contribute to PRRSV-induced apoptosis, and propose the issues that need to be addressed in future studies for a better understanding of the molecular basis underlying the pathogenesis of PRRS.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Preventive Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Characterization of the interactome of the porcine reproductive and respiratory syndrome virus glycoprotein-5. Arch Virol 2018; 163:1595-1605. [PMID: 29497848 DOI: 10.1007/s00705-018-3787-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry, causing reproductive failure in sows and respiratory disorders in piglets. Glycosylated protein 5 (GP5) is a major envelope protein of the virus. It is essential for virus particle assembly and involved in viral pathogenesis. In the present study, we identified the host cellular proteins that interact with GP5 by performing immunoprecipitation in MARC-145 cells infected by a recombinant PRRSV containing a FLAG-tag insertion in GP5. In total, 122 cellular proteins were identified by LC-MS/MS. Gene Ontology and KEGG databases were used to map these proteins to different cellular processes, locations and functions. Interestingly, 10.24% of identified cellular proteins were involved in the process of translation. Follow up experiments demonstrated that expression of GP5 in transfected cells led to inhibition of translation of reporter genes. Interaction between GP5 and ATP synthase subunit alpha (ATP5A) was further confirmed by co-immunoprecipitation suggesting a possible role of GP5 in regulation of ATP production in cells. These data contribute to a better understanding of GP5's role in viral pathogenesis and virus-host interactions.
Collapse
|
12
|
ZHANG F, GAO P, GE XN, ZHOU L, GUO X, YANG HC. Critical role of cytochrome c1 and its cleavage in porcine reproductive and respiratory syndrome virus nonstructural protein 4-induced cell apoptosis via interaction with nsp4. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2017; 16:2573-2585. [PMID: 32288954 PMCID: PMC7129397 DOI: 10.1016/s2095-3119(17)61670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 06/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) actively induces cell apoptosis both in vitro and in vivo, which can contribute critically to viral pathogenesis. Previous studies have shown that the PRRSV nonstructural protein 4 (nsp4) is an important mediator of this process, but the underlying molecular details remain poorly understood. In this study, we found that the PRRSV nsp4 interacted with the mitochondrial inner membrane protein cytochrome c1 (cyto.c1) and induced its proteolytic cleavage. Interestingly, the cleaved N-terminal fragment of cyto.c1 was found to exert apoptotic activity, which could cause mitochondrial fragmentation, resulting in apoptotic cell death. And RNA interference (RNAi) silencing experiments further confirmed the crucial role which cyto.c1 played in nsp4- and PRRSV-induced cell apoptosis. Thus, our data provide an important piece of mechanistic clues for PRRSV-induced cell apoptosis and also elucidate a novel mechanism for the 3C-like proteases in this finding.
Collapse
Affiliation(s)
| | | | | | | | | | - Han-chun YANG
- Correspondence YANG Han-chun, Tel/Fax: +86-10-62731296
| |
Collapse
|
13
|
Kavanová L, Matiašková K, Levá L, Štěpánová H, Nedbalcová K, Matiašovic J, Faldyna M, Salát J. Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: apoptosis, production of ROS and formation of multinucleated giant cells. Vet Res 2017; 48:28. [PMID: 28472979 PMCID: PMC5418695 DOI: 10.1186/s13567-017-0433-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/19/2017] [Indexed: 01/27/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant and economically important infectious diseases affecting swine worldwide and can predispose pigs to secondary bacterial infections caused by, e.g. Haemophilus parasuis. The aim of the presented study was to compare susceptibility of two different types of macrophages which could be in contact with both pathogens during infection with PRRS virus (PRRSV) and in co-infection with H. parasuis. Alveolar macrophages (PAMs) as resident cells provide one of the first lines of defence against microbes invading lung tissue. On the other hand, monocyte derived macrophages (MDMs) represent inflammatory cells accumulating at the site of inflammation. While PAMs were relatively resistant to cytopathogenic effect caused by PRRSV, MDMs were much more sensitive to PRRSV infection. MDMs infected with PRRSV increased expression of pro-apoptotic Bad, Bax and p53 mRNA. Increased mortality of MDMs may be also related to a higher intensity of ROS production after infection with PRRSV. In addition, MDMs (but not PAMs) infected with H. parasuis alone formed multinucleated giant cells (MGC); these cells were not observed in MDMs infected with both pathogens. Higher sensitivity of MDMs to PRRSV infection, which is associated with limited MDMs survival and restriction of MGC formation, could contribute to the development of multifactorial respiratory disease of swine.
Collapse
Affiliation(s)
- Lenka Kavanová
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic
| | - Katarína Matiašková
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.,University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Lenka Levá
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Hana Štěpánová
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | | | - Ján Matiašovic
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Jiří Salát
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.
| |
Collapse
|
14
|
Yuan S, Zhang N, Xu L, Zhou L, Ge X, Guo X, Yang H. Induction of Apoptosis by the Nonstructural Protein 4 and 10 of Porcine Reproductive and Respiratory Syndrome Virus. PLoS One 2016; 11:e0156518. [PMID: 27310256 PMCID: PMC4911139 DOI: 10.1371/journal.pone.0156518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
Infection by most viruses triggers apoptosis in host cells, and viruses manipulate this cell response to promote viral replication, virus spread, and cell killing. Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis both in vitro and in vivo, while the regulatory roles of PRRSV-encoded products in apoptosis are not fully understood. In the present study, we first showed a biphasic apoptosis regulation by a highly pathogenic PRRSV strain JXwn06. It was indicated that PRRSV infection delays apoptosis at early infection but activates apoptosis at late infection in MARC-145 cells. In PRRSV-infected MARC-145 cells, procaspase-8, -9 and -12 were activated at late infection, demonstrating the involvements of death receptor pathway, mitochondrial pathway and endoplasmic reticulum (ER) stress pathway in inducing apoptosis. PRRSV was also shown to induce a similar apoptosis process in pulmonary alveolar macrophages (PAMs) with an early initiation. Next, the PRRSV-encoded apoptosis inducers were screened, indicating that the nonstructural protein (Nsp) 4 and Nsp10 of PRRSV are pro-apoptotic. In the presence of Nsp4, it was confirmed that procaspase-8, -9 and -12 were cleaved, and Nsp4 facilitates the cleavage of procaspase-9 by activating B-cell lymphoma 2 interacting mediator of cell death (Bim), a pro-apoptotic protein. In addition, Nsp4 was shown to induce the degradation of an anti-apoptotic protein, B-cell lymphoma-extra large (Bcl-xL). Nsp10 was shown to activate procaspase-8 and -9 but procaspase-12 and to upregulate the expression of BH3-only pro-apoptotic protein BH3 interacting-domain death agonist (Bid) and its active form, truncated Bid (tBid). Clearly, the participation of both activated caspase-8 and Bid is required for Nsp10-induced apoptosis, indicating a crosstalk between extrinsic- and mitochondria-dependent pathways. Together, our findings suggest that PRRSV infection regulates apoptosis in a two-phase manner and activates all three apoptotic pathways; the Nsp4 and Nsp10 of PRRSV function as apoptosis inducers with different molecular basis.
Collapse
Affiliation(s)
- Shuaizhen Yuan
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ning Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Xu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
Pujhari S, Zakhartchouk AN. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis. Arch Virol 2016; 161:1821-30. [DOI: 10.1007/s00705-016-2845-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/26/2016] [Indexed: 12/15/2022]
|
16
|
Intrinsic, extrinsic and endoplasmic reticulum stress-induced apoptosis in RK13 cells infected with equine arteritis virus. Virus Res 2016; 213:219-223. [PMID: 26732484 DOI: 10.1016/j.virusres.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
Abstract
The modulation of the expression of caspases by viruses influences the cell survival of different cell types. Equine arteritis virus (EAV) induces apoptosis of BHK21 and Vero cell lines, but it is not known whether EAV induces apoptosis in RK13 cells, a common cell line routinely used in EAV diagnosis and research. In this study, we determined that caspase-3 expression was triggered after infection of RK13 cells with EAV in a time- and dose-dependent manner. We also detected caspase-8 and caspase-9 activation, indicating the stimulation of both extrinsic and intrinsic apoptosis pathways. Finally, we found caspase-12 activation, an indicator of endoplasmic reticulum stress-induced apoptosis. The variability observed in the apoptotic response in the different cell lines demonstrates that apoptosis depends on the distinctive sensitivity of each cell line used for investigation.
Collapse
|
17
|
Ge M, Zhang Y, Liu Y, Liu T, Zeng F. Propagation of field highly pathogenic porcine reproductive and respiratory syndrome virus in MARC-145 cells is promoted by cell apoptosis. Virus Res 2016; 213:322-331. [DOI: 10.1016/j.virusres.2015.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
|
18
|
Han K, Lee J, Park C, Choi K, Jeong J, Park SJ, Kang I, Chae C. Differential Expression of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Open Reading Frame 5, but not Apoptogenic Cytokines, Contribute to Severe Respiratory Disease in Pigs Infected with Type 2 PRRSV Compared with Pigs Infected with Type 1 PRRSV. J Comp Pathol 2016; 154:243-52. [PMID: 26797582 DOI: 10.1016/j.jcpa.2015.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 11/28/2022]
Abstract
The aim of this study was to compare the expression of open reading frame 5 (ORF5) of porcine reproductive and respiratory syndrome virus (PRRSV) and apoptogenic cytokines in the lungs from pigs infected with type 1 and type 2 PRRSV. Microscopical lung lesion scores and the mean number of apoptotic cells were significantly (P <0.05) higher in pigs with type 2 PRRSV infection than in those with type 1 PRRSV infection. The score for the mean number of PRRSV ORF5-positive cells per unit area of lung was significantly (P <0.05) higher in pigs with type 2 PRRSV infection. There were no significant differences in the expression of tumour necrosis factor-α and interleukin-1 in lung tissues between type 1 and type 2 PRRSV-infected pigs. The severity of microscopical lung lesions and the number of apoptotic cells correlated well with the number of PRRSV ORF5-positive cells. Therefore, differential expression of PRRSV ORF5, but not apoptogenic cytokines, may attribute to the severity of lung lesions and apoptosis in lungs in PRRSV infection. These results suggest that expression of PRRSV ORF5 may be a critical determinant for different virulence between PRRSV genotypes in terms of respiratory disease.
Collapse
Affiliation(s)
- K Han
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - J Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea; General Animal Health Division, Ministry of Agriculture, Food and Rural Affairs, 94 Dasom 2-ro, Government Complex-Sejong, Sejong-si, Republic of Korea
| | - C Park
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - K Choi
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - J Jeong
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - S-J Park
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - I Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - C Chae
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Wang X, Shao C, Wang L, Li Q, Song H, Fang W. The viral non-structural protein 1 alpha (Nsp1α) inhibits p53 apoptosis activity by increasing murine double minute 2 (mdm2) expression in porcine reproductive and respiratory syndrome virus (PRRSV) early-infected cells. Vet Microbiol 2016; 184:73-9. [PMID: 26854347 DOI: 10.1016/j.vetmic.2016.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
Abstract
Apoptosis is one of the most important mechanisms of pathogenesis in porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells. The tumor suppressor p53 plays a critical role in apoptotic induction in viral infections. In the present study, we found that p53 activity was inhibited at the early stage of PRRSV infection in both the highly pathogenic (HP) and lowly pathogenic (LP) PRRSV isolates. Bax expression showed a similar change pattern to that of p53. Murine double minute 2 (mdm2) expressed higher in PRRSV-infected cells than in uninfected cells at the early stage of infection and promoted p53 degradation. We show for the first time that the non-structural protein 1 alpha (Nsp1α) of PRRSV is a negative regulator of p53 activity through increasing mdm2 expression and p53 ubiquitination, while p53 is inhibitory to PRRSV replication at the early stage of infection. We conclude that PRRSV manipulates the host factors mdm2 and p53 via its Nsp1α for increased replication at the early stage of infection. These provide a novel perspective to understand the interaction between apoptosis and replication of PRRSV.
Collapse
Affiliation(s)
- Xiaodu Wang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Chunyan Shao
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Luyan Wang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Qunjing Li
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China; Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Province Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells. Virology 2015; 484:136-145. [PMID: 26093497 DOI: 10.1016/j.virol.2015.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/23/2015] [Accepted: 05/30/2015] [Indexed: 11/24/2022]
Abstract
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5(Δ84-96) (aa 84-96 deletion), and GP5(Δ97-119) (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5(Δ97-119), but not full-length or GP5(Δ84-96), induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5(Δ84-96) inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology.
Collapse
|
21
|
Gao J, Ji P, Zhang M, Wang X, Li N, Wang C, Xiao S, Mu Y, Zhao Q, Du T, Sun Y, Hiscox JA, Zhang G, Zhou EM. GP5 expression in Marc-145 cells inhibits porcine reproductive and respiratory syndrome virus infection by inducing beta interferon activity. Vet Microbiol 2014; 174:409-418. [DOI: 10.1016/j.vetmic.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
|
22
|
Phylogenetic comparison of porcine circovirus type 2 (PCV2) and porcine reproductive respiratory syndrome virus (PRRSV) strains detected in domestic pigs until 2008 and in 2012 in Croatia. Ir Vet J 2014; 67:9. [PMID: 24839544 PMCID: PMC4024209 DOI: 10.1186/2046-0481-67-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/28/2014] [Indexed: 11/27/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) have been present for the last 2 decades in Croatia, causing large economical losses in the pig production. The clinical features of the infections are mostly manifested by the development of respiratory problems, weight loss and poor growth performance, as well as reproductive failure in pregnant sows. Even though the infections are continuously recognized in some regions in Croatia, the heterogeneity of the detected viral strains from 2012 has not yet been investigated. The objective of this study was to compare virus strains of PCV2 and PRRSV detected until 2008 in Croatia with strains isolated in 2012 to gain a better epidemiological understanding of these two infections. Results PCV2 and PRRSV strains detected in 2012 in fattening pigs from regions where these two diseases have been previously described were compared to strains that have been detected in the same regions within the past two decades. The phylogenetic analysis revealed that the circulating PCV2 and PRRSV strains are distantly related to the previously described Croatian viral strains. However, when compared to known isolates from the GenBank a high genetic identity of PRRSV isolates with isolates from Hungary, Denmark and the Netherlands was found. Conclusion The results of this study reveal that even though PCV2 and PRRSV are constantly present in the investigated regions in Croatia, the viral strains found in 2012 genetically differ from those detected in earlier years. This indicates that new entries into the pig population appeared with regard to both infections, probably as a result of pig trade.
Collapse
|
23
|
Metz GE, Serena MS, Abeyá MM, Dulbecco AB, Massone A, Díaz S, Echeverría MG. Equine arteritis virus gP5 protein induces apoptosis in cultured insect cells. Virus Res 2014; 183:81-4. [PMID: 24518298 DOI: 10.1016/j.virusres.2014.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/05/2023]
Abstract
Equine Arteritis Virus (EAV) has been shown to induce apoptosis in vitro but the induction of this mechanism has not been previously associated with any viral gene product. In this work, we found a cytotoxicity effect of the EAV gP5 protein on baculovirus-insect cells and a low yield of protein recovery. Besides, different morphological features by electron transmission microscopy, DNA fragmentation in agarose gel, TUNEL analysis and caspase 3 activity were found. All these findings indicate that the EAV gP5 protein induces apoptosis in insect cells.
Collapse
Affiliation(s)
- Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; Members of CONICET (CCT-La Plata), Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; Members of CONICET (CCT-La Plata), Argentina
| | | | - Andrea Belén Dulbecco
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Adriana Massone
- Laboratorio de Patología Especial, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvina Díaz
- Members of CONICET (CCT-La Plata), Argentina; IGEVET-CCT-La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; Members of CONICET (CCT-La Plata), Argentina; IGEVET-CCT-La Plata, Argentina.
| |
Collapse
|
24
|
Comparative analysis of apoptotic changes in peripheral immune organs and lungs following experimental infection of piglets with highly pathogenic and classical porcine reproductive and respiratory syndrome virus. Virol J 2014; 11:2. [PMID: 24393149 PMCID: PMC3892014 DOI: 10.1186/1743-422x-11-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Our previous studies have demonstrated that piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) may develop significant thymus atrophy, which related to thymocytes apoptosis. However, apart from that detected in the thymus, there are no reports describing cell apoptosis induced by HP-PRRSV infection. In this study, we analyzed comparatively the pathological changes, cell apoptosis and viral load in peripheral immune organs including tonsil, inguinal lymph nodes (ILNs) and spleen and lungs following experimental infection of piglets with HP-PRRSV HuN4 and classical PRRSV CH-1a. Findings HP-PRRSV HuN4 exhibited much stronger cell tropism than CH-1a in immune organs and lungs of piglets. HuN4 infection led to the serious injuries in tonsils, ILNs, spleens and lungs, especially apoptosis in these organs was significant. Conclusions HuN4 infection induced severe lesions (gross pathology, histopathology and cell apoptosis) in the peripheral immune organs and lungs of infected piglets. Large numbers of apoptotic cells in immune organs and lung induced by HuN4 may play a role in the pathogenesis of the HP-PRRS and the distinct injuries caused by HuN4 infection may be associated with the high mortality rate of HP-PRRS in pigs.
Collapse
|
25
|
Sun N, Wang ZW, Wu CH, Li E, He JP, Wang SY, Hu YL, Lei HM, Li HQ. Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro. Res Vet Sci 2013; 96:323-7. [PMID: 24411654 DOI: 10.1016/j.rvsc.2013.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is an acute infectious disease. The prevalence of PRRS has made swine industry suffered huge financial losses. Matrine, a natural compound, has been demonstrated to possess anti-PRRSV activity in Marc-145 cells. However, the underlying molecular mechanisms were still unknown. The main objective of our study was to discuss the effect of Matrine on PRRSV N protein expression and PRRSV induced apoptosis. Indirect immunofluorescence assay (IFA) and Western blot were used to assess the effect of Matrine on N protein expression. Apoptosis was analyzed by fluorescence staining. In addition, the effect of Matrine on caspase-3 activation was investigated by Western blot. Indirect immunofluorescence assay and Western blot analysis demonstrated that Matrine could inhibit N protein expression in Marc-145 cells. And Matrine was found to be able to impair PRRSV-induced apoptosis by inhibiting caspase-3 activation.
Collapse
Affiliation(s)
- Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Zhi-Wei Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cai-Hong Wu
- Jiangsu Animal Husbandry & Veterinary College, Taizhou, Jiangsu 225300, PR China
| | - E Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jun-Ping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shao-Yu Wang
- University of Western Sydney, School of Medicine, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Yuan-Liang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Hong-Quan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
26
|
Purification and characterization of recombinant envelope protein GP5 of porcine reproductive and respiratory syndrome virus from E. coli. J Chromatogr A 2013; 1304:133-7. [DOI: 10.1016/j.chroma.2013.06.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 11/17/2022]
|
27
|
Ma Z, Wang Y, Zhao H, Xu AT, Wang Y, Tang J, Feng WH. Porcine reproductive and respiratory syndrome virus nonstructural protein 4 induces apoptosis dependent on its 3C-like serine protease activity. PLoS One 2013; 8:e69387. [PMID: 23936003 PMCID: PMC3720278 DOI: 10.1371/journal.pone.0069387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral protein is still unknown. Here, we reported that PRRSV nonstructural protein 4 (nsp4) was a critical apoptosis inducer. Nsp4 could activate caspase-3, -8, and -9. Using truncated constructs without different domains in nsp4, we demonstrated that the full-length of nsp4 structure was required for its apoptosis-inducing activity. Furthermore, using site-directed mutagenesis to inactivate the 3C-like serine protease activity of nsp4, we showed that nsp4-induced apoptosis was dependent on its serine protease activity. The ability of nsp4 to induce apoptosis was significantly impaired by His39, Asp64, and Ser118 mutations, suggesting that His39, Asp64, and Ser118 were essential for nsp4 to trigger apoptosis. In conclusion, our present work showed that PRRSV nsp4 could induce apoptosis in host cells and might be partially responsible for the apoptosis induced by PRRSV infection. PRRSV 3C-like protease-mediated apoptosis represents the first report in the genus Arterivirus, family Arteriviridae.
Collapse
Affiliation(s)
- Zhitao Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yalan Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
| | - Haiyan Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
| | - Ao-Tian Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (WF); (JT)
| | - Wen-hai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
- * E-mail: (WF); (JT)
| |
Collapse
|
28
|
Pathogenesis of type 1 (European genotype) porcine reproductive and respiratory syndrome virus in male gonads of infected boar. Vet Res Commun 2013; 37:155-62. [PMID: 23435841 DOI: 10.1007/s11259-013-9558-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
The objective of this study was to determine the pathogenesis of experimental infection with a type 1 porcine reproductive and respiratory syndrome virus (PRRSV) by defining the sites of viral replication and apoptosis in male gonads from infected boars for a period of 21 days after intranasal inoculation. Microscopically, hypospermatogenesis and abundant germ cell depletion and death were observed in the testes. Such germ cell death occurs by apoptosis, as determined by a characteristic histological patterns and evidence of massive DNA fragment detected in situ terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) reaction. PRRSV was detected in the testicular tissue of infected boars only. Viral nucleic acid was localized in spermatogonia, spermatocytes and spermatids but not in the vesicular and bulbourethral gland. In serial sections, PRRSV-positive cells did not co-localized with apoptotic cells. TUNEL-positive apoptotic cells were more numerous than PRRSV-positive cells in testicular sections. The present study demonstrated that type 1 PRRSV infects the spermatogonia and their progeny, and induces apoptosis in these germ cells.
Collapse
|
29
|
Characterization of thymus atrophy in piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2012; 160:455-62. [DOI: 10.1016/j.vetmic.2012.05.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
|
30
|
Wu Q, Xu F, Fang L, Xu J, Li B, Jiang Y, Chen H, Xiao S. Enhanced immunogenicity induced by an alphavirus replicon-based pseudotyped baculovirus vaccine against porcine reproductive and respiratory syndrome virus. J Virol Methods 2012. [PMID: 23201089 DOI: 10.1016/j.jviromet.2012.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudotyped baculovirus has emerged as a promising vector for vaccine development and gene therapy. Alphaviruses, such as Semliki Forest virus (SFV), have also received considerable attention for use as expression vectors because of their self-replicating properties. In this study, pseudotyped baculovirus containing the hybrid cytomegalovirus (CMV) promoter/SFV replicon was used as a vector to co-express the GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV). The immunogenicity of the resulting recombinant baculovirus (BV-SFV-5m6) was compared with the pseudotyped baculovirus vaccine (BV-CMV-5m6), in which the expression of GP5 and M were driven by the CMV promoter only. In vitro, BV-SFV-5m6 exhibited enhanced expression of foreign proteins and also caused apoptosis in transduced cells. After immunization in BALB/c mice, BV-SFV-5m6 induced strong GP5-specific ELISA antibodies and neutralizing antibodies against homologous and heterologous viruses, along with dose sparing. Further analysis of the cell-mediated immune response showed that BV-SFV-5m6 elicited a Th1-dominant immune response that was greater than that elicited by BV-CMV-5m6. Taken together, the results of this study indicate that a baculovirus containing the hybrid CMV promoter/alphavirus replicon can be utilized as an alternative strategy to develop an efficacious vaccine against PRRSV infection.
Collapse
Affiliation(s)
- Qunfeng Wu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Singh PK, Doley J, Kumar GR, Sahoo A, Tiwari AK. Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res 2012; 136:571-84. [PMID: 23168697 PMCID: PMC3516024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 10/25/2022] Open
Abstract
Cancer is one of the major causes of death worldwide. In spite of achieving significant successes in medical sciences in the past few decades, the number of deaths due to cancer remains unchecked. The conventional chemotherapy and radiotherapy have limited therapeutic index and a plethora of treatment related side effects. This situation has provided an impetus for search of novel therapeutic strategies that can selectively destroy the tumour cells, leaving the normal cells unharmed. Viral oncotherapy is such a promising treatment modality that offers unique opportunity for tumour targeting. Numerous viruses with inherent anti-cancer activity have been identified and are in different phases of clinical trials. In the era of modern biotechnology and with better understanding of cancer biology and virology, it has become feasible to engineer the oncolytic viruses (OVs) to increase their tumour selectivity and enhance their oncolytic activity. In this review, the mechanisms by which oncolytic viruses kill the tumour cells have been discussed as also the development made in virotherapy for cancer treatment with emphasis on their tumour specific targeting.
Collapse
Affiliation(s)
- Prafull K. Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - Juwar Doley
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - G. Ravi Kumar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - A.P. Sahoo
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - Ashok K. Tiwari
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| |
Collapse
|
32
|
Hou J, Wang L, Quan R, Fu Y, Zhang H, Feng WH. Induction of interleukin-10 is dependent on p38 mitogen-activated protein kinase pathway in macrophages infected with porcine reproductive and respiratory syndrome virus. Virol J 2012; 9:165. [PMID: 22909062 PMCID: PMC3441385 DOI: 10.1186/1743-422x-9-165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/07/2012] [Indexed: 01/12/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure and respiratory illness in pigs and usually establishes a persistent infection. Previous studies suggested that interleukin-10 (IL-10) could play a critical role in PRRSV-induced immunosuppression. However, the ability of PRRSV to induce IL-10 in infected cells is controversial. In this study, we further investigated this issue using PRRSV strain CH-1a, which is the first North American genotype strain isolated in China. Results PRRSV strain CH-1a could significantly up-regulate IL-10 production both at mRNA and protein levels in porcine alveolar macrophages (PAMs), bone marrow-derived macrophages (BMDMs), and monocyte-derived macrophages (MDMs). However, up-regulation of IL-10 by PRRSV was retarded by specific inhibitors of p38 mitogen-activated protein kinase (MAPK) (SB203580) and NF-κB (BAY11-7082). Additionally, p38 MAPK and NF-κB pathways but not ERK1/2 MAPK were actually activated in PRRSV-infected BMDMs as demonstrated by western blot analysis, suggesting that p38 MAPK and NF-κB pathways are involved in the induction of IL-10 by PRRSV infection. Transfection of PAMs and PAM cell line 3D4/21 (CRL-2843) with viral structural genes showed that glycoprotein5 (GP5) could significantly up-regulate IL-10 production, which was dependent on p38 MAPK and signal transducer and activator of transcription-3 (STAT3) activation. We also demonstrated that a full-length glycoprotein was essential for GP5 to induce IL-10 production. Conclusions PRRSV strain CH-1a could significantly up-regulate IL-10 production through p38 MAPK activation.
Collapse
Affiliation(s)
- Jun Hou
- State Key Laboratories of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
33
|
Rodríguez-Gómez IM, Gómez-Laguna J, Barranco I, Pallarés FJ, Ramis G, Salguero FJ, Carrasco L. Downregulation of antigen-presenting cells in tonsil and lymph nodes of porcine reproductive and respiratory syndrome virus-infected pigs. Transbound Emerg Dis 2012; 60:425-37. [PMID: 22816521 DOI: 10.1111/j.1865-1682.2012.01363.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can persist in different organs of infected pigs, which suggests a failure in the immune response. Antigen-presenting cells (APCs) play a pivotal role in the induction of effective T- and B-cell responses. In this study, we investigated the changes in the different APC subpopulations and T- and B-cell counts in the tonsil, retropharyngeal and mediastinal lymph nodes of pigs experimentally infected with a European PRRSV field isolate. Our results demonstrated that the expression of S100, SWC3, HLA-DR molecule and CD3 was diminished in the studied organs throughout the study, observing a significant negative correlation between viral antigen and HLA-DR expression in both retropharyngeal and mediastinal lymph nodes. In contrast, λ-light chains showed an increase during the study. Taking all into account, after PRRSV infection, no enhancement in the number of APCs and T cells was observed, suggesting an impairment of the immune function which may allow the persistence of PRRSV into the organism.
Collapse
Affiliation(s)
- I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Córdoba University, Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yin S, Huo Y, Dong Y, Fan L, Yang H, Wang L, Ning Y, Hu H. Activation of c-Jun NH(2)-terminal kinase is required for porcine reproductive and respiratory syndrome virus-induced apoptosis but not for virus replication. Virus Res 2012; 166:103-8. [DOI: 10.1016/j.virusres.2012.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
|
35
|
Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012; 4:424-46. [PMID: 22590680 PMCID: PMC3347317 DOI: 10.3390/v4040424] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β) are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS) is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non-structural proteins (Nsp1, Nsp2, and Nsp11) and a structural protein (N nucleocapsid protein) have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp's are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.
Collapse
|
36
|
Zhou A, Zhang S. Regulation of cell signaling and porcine reproductive and respiratory syndrome virus. Cell Signal 2012; 24:973-80. [PMID: 22274732 DOI: 10.1016/j.cellsig.2012.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 01/21/2023]
Abstract
In order to successfully survive in host and persistent infection, porcine reproductive and respiratory syndrome virus (PRRSV) utilized sophisticated mechanisms to suppress or escape from the host' innate and adaptive immune systems, and then changed host gene expression. Signaling pathways play a pivotal role in the regulation of diverse biological processes. Once signaling pathways are activated by a variety of different stimuli, immune responses will be triggered by the activation of chemokines, transcription factors, and inflammatory cytokines to adjust the aggressive replication and dissemination of viruses. PRRSV infection is able to get many signaling pathways activation that facilitates distinct cell functions to modulate immune responses. In addition, the cross-talk of cell signaling pathways also can regulate PRRSV replication and also is present in this review by recent finding.
Collapse
Affiliation(s)
- Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
37
|
Binjawadagi B, Dwivedi V, Manickam C, Torrelles JB, Renukaradhya GJ. Intranasal Delivery of an Adjuvanted Modified Live Porcine Reproductive and Respiratory Syndrome Virus Vaccine Reduces ROS Production. Viral Immunol 2011; 24:475-82. [DOI: 10.1089/vim.2011.0040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Jordi B. Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| |
Collapse
|
38
|
Zhang D, Xia Q, Wu J, Liu D, Wang X, Niu Z. Construction and immunogenicity of DNA vaccines encoding fusion protein of murine complement C3d-p28 and GP5 gene of porcine reproductive and respiratory syndrome virus. Vaccine 2010; 29:629-35. [PMID: 21134449 DOI: 10.1016/j.vaccine.2010.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/07/2010] [Accepted: 11/14/2010] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused catastrophic losses in swine industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. At present, DNA vaccine is the focus on the new vaccines. The gene fragment (p28) coding for the molecular adjuvants complement protein C3d (mC3d) from BALB/c mouse was cloned and expressed as a fusion protein for its application in the vaccine study of mice. Three potential vaccines construct units were engineered to contain two, four and six copies of mC3d-p28 coding gene linked to the GP5 gene of PRRSV and one vaccine expressing GP5 alone (pcDNA3.1-GP5) was constructed. Subsequently, the vaccines' abilities to elicit the humoral and cellular immune responses were investigated in mice. These results showed that significantly enhanced GP5-specific ELISA antibody, GP5-specific neutralizing antibody, IFN-γ level, and IL-4 level, could be induced in mice immunized with DNA construct units encoding the pcDNA3.1-C3d-p28.n-GP5 than those received DNA vaccine expressing GP5 alone (pcDNA3.1-GP5). Analysis of the immunogenicity of different repeats of mC3d-p28 revealed that mC3d-p28 had an enhancing effect on the immunogenicity of antigens, and that six or more repeats of mC3d-p28 may be necessary for efficient enhancement of antigen specific immune responses. This approach may provide a new strategy for the development of efficient vaccines against the PRRSV for pigs in the future.
Collapse
Affiliation(s)
- Deqing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | | | | | | | | | | |
Collapse
|
39
|
Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Bernabé A, Carrasco L. Immunohistochemical detection of extrinsic and intrinsic mediators of apoptosis in porcine paraffin-embedded tissues. Vet Immunol Immunopathol 2010; 139:210-6. [PMID: 21074278 DOI: 10.1016/j.vetimm.2010.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/07/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
Apoptosis is a strictly regulated mechanism of cell death that involves a complex network of biochemical pathways. Whether a cell undergoes apoptosis or not depends on a delicate balance of anti- and pro-apoptotic stimuli. This phenomenon can be induced by two different pathways: intrinsic and extrinsic pathways. The main aim of this study was to determine the ideal fixative and antigen retrieval method in porcine paraffin embedded tissues for the immunohistochemical detection of apoptosis mediators, from both extrinsic and intrinsic pathways. Tonsil, retropharyngeal lymph node and lung tissue samples were fixed in 10% neutral buffered formalin, Bouin solution and zinc salts fixative (ZSF) and different unmasking methods were carried out. Both 10% neutral buffered formalin and ZSF resulted as the fixatives of election to study apoptosis phenomena. Tween 20 (0.01% in PBS), citrate buffer (microwave, pH 6.0) and/or protease type XIV were the antigen retrieval methods which displayed better labelling. Our results allow to deep in the knowledge of apoptosis and its role in the pathogenesis of porcine diseases.
Collapse
Affiliation(s)
- Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Cordoba University, 14014 Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev 2010; 11:135-63. [DOI: 10.1017/s1466252310000034] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPorcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3′ end of the viral genome encodes four minor and three major structural proteins. The GP2a, GP3and GP4(encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP5(encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Collapse
|
41
|
Lin CH, Shih WL, Lin FL, Hsieh YC, Kuo YR, Liao MH, Liu HJ. Bovine ephemeral fever virus-induced apoptosis requires virus gene expression and activation of Fas and mitochondrial signaling pathway. Apoptosis 2009; 14:864-77. [PMID: 19521777 DOI: 10.1007/s10495-009-0371-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although induction of apoptosis by bovine ephemeral fever virus (BEFV) in several cell lines has been previously demonstrated by our laboratory, less information is available on the process of BEFV-induced apoptosis in terms of cellular pathways and specific proteins involved. In order to determine the step in viral life cycle at which apoptosis of infected cells is triggered, chemical and physical agents were used to block viral infection. Treatment of BHK-21 infected cells with ammonium chloride (NH4Cl) or cells infected with UV-inactivated BEFV was seen to abrogate virus apoptosis induction, suggesting that virus uncoating and gene expression are required for the induction of apoptosis. Using soluble death receptors Fc:Fas chimera to block Fas signaling, BEFV-induced apoptosis was inhibited in cells. BEFV infection of BHK-21 cells results in the Fas-dependent activation of caspase 8 and cleavage of Bid. This initiated the dissipation of the membrane potential and the release of cytochrome c but not AIF or Smac/DIABLO from mitochondrial into cytoplasm leading to activation of caspase 9. Combined activation of the death receptor and mitochondrial pathways results in activation of the downstream effecter caspase 3 leading to cleavage of PARP. Fas-mediated BEFV-induced apoptosis could be suppressed by the overexpression of Bcl-2 or by treatment with caspase inhibitors and soluble death receptors Fc:Fas chimera. Taken together, this study provided first evidence demonstrating that BEFV-induced apoptosis requires viral gene expression and occurs through the activation of Fas and mitochondrion-mediated caspase-dependent pathways.
Collapse
Affiliation(s)
- Chi-Hung Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Kimman TG, Cornelissen LA, Moormann RJ, Rebel JMJ, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009; 27:3704-18. [PMID: 19464553 DOI: 10.1016/j.vaccine.2009.04.022] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat for the pig industry. Vaccines have been developed, but these failed to provide sustainable disease control, in particular against genetically unrelated strains. Here we give an overview of current knowledge and gaps in our knowledge that may be relevant for the development of a future generation of more effective vaccines. PRRSV replicates in cells of the monocyte/macrophage lineage, induces apoptosis and necrosis, interferes with the induction of a proinflammatory response, only slowly induces a specific antiviral response, and may cause persistent infections. The virus appears to use several evasion strategies to circumvent both innate and acquired immunity, including interference with antigen presentation, antibody-mediated enhancement, reduced cell surface expression of viral proteins, and shielding of neutralizing epitopes. In particular the downregulation of type I interferon-alpha production appears to interfere with the induction of acquired immunity. Current vaccines are ineffective because they suffer both from the immune evasion strategies of the virus and the antigenic heterogeneity of field strains. Future vaccines therefore must "uncouple" the immune evasion and apoptogenic/necrotic properties of the virus from its immunogenic properties, and they should induce a broad immune response covering the plasticity of its major antigenic sites. Alternatively, the composition of the vaccine should be changed regularly to reflect presently and locally circulating strains. Preferably new vaccines should also allow discriminating infected from vaccinated pigs to support a virus elimination strategy. Challenges in vaccine development are the incompletely known mechanisms of immune evasion and immunity, lack of knowledge of viral sequences that are responsible for the pathogenic and immunosuppressive properties of the virus, lack of knowledge of the forces that drive antigenic heterogeneity and its consequences for immunogenicity, and a viral genome that is relatively intolerant for subtle changes at functional sites.
Collapse
Affiliation(s)
- Tjeerd G Kimman
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Costers S, Lefebvre DJ, Delputte PL, Nauwynck HJ. Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 2008; 153:1453-65. [DOI: 10.1007/s00705-008-0135-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/10/2008] [Indexed: 12/13/2022]
|
44
|
St-Louis MC, Archambault D. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation. Virology 2007; 367:147-55. [PMID: 17583760 DOI: 10.1016/j.virol.2007.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/05/2007] [Accepted: 05/21/2007] [Indexed: 11/20/2022]
Abstract
We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.
Collapse
Affiliation(s)
- Marie-Claude St-Louis
- University of Québec at Montréal, Department of Biological Sciences, Laboratory of Molecular Virology and Immunology, PO Box 8888, Succursale Centre-Ville, Montréal, Québec, Canada
| | | |
Collapse
|
45
|
Lee SM, Kleiboeker SB. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology 2007; 365:419-34. [PMID: 17488647 PMCID: PMC7127477 DOI: 10.1016/j.virol.2007.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/13/2007] [Accepted: 04/02/2007] [Indexed: 12/20/2022]
Abstract
As with a number of other viruses, Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis, although the mechanism(s) involved remain unknown. In this study we have characterized the apoptotic pathways activated by PRRSV infection. PRRSV-infected cells showed evidence of apoptosis including phosphatidylserine exposure, chromatin condensation, DNA fragmentation, caspase activation (including caspase-8, 9, 3), and PARP cleavage. DNA fragmentation was dependent on caspase activation but blocking apoptosis by a caspase inhibitor did not affect PRRSV replication. Upregulation of Bax expression by PRRSV infection was followed by disruption of the mitochondria transmembrane potential, resulting in cytochrome c redistridution to the cytoplasm and subsequent caspase-9 activation. A crosstalk between the extrinsic and intrinsic pathways was demonstrated by dependency of caspase-9 activation on active caspase-8 and by Bid cleavage. Furthermore, in this study we provide evidence of the possible involvement of reactive oxygen species (ROS)-mediated oxidative stress in apoptosis induced by PRRSV. Our data indicated that cell death caused by PRRSV infection involves necrosis as well as apoptosis. In summary, these findings demonstrate mechanisms by which PRRSV induces apoptosis and will contribute to an enhanced understanding of PRRSV pathogenesis.
Collapse
Affiliation(s)
- Sang-Myeong Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, USA
| | | |
Collapse
|
46
|
Charerntantanakul W, Platt R, Roth JA. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production. Viral Immunol 2007; 19:646-61. [PMID: 17201660 DOI: 10.1089/vim.2006.19.646] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of porcine reproductive and respiratory syndrome virus (PRRSV) to suppress T cell expression of CD25 (alpha chain of interleukin [IL]-2 receptor), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) was determined by flow cytometry in naive porcine T cells in response to mitogen (concanavalin A) and cytokine inducers (phorbol 12-myristate 13-acetate plus ionomycin [PMA/I]). Four PRRSV isolates of varying clinical virulence and three different types of porcine myeloid antigen-presenting cells (APCs) were used. T cells cultured with monocytes infected with virulent PRRSV (VR-2385, SDSU-73, and VR-2332), but not with a vaccine strain (Ingelvac PRRS MLV; Boehringer Ingelheim Vetmedica, St. Joseph, MO), demonstrated significantly reduced CD25 expression (%CD25(+)) and IFN-gamma expression (%IFN-gamma (+)) compared with T cells incubated with uninoculated monocyte cultures. T cells cultured with monocytes infected with all four PRRSV isolates demonstrated significantly reduced %TNF-alpha (+). The significant reduction of %CD25(+), %IFN-gamma (+), and %TNF-alpha (+) was not detected in T cells cultured with monocyte-derived macrophages (MDMs) and immature monocyte-derived dendritic cells (MDCs) infected with any PRRSV isolates. Heat-inactivated PRRSV did not induce significantly reduced T cell responses in any APC cultures. The reduction of T cell response in monocyte cultures was not due to PRRSV-induced T cell death. Gene expression of IL-10 detected by semiquantitative reverse transcriptase-polymerase chain reaction was significantly increased in virulent PRRSV-infected monocyte cultures after PMA/I, but not concanavalin A, stimulation compared with IL-10 gene expression from uninoculated monocyte cultures. Increased IL-10 gene expression contributed to significantly reduced %IFN-gamma (+) and %TNF-alpha (+), but not %CD25(+), as determined by IL-10 neutralization assay. This study reports that PRRSV has the ability to suppress T cell responses. The suppressive ability of PRRSV is associated with viral virulence and is mediated by virus-infected monocytes, but not by virus-infected MDMs and immature MDCs.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | |
Collapse
|
47
|
Wang X, Eaton M, Mayer M, Li H, He D, Nelson E, Christopher-Hennings J. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol 2006; 152:289-303. [PMID: 17031757 DOI: 10.1007/s00705-006-0857-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that play an important role in inducing primary antigen-specific immune responses. However, some viruses have evolved to specifically target DC to circumvent the host's immune responses for their persistence in the host. Porcine reproductive and respiratory syndrome virus (PRRSV) causes a persistent infection in susceptible animals. Although it is generally believed that the existence of PRRSV quasispecies is partly responsible for the virus persistence, other mechanisms of immune evasion or immune suppression may also exist. Here, we studied the role of DC in PRRSV persistence and immune suppression. Our results showed that PRRSV underwent a productive replication in pig monocyte-derived DC (Mo-DC) as measured by both immunofluorescence staining of viral nucleocapsid protein and virus titration assays, leading to cell death via both apoptosis and necrosis mechanisms. Additionally, PRRSV infection of Mo-DC resulted in reduced expression of MHC class I, MHC class II, CD14 and CD11b/c. This was in agreement with the impaired mixed lymphocyte reaction of PRRSV-infected Mo-DC compared to that of mock-infected Mo-DC. We also examined the cytokine profiles of PRRSV-infected Mo-DC using a quantitative ELISA method. Results indicated that no apparent change in the levels of IL-10, IL-12 and IFN-gamma was detected. Taken together, our data demonstrate that PRRSV productively infects Mo-DC and impairs the normal antigen presentation ability of Mo-DC by inducing cell death, down-regulating the expression of MHC class I, MHC class II, CD11b/c and CD14 and by inducing minimal Th1 cytokines.
Collapse
Affiliation(s)
- X Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Guerra S, López-Fernández LA, García MA, Zaballos A, Esteban M. Human Gene Profiling in Response to the Active Protein Kinase, Interferon-induced Serine/threonine Protein Kinase (PKR), in Infected Cells. J Biol Chem 2006; 281:18734-45. [PMID: 16613840 DOI: 10.1074/jbc.m511983200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The interferon-induced serine/threonine protein kinase (PKR) has an essential role in cell survival and cell death after viral infection and under stress conditions, but the host genes involved in these processes are not well defined. We used human cDNA microarrays to identify, in infected cells, genes differentially expressed after PKR expression and analyzed the requirement of catalytic activity of the enzyme. To express PKR, we used vaccinia virus (VV) recombinants producing wild type PKR (VV-PKR) and the catalytically inactive mutant K296R (VV-PKR-K296R). Most regulated genes were classified according to biological function, including apoptosis, stress, defense, and immune response. Transcriptional changes detected by microarray analysis were confirmed for selected genes by quantitative real time reverse transcription PCR. A total of 111 genes were regulated specifically by PKR catalytic activity. Of these, 97 were up-regulated, and 14 were down-regulated. The ATF-3 transcription factor, involved in stress-induced beta-cell apoptosis, was up-regulated. Activation of endogenous PKR with a VV mutant lacking the viral protein E3L (VVDeltaE3L), a PKR inhibitor, triggered an increase in ATF-3 expression that was not observed in PKR(-/-) cells. Using null cells for ATF-3 and for the p65 subunit of NF-kappaB, we showed that induction of apoptosis by PKR at late times of infection was dependent on ATF-3 expression and regulated by NF-kappaB activation. Here, we identified human genes selectively induced by expression of active PKR in infected cells and linked ATF-3 to a novel mechanism used by PKR to induce apoptosis.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet Microbiol 2005; 108:167-77. [PMID: 15936905 PMCID: PMC7117408 DOI: 10.1016/j.vetmic.2005.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 03/09/2005] [Accepted: 03/17/2005] [Indexed: 11/21/2022]
Abstract
Two common viral pathogens of swine, namely, porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), were investigated in regard to their effects on monolayer cultures of swine alveolar macrophages (AMs). The purpose was to identify selected cellular changes and responses potentially associated with the clinical reactions of pigs infected with either or both of these viruses. Measurements included the (1) absolute and relative numbers of infected, viable, and apoptotic cells; (2) distribution of viral antigens; (3) levels of interferon-alpha (IFN-α) and tumor necrosis factor-alpha (TNF-α) produced and their association with the extent of virus-induced cytopathology. Four groups of AMs were studied, including mock-infected, PCV2 alone-infected (PCV2-A), PRRSV alone-infected (PRRSV-A), and PCV2 and PRRSV dually infected (PCV2/PRRSV) groups. The AMs of PCV2-A group had high antigen-containing rate without cell death. There was a marked increase in cell death and apoptosis in PRRSV-A group. However, a lower PRRSV-induced infectious rate, cell death, and apoptosis were seen in PCV2/PRRSV group. High levels of IFN-α production were detected in PCV2-infected groups, but not in mock-infected and PRRSV-A groups. The PRRSV-induced cytopathic effect (CPE) on MARC-145 cells or swine AMs was markedly reduced by pre-incubation of the cells with UV-treated or non-UV-treated supernatants of PCV2-infected AMs. In addition, the reduction in CPE was abolished when the supernatants of PCV2-infected AMs were pre-treated with a mouse anti-recombinant porcine IFN-α antibody. The results suggest that swine AMs were an important reservoir of PCV2; PCV2 infection reduced PRRSV infection and PRRSV-associated CPE in PCV2/PRRSV AMs; the reduction of PRRSV infection in AMs was mediated by IFN-α generated by PCV2 infection. The reduced PRRSV-associated CPE in AMs and increased pro-inflammatory cytokine production may lead to a more severe pneumonic lesion in those dually infected pigs.
Collapse
Affiliation(s)
- Hui-Wen Chang
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to the probability of transmission of Porcine Reproductive and Respiratory Syndrome virus (PRRSv) to naive pigs via fresh meat. EFSA J 2005; 3:239. [PMID: 32313575 PMCID: PMC7163481 DOI: 10.2903/j.efsa.2005.239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|