1
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Efficient and Highly Specific Gene Transfer Using Mutated Lentiviral Vectors Redirected with Bispecific Antibodies. mBio 2020; 11:mBio.02990-19. [PMID: 31964730 PMCID: PMC6989108 DOI: 10.1128/mbio.02990-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The goal of gene therapy is specific delivery and expression of therapeutic genes to target cells and tissues. Common lentivirus (LV) vectors are efficient gene delivery vehicles but offer little specificity. Here, we report an effective and versatile strategy to redirect LV to target cells using bispecific antibodies (bsAbs) that bind both cell receptors and LV envelope domains. Importantly, we ablated the native receptor binding of LV to minimize off-target transduction. Coupling bsAb specificity and ablated native LV tropism synergistically enhanced the selectivity of our targeted gene delivery system. The modular nature of our bsAb-based redirection enables facile targeting of the same LV to diverse tissues/cells. By abrogating the native broad tropism of LV, our bsAb-LV redirection strategy may enable lentivirus-based gene delivery in vivo, expanding the current use of LV beyond ex vivo applications. Despite their exceptional potencies, the broad tropism of most commonly used lentivirus (LV) vectors limits their use for targeted gene delivery in vivo. We hypothesized that we could improve the specificity of LV targeting by coupling (i) reduction of their binding to off-target cells with (ii) redirection of the vectors with a bispecific antibody (bsAb) that binds both LV and receptors on target cells. As a proof of concept, we pseudotyped nonreplicating LV using a mutated Sindbis envelope (mSindbis) with ablated binding to native receptors, while retaining the capacity to facilitate efficient fusion and endosomal escape. We then evaluated the transduction potencies of the mSindbis LV for HER2-positive (HER2+) (SKBR3) breast and HER2-negative (HER2−) (A2780) cells when redirected with different bsAbs. mSindbis LV alone failed to induce appreciable green fluorescent protein (GFP) expression in either cell. When mixed with HER2-targeting bsAb, mSindbis LV was exceptionally potent, transducing 12% to 16% of the SKBR3 cells at a multiplicity of infection (MOI [ratio of viral genome copies to target cells]) of 3. Transduction was highly specific, resulting in ∼50-fold-greater selectivity toward SKBR3 cells versus A2780 cells. Redirecting mSindbis LV led to a 10-fold improvement in cell-specific targeting compared to redirecting wild-type Sindbis LV with the same bsAb, underscoring the importance of ablating native virus tropism in order to maximize targeting specificity. The redirection of mutated LV using bsAb represents a potent and highly versatile platform for targeted gene therapy.
Collapse
|
3
|
Liang M, Yan M, Lu Y, Chen ISY. Retargeting vesicular stomatitis virus glycoprotein pseudotyped lentiviral vectors with enhanced stability by in situ synthesized polymer shell. Hum Gene Ther Methods 2013; 24:11-8. [PMID: 23327104 DOI: 10.1089/hgtb.2012.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to introduce transgenes with precise specificity to the desired target cells or tissues is key to a more facile application of genetic therapy. Here, we describe a novel method using nanotechnology to generate lentiviral vectors with altered recognition of host cell receptor specificity. Briefly, the infectivity of the vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vectors was shielded by a thin polymer shell synthesized in situ onto the viral envelope, and new binding ability was conferred to the shielded virus by introducing acrylamide-tailored cyclic arginine-glycine-aspartic acid (cRGD) peptide to the polymer shell. We termed the resulting virus "targeting nanovirus." The targeting nanovirus had similar titer with VSV-G pseudotypes and specifically transduced Hela cells with high transduction efficiency. In addition, the encapsulation of the VSV-G pseudotyped lentivirus by the polymer shell did not change the pathway that VSV-G pseudotypes enter and fuse with cells, as well as later events such as reverse transcription and gene expression. Furthermore, the targeting nanovirus possessed enhanced stability in the presence of human serum, indicating protection of the virus by the polymer shell from human serum complement inactivation. This novel use of nanotechnology demonstrates proof of concept for an approach that could be more generally applied for redirecting viral vectors for laboratory and clinical purposes.
Collapse
Affiliation(s)
- Min Liang
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
4
|
Construction of a gammaretrovirus with a novel tropism and wild-type replication kinetics capable of using human APJ as entry receptor. J Virol 2012; 86:10621-7. [PMID: 22811542 DOI: 10.1128/jvi.01028-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a replication-competent gammaretrovirus (SL3-AP) capable of using the human G-protein-coupled receptor hAPJ as its entry receptor. The envelope protein of the virus was made by insertion of the 13-amino-acid peptide ligand for hAPJ, flanked by linker sequences, into one of the variable loops of the receptor binding domain of SL3-2, a murine leukemia virus (MLV) that uses the xenotropic-polytropic virus receptor Xpr1 and which has a host range limited to murine cells. This envelope protein can utilize hAPJ as well as murine Xpr1 for entry into host cells with equal efficiencies. In addition, the SL3-AP virus replicates in cells expressing either of its receptors, hAPJ and murine Xpr1, and causes resistance to superinfection and downregulation of hAPJ in infected cells. Thus, SL3-AP is the first example of a retargeted replication-competent retrovirus, with replication characteristics and receptor interference properties similar to those of natural isolates.
Collapse
|
5
|
Sánchez-Martínez C, Grueso E, Carroll M, Rommelaere J, Almendral JM. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry. Virology 2012; 432:45-56. [PMID: 22727830 DOI: 10.1016/j.virol.2012.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022]
Abstract
The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Lee J, Cho YD, Heo YK, Kwon Y, Kim DG, Choi BS, Kim SS, Kim YB. Reduction of N-tropic mutant porcine endogenous retrovirus infectivity by human tripartite motif-containing 5-isoform alpha. Transplant Proc 2012; 43:2774-8. [PMID: 21911161 DOI: 10.1016/j.transproceed.2011.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/19/2011] [Indexed: 10/17/2022]
Abstract
In cases of retroviral infection, the host cell deploys antiviral proteins as a type of innate immunity. Tripartite motif-containing 5-isoform alpha (TRIM5α) is a potent antiviral protein. TRIM5α has been reported to restrict human immunodeficiency virus (HIV) 1 infection in rhesus monkey cells by targeting the incoming viral capsid at the postentry or preintegration stage of the viral life cycle. As a consequence, virus replication and reverse transcription are interrupted. TRIM5α of human origin has also been shown to inhibit N-tropic murine leukemia virus infection. To investigate the inhibitory effect of TRIM5α on porcine endogenous retrovirus (PERV) infection in humans, we constructed a 293T cell line stably expressing human TRIM5α (293T-huTRIM5α) and tested the infectivity of vesicular stomatitis virus glycoprotein envelope pseudotyped viruses (wild-type PERV [wt-PERV], N-tropic mutant PERV, N-tropic murine leukemia virus, and MoMLV). Infectivity of N-tropic mutant PERV was reduced by 43.3% in 293T-huTRIM5α cells, a decrease in efficiency that was more than 3-fold greater than that of wt-PERV in 293T-huTRIM5α cells. Human TRIM5α exhibited inhibitory activity against N-tropic MLV and N-tropic mutant PERV, but showed no antiviral activity against Moloney murine leukemia virus or wt-PERV.
Collapse
Affiliation(s)
- J Lee
- Department of Animal Biotechnology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang X, Roth MJ. Antibody-directed lentiviral gene transduction in early immature hematopoietic progenitor cells. J Gene Med 2011; 12:945-55. [PMID: 21104972 DOI: 10.1002/jgm.1518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The specific and efficient transduction of retroviral particles remains problematic for in vivo and ex vivo gene therapy studies, where the targeting cell population is a heterogeneous bulk population. METHODS Pseudotyping lentiviral particles with Sindbis virus envelope (Env) proteins modified with an immunoglobulin Fc-binding domain presents a method of selecting cells within a mixed population through antibody (Ab)-mediated targeting. Conditions were tested for targeted lentiviral gene delivery to hematopoietic progenitor cells via Ab-conjugated envelopes independent of CD34. RESULTS Conditions to optimize the efficiency of gene delivery were established using the ABCG2 multidrug resistance protein, associated with stem cell phenotypes, as the cell surface target. By varying the proportion of ABCG2 expressing cells in a population, ABCG2-targeted gene delivery was detectable by flow cytometry when ABCG2(+) cells comprised greater than 5% of the population. Conditions that increased the efficiency of gene transfer, including cholesterol independent Env proteins and pH, increased nonspecific gene delivery. The feasibility of this cell-Ab-virus sandwich system in targeting transduction in a mixed population was tested in cells derived from human cord blood (CB). Conjugation of viral particles with anti-CD133 and anti-ABCG2 hematopoietic stem cell-associated Ab resulted in targeted gene transfer into early immature hematopoietic progenitor cells. Enhancement was found when the hematopoietic progenitor cells were enriched from CB cells via the depletion of lineage(+) committed cells. CONCLUSIONS Gene transfer to lineage(-) early immature hematopoietic progenitors from human umbilical CB was obtained using CD133, ABCG2 or HLA-1 antibodies conjugated to lentiviruses pseudotyped with modified Sindbis viral Env proteins.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
8
|
Froelich S, Tai A, Wang P. Lentiviral vectors for immune cells targeting. Immunopharmacol Immunotoxicol 2010; 32:208-18. [PMID: 20085508 DOI: 10.3109/08923970903420582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lentiviral vectors (LVs) are efficient gene delivery vehicles suitable for delivering long-term transgene expression in various cell types. Engineering LVs to have the capacity to transduce specific cell types is of great interest to advance the translation of LVs toward the clinic. Here we provide an overview of innovative approaches to target LVs to cells of the immune system. In this overview we distinguish between two types of LV targeting strategies: (i) targeting of the vectors to specific cells by LV surface modifications, and (ii) targeting at the level of transgene transcription by insertion of tissue-specific promoters to drive transgene expression. It is clear that each strategy is of enormous value but ultimately combining these approaches may help reduce the effects of off-target expression and improve the efficiency and safety of LVs for gene therapy.
Collapse
Affiliation(s)
- Steven Froelich
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
9
|
Abstract
Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or in combination with current approaches.
Collapse
Affiliation(s)
- Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital, Cork, Ireland.
| | | | | | | |
Collapse
|
10
|
Morizono K, Xie Y, Helguera G, Daniels TR, Lane TF, Penichet ML, Chen ISY. A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide. J Gene Med 2009; 11:655-63. [PMID: 19455593 DOI: 10.1002/jgm.1345] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. METHODS We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. RESULTS When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. CONCLUSIONS This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin.
Collapse
Affiliation(s)
- Kouki Morizono
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Morizono K, Pariente N, Xie Y, Chen ISY. Redirecting lentiviral vectors by insertion of integrin-tageting peptides into envelope proteins. J Gene Med 2009; 11:549-58. [PMID: 19434609 DOI: 10.1002/jgm.1339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Targeting gene therapy vectors that can home in on desired cell and tissue types in vivo comprise the ultimate gene delivery system. We have previously developed targeting lentiviral vectors by pseudotyping vectors with modified Sindbis virus envelope proteins. The envelope protein contains the Fc-binding region of protein A (ZZ domain), so the virus can be conjugated with antibodies. The conjugated antibody mediates specific transduction of the cells and tissues expressing the target antigens, both in vitro and in vivo. However, more stable conjugation of targeting molecules would be optimal for use in immunocompetent animals, as well as in humans. METHODS We inserted integrin-targeting peptides into two sites of the targeting envelope proteins and determined whether the peptides serve as receptor-binding regions of the envelope proteins and redirect the pseudotyped viruses. RESULTS The integrin-targeting peptides can mediate binding to cells via the interaction with integrins on target cells and transduction. Peptides with a higher binding affinity increase titers of pseudotyped virus. We found two regions on the envelope protein that can accommodate insertion and serve as receptor-binding regions. Combining the peptides in two distinct regions increased the titers of the virus. CONCLUSIONS Successful incorporation of targeting molecules into the envelope protein will broaden the application of targeting vectors for a wide variety of experimental and clinical settings.
Collapse
Affiliation(s)
- Kouki Morizono
- Department of Medicine, University of California, Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
12
|
Lei Y, Joo KI, Wang P. Engineering fusogenic molecules to achieve targeted transduction of enveloped lentiviral vectors. J Biol Eng 2009; 3:8. [PMID: 19490632 PMCID: PMC2698826 DOI: 10.1186/1754-1611-3-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 06/02/2009] [Indexed: 12/21/2022] Open
Abstract
Background Lentiviral vectors with broad tropism are one of the most promising gene delivery systems capable of efficiently delivering genes of interest into both dividing and non-dividing cells while maintaining long-term transgene expression. However, there are needs for developing lentiviral vectors with the capability to deliver genes to specific cell types, thus reducing the "off-target" effect of gene therapy. In the present study, we investigated the possibility of engineering the fusion-active domain of a fusogenic molecule (FM) with the aim to improve targeted transduction of lentiviral vectors co-displaying an anti-CD20 antibody (αCD20) and a FM. Results Specific mutations were introduced into the fusion domain of a binding-deficient Sindbis virus glycoprotein to generate several mutant FMs. Lentiviral vectors incorporated with αCD20 and one of the engineered FMs were successfully produced and demonstrated to be able to preferentially deliver genes to CD-20-expressing cells. Lentiviral vectors bearing engineered FMs exhibited 8 to 17-fold enhanced transduction towards target cells as compared to the parental FM. Different levels of enhancement were observed for the different engineered FMs. A pH-dependent study of vector transduction showed that the broader pH range of the engineered FM is a possible mechanism for the resulted increase in transduction efficiency. Conclusion The fusion domain of Sindbis virus glycoprotein is amenable for engineering and the engineered proteins provide elevated capacity to mediate lentiviral vectors for targeted transduction. Our data suggests that application of such an engineering strategy can optimize the two-molecular targeting method of lentiviral vectors for gene delivery to predetermined cells.
Collapse
Affiliation(s)
- Yuning Lei
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
13
|
Cell type-specific targeting with surface-engineered lentiviral vectors co-displaying OKT3 antibody and fusogenic molecule. Pharm Res 2009; 26:1432-45. [PMID: 19259792 DOI: 10.1007/s11095-009-9853-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to investigate the potential of a T-cell-related targeting method using a lentiviral vector-based gene delivery system. MATERIALS AND METHODS A lentiviral vector system was constructed by co-incorporating an anti-CD3 antibody (OKT3) and a fusogen into individual viral particles. The incorporation of OKT3 and fusogen was analyzed using confocal microscopy and the in vitro transduction efficiency was evaluated using flow cytometry. Blocking reagents (ammonium chloride (NH(4)Cl) and soluble OKT3 antibody) were added into vector supernatants during transduction to study the mechanism of this two-molecule targeting strategy. To demonstrate the ability of targeted transduction in vivo, Jurkat.CD3 cells were xenografted subcutaneously into the right flank of each mouse and the lentiviral vector was injected subcutaneously on both sides of each mouse 8 h post-injection. Subsequently, the reporter gene (firefly luciferase) expression was monitored using a noninvasive bioluminescence imaging system. RESULTS By co-displaying OKT3 and fusogen on the single lentiviral surface, we could achieve targeted delivery of genes to CD3-positive T-cells both in vitro and in vivo. CONCLUSIONS These results suggest the potential utility of this engineered lentiviral system as a new tool for cell type-directed gene delivery.
Collapse
|
14
|
Abstract
Viruses can be engineered to efficiently deliver exogenous genes, but their natural gene delivery properties often fail to meet human therapeutic needs. Therefore, engineering viral vectors with new properties, including enhanced targeting abilities and resistance to immune responses, is a growing area of research. This review discusses protein engineering approaches to generate viral vectors with novel gene delivery capabilities. Rational design of viral vectors has yielded successful advances in vitro, and to an extent in vivo. However, there is often insufficient knowledge of viral structure-function relationships to reengineer existing functions or create new capabilities, such as virus-cell interactions, whose molecular basis is distributed throughout the primary sequence of the viral proteins. Therefore, high-throughput library and directed evolution methods offer alternative approaches to engineer viral vectors with desired properties. Parallel and integrated efforts in rational and library-based design promise to aid the translation of engineered viral vectors toward the clinic.
Collapse
Affiliation(s)
- David V Schaffer
- The Department of Chemical Engineering, the Department of Bioengineering, and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3220, USA.
| | | | | |
Collapse
|
15
|
Krishna D, Raykin J, Le Doux JM. Targeted Receptor Trafficking Affects the Efficiency of Retrovirus Transduction. Biotechnol Prog 2008; 21:263-73. [PMID: 15903265 DOI: 10.1021/bp049767b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the development of an experimental system to test the hypothesis that the efficiency of retrovirus transduction is dependent on the pathway of virus entry into the host cell and the intracellular trafficking itinerary of the cellular receptor with which it interacts. The experimental system consists of three model target cell lines, derived from HeLa cells, that stably express one of three interleukin-2 receptor alpha chain (CD25) chimeras, TAC, TAC-CD16, and TAC-DKQTLL, which have identical extracellular domains but different intracellular trafficking itineraries, and a targeted amphotropic murine leukemia retrovirus whose envelope proteins were modified to include a binding site for TAC at their N-termini. We found that the efficiency of retrovirus transduction was affected by the distribution and trafficking itinerary of the TAC receptors. Transduction of cells that expressed TAC-DKQTLL was nearly 4-fold lower than transduction of control cells that did not express any of the TAC receptors. In contrast, transduction of cells that expressed TAC was 1.6-fold higher than transduction of control cells, whereas transduction was not significantly affected by the expression of TAC-CD16. Our results suggest that in the course of designing a targeted retrovirus it may be prudent to target only those receptors that internalize retroviruses via pathways that most efficiently support post-binding steps of infection.
Collapse
Affiliation(s)
- Delfi Krishna
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0535, USA
| | | | | |
Collapse
|
16
|
Conner J, Braidwood L, Brown SM. A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Ther 2008; 15:1579-92. [PMID: 18701918 DOI: 10.1038/gt.2008.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report on the ability of single-chain variable fragment (scFv) incorporated into the viral envelope to alter the tropism of herpes simplex virus (HSV) 1716. Using recombinant viruses expressing fusion proteins comprising cell-surface antigen-specific scFvs N terminus linked to amino acids 274-393 of gD, we demonstrated that the tropism of these HSV1716 variants was modified such that infection was mediated by the cognate antigen. Thus, an HSV1716 variant that expressed an anti-CD55 scFv targeting moiety linked to these gD residues was able to infect non-permissive Chinese hamster ovary cells expressing CD55 and this infection was specifically blocked by an anti-CD55 monoclonal antibody. Similarly, the infection efficiency of an HSV1716 variant for semi-permissive human leukaemic, CD38-positive cell lines was greatly improved by an anti-CD38 scFv targeting moiety linked to gD residues 274-393, and this enhanced infectivity was abrogated specifically by an anti-CD38 monoclonal antibody. Finally, intravenous/intraperitoneal injection of an HSV1716 variant displaying an anti-epidermal growth factor receptor (EGFR) scFv linked to residues 274-393 of gD enhanced destruction of subcutaneous EGFR-positive tumours in nude mice compared to unmodified HSV1716. Therefore, targeting of HSV1716 oncolysis to specific cell types through the display of entry mediating scFv/gD fusion proteins represents an efficient route for systemic delivery.
Collapse
Affiliation(s)
- J Conner
- Crusade Laboratories Ltd, Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland, UK.
| | | | | |
Collapse
|
17
|
Qi P, Han J, Lu Y, Wang C, Zhu B. A transient three-plasmid expression system for the production of hepatocytes targeting retroviral vectors. Acta Biochim Biophys Sin (Shanghai) 2007; 39:567-74. [PMID: 17687491 DOI: 10.1111/j.1745-7270.2007.00318.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeting of retroviral vectors to specific cells was attempted through modifying the surface protein of the murine leukemia viruses (MLVs), but in many cases the protein function was affected, and it is difficult to achieve the targeted delivery. In this study, we have tried to engineer ecotropic Moloney murine leukemia viruses (MoMLV)-based retroviral vectors to transduce hepatocytes. A chimeric envelope (Env) expression plasmid was constructed containing the hepatitis B virus PreS2 peptide fused to aa +1 at the N-terminus of Env. Following simultaneous transfection of pgag-pol, pLEGFP and chimeric env plasmids into 293T cells, helper-free retrovirus stocks with the titer of approximately 10(4) infectious units/ml were achieved at 48 h post-transfection. These pseudotype vectors showed the normal host range of retrovirus, infecting host NIH 3T3 cells, although the efficiency was reduced compared with that of virions carrying wild-type ecotropic MoMLV envelope. In addition, the resultant pseudotype viruses could transduce human hepatoma cells mediated by polymerized human serum albumin with relatively high titers in comparison with those transductions without polymerized human serum albumin. This approach can be used to target hepatocytes selectively.
Collapse
Affiliation(s)
- Peng Qi
- Key Laboratory of Ministry of Health for Biotech-Drug, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Science, Jinan 250062, China
| | | | | | | | | |
Collapse
|
18
|
Bahrami S, Duch M, Pedersen FS. Ligand presentation on a synthetic flexible hinge in Moloney murine leukemia virus SU supports entry via a heterologous receptor. Virology 2007; 363:303-9. [PMID: 17331559 DOI: 10.1016/j.virol.2007.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/14/2006] [Accepted: 01/18/2007] [Indexed: 11/18/2022]
Abstract
The envelope protein of Moloney murine leukemia virus mediates entry into mCAT-expressing cells. Attempts to change its receptor usage through the insertion of ligands at various sites have been met with varying success. We have tested several sites in Env for insertion of apelin, a small peptide ligand of the G-protein-coupled receptor APJ. Although most of the chimeric envelopes had retained their ability to infect mouse cells none showed APJ-dependent entry. Insertion of a peptide linker Ser-Gly-Gly-Ser-Gly at either side of the apelin motif in one of the chimeric envelopes resulted in an ability of the chimeric envelope to bind to and infect cells through APJ although with low efficiency. Several linker sequences isolated by library selection for APJ-dependent infection were found to support entry, however none more efficiently than the original SGGSG-linker. Hence, the immediate context of ligand presentation is critical for infectivity via a heterologous receptor.
Collapse
Affiliation(s)
- Shervin Bahrami
- Department of Molecular Biology, University of Aarhus, C. F. Mollers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
19
|
Qi P, Han JX, Lu YQ, Wang CX. Redirecting retroviral tropism by insertion of hepatitis B virus PreS1 core peptide into the envelope. Arch Virol 2007; 152:1721-30. [PMID: 17520321 DOI: 10.1007/s00705-007-0987-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/12/2007] [Indexed: 02/07/2023]
Abstract
A potentially powerful approach for in vivo gene delivery is to target retroviral vectors to specific cells through interactions between cell surface receptors and appropriately engineered viral envelope proteins, but this has so far met with little success. We report here an attempt to target ecotropic MLV retroviral vectors to human cells infected by hepatitis B virus (HBV) through the interaction between the HBV PreS1 domain and the receptors on the cell surface. We examined 7 MLV chimeric envelope derivatives that contained either the HBV PreS1 peptide or PreS1 aa 21-47 segment (partial PreS1, pPreS1), which was inserted at various locations within the SU of the MoMLV Env. In addition to infecting host NIH 3T3 cells, some of pseudotyped viruses could transduce human cells. Our results demonstrate that short peptide ligands inserted at appropriate locations in the MLV envelope can selectively target retroviruses to human cells.
Collapse
Affiliation(s)
- P Qi
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Science, Jinan, China
| | | | | | | |
Collapse
|
20
|
Gao Y, Whitaker-Dowling P, Watkins SC, Griffin JA, Bergman I. Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. J Virol 2006; 80:8603-12. [PMID: 16912309 PMCID: PMC1563842 DOI: 10.1128/jvi.00142-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is being developed for cancer therapy. We created a recombinant replicating VSV (rrVSV) that preferentially infected Her2/neu-expressing breast cancer cells. This rrVSV did not express the native VSV-G glycoprotein (gp). Instead, it expressed a chimeric Sindbis gp which included a single-chain antibody (SCA) directed to the human Her2/neu receptor. The virus infected mouse mammary carcinoma cells (D2F2/E2) expressing Her2/neu 23-fold better than the parent cells (D2F2). However, viral growth in cultured D2F2/E2 cells was curtailed after several cycles, and viral yield was very poor at 2 x 10(4) infectious doses (ID)/ml. We performed in vitro serial passage in D2F2/E2 cells to evolve a virus with improved growth that could be used for preclinical therapy trials in mice. Fifteen passes generated an adapted virus that progressed through multiple cycles in cultured D2F2/E2 cells until all cells were infected and had a viral yield of 1 x 10(8) ID/ml. Sequencing of the entire viral genomes found only 2 mutations in the adapted virus. Both mutations occurred in the gp gene segment coding for the SCA. An additional N-glycosylation site was created by one of the mutations. The adapted virus showed higher density of gp on the viral envelope, improved infectivity, much greater stability, higher burst size, and decreased induction of cellular interferon. The specificity for cells expressing the Her2/neu receptor was unchanged. These studies demonstrate that serial passage can be used to rapidly evolve a VSV genome encoding an improved chimeric glycoprotein.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | |
Collapse
|
21
|
Dreja H, Piechaczyk M. The effects of N-terminal insertion into VSV-G of an scFv peptide. Virol J 2006; 3:69. [PMID: 16948856 PMCID: PMC1564393 DOI: 10.1186/1743-422x-3-69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/02/2006] [Indexed: 11/10/2022] Open
Abstract
Recombinant retroviruses, including lentiviruses, are the most widely used vectors for both in vitro and in vivo stable gene transfer. However, the inability to selectively deliver transgenes into cells of interest limits the use of this technology. Due to its wide tropism, stability and ability to pseudotype a range of viral vectors, vesicular stomatitis virus G protein (VSV-G) is the most commonly used pseudotyping protein. Here, we attempted to engineer this protein for targeting purposes. Chimaeric VSV-G proteins were constructed by linking a cell-directing single-chain antibody (scFv) to its N-terminal. We show that the chimaeric VSV-G molecules can integrate into retroviral and lentiviral particles. HIV-1 particles pseudotyped with VSV-G linked to an scFv against human Major Histocompatibility Complex class I (MHC-I) bind strongly and specifically to human cells. Also, this novel molecule preferentially drives lentiviral transduction of human cells, although the titre is considerably lower that viruses pseudotyped with VSV-G. This is likely due to the inefficient fusion activity of the modified protein. To our knowledge, this is the first report where VSV-G was successfully engineered to include a large (253 amino acids) exogenous peptide and where attempts were made to change the infection profile of VSV-G pseudotyped vectors.
Collapse
Affiliation(s)
- Hanna Dreja
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR122, CNRS, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR122, CNRS, France
| |
Collapse
|
22
|
Morizono K, Ringpis GE, Pariente N, Xie Y, Chen ISY. Transient low pH treatment enhances infection of lentiviral vector pseudotypes with a targeting Sindbis envelope. Virology 2006; 355:71-81. [PMID: 16905172 DOI: 10.1016/j.virol.2006.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/12/2006] [Accepted: 07/11/2006] [Indexed: 11/19/2022]
Abstract
Efficient transduction of primary hematopoietic cell types by oncoretroviral vectors and lentiviral vectors with a variety of different envelope pseudotypes has proven to be difficult. We recently developed a lentiviral vector based upon a modified Sindbis virus envelope that allows targeted transduction via antibody recognition to specific cells in unfractionated cell populations. However, similar to other envelope pseudotypes, the utility of this vector for some primary hematopoietic cells was limited by low transduction efficiencies. Here, we report that transient treatment of cells with low pH culture medium immediately following infection results in marked enhancements in transduction efficiency for primary hematopoietic cells. In combination with antibody directed targeting, this simple technique expands the utility of targeting transduction to specific cells in mixed populations of primary cells.
Collapse
Affiliation(s)
- Kouki Morizono
- Department of Microbiology, Immunology and Molecular Genetics, University of California David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
23
|
Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006; 208:299-318. [PMID: 16362990 DOI: 10.1002/path.1896] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major impediment to the successful application of gene therapy for the treatment of a range of diseases is not a paucity of therapeutic genes, but the lack of an efficient non-toxic gene delivery system. Having evolved to deliver their genes to target cells, viruses are currently the most effective means of gene delivery and can be manipulated to express therapeutic genes or to replicate specifically in certain cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular disease, but it is in the treatment of cancer that this approach has been most evident, resulting in the recent licensing of a gene therapy for the routine treatment of head and neck cancer in China. A variety of virus vectors have been employed to deliver genes to cells to provide either transient (eg adenovirus, vaccinia virus) or permanent (eg retrovirus, adeno-associated virus) transgene expression and each approach has its own advantages and disadvantages. Paramount is the safety of these virus vectors and a greater understanding of the virus-host interaction is key to optimizing the use of these vectors for routine clinical use. Recent developments in the modification of the virus coat allow more targeted approaches and herald the advent of systemic delivery of therapeutic viruses. In the context of cancer, the ability of attenuated viruses to replicate specifically in tumour cells has already yielded some impressive results in clinical trials and bodes well for the future of this approach, particularly when combined with more traditional anti-cancer therapies.
Collapse
Affiliation(s)
- Lawrence S Young
- Cancer Research UK Institute for Cancer Studies, University of Birmingham Medical School, UK.
| | | | | | | |
Collapse
|
24
|
Viejo-Borbolla A, Thomas P, Blair ED, Schulz TF. Increase in infectivity of targeted Moloney murine leukemia virus-based gene-delivery vectors through lowering the threshold for fusion. J Gen Virol 2005; 86:2469-2480. [PMID: 16099905 DOI: 10.1099/vir.0.81057-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many research groups have developed targeted vectors for gene therapy based on Moloney murine leukemia virus (MoMLV). Despite proper binding of the targeted vector to the target molecule, little or no infectivity of human cells expressing the target molecule has been achieved in most studies. One of the reasons for this lack of infectivity may be steric hindrance within the targeted envelope glycoprotein (Env), impeding the conformational changes required for fusion and infection. Here, attempts were made to solve this problem by mutating key residues within Env of two targeted MoMLV-based vectors, MoMLV-E-Sel and MoMLV-FBP. Selection of key residues was based on an Env with reduced threshold for fusion, that of the CD4-independent human immunodeficiency virus type 2 isolate ROD/B. It was shown here that vectors bearing MoMLV-FBP Env with a V512M substitution had higher titres and faster kinetics of entry than vectors bearing parental targeted Env proteins. This could be due to the partial release of steric constraints that result in an Env with a reduced threshold for fusion.
Collapse
Affiliation(s)
- A Viejo-Borbolla
- Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool, Liverpool, UK
- Department of Virology, Hannover Medical School, Hannover, Germany
- Departments of Applied Diagnostics and Computational Chemistry, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - P Thomas
- Departments of Applied Diagnostics and Computational Chemistry, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - E D Blair
- Departments of Applied Diagnostics and Computational Chemistry, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - T F Schulz
- Department of Virology, Hannover Medical School, Hannover, Germany
- Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Boucquey A, Vilhardt F, Mitrovic T, Franco D, Weber A, Horellou P. Retroviral display of urokinase-binding domain fused to amphotropic envelope protein. Biochem Biophys Res Commun 2005; 331:1485-93. [PMID: 15883041 DOI: 10.1016/j.bbrc.2005.04.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Indexed: 11/21/2022]
Abstract
Tumors frequently express urokinase (uPA) receptor (uPAR). To investigate whether uPAR can efficiently target cancerous cells using amphotropic retroviral vectors, we generated a retrovirus displaying the amino-terminal fragment (ATF) of uPA as an N-terminal extension of viral envelope protein. We also made use of a "two-step strategy" by inserting a uPA cleavage site between the ATF moiety and the envelope. We measured the ability of ATF-bearing chimeric envelopes to infect huPAR-overexpressing Madin-Darby canine kidney (MDCK) and control MDCK II cells. The ATF-viruses infected both MDCK cell lines with an equivalent efficiency, suggesting that the chimeric viruses were not sequestered by uPAR and infect cells preferentially via the Pit-2 receptor. The addition of a uPA cleavage site increased the infection level of huPAR-MDCK cells by 2-fold when uPA was present in the infection medium. Surprisingly, ATF-env viruses infected huPAR-MDCK cells 5.5-fold more efficiently in the presence of exogenous uPA. This stimulatory effect of uPA on infection of huPAR-MDCK cells by the ATF-env virus was completely abolished by methyl-beta-cyclodextrin, suggesting that this effect involves the caveolar endocytosis pathway.
Collapse
Affiliation(s)
- Antoine Boucquey
- EMI 00-20, INSERM and Université Paris XI, Bat Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Viejo-Borbolla A, Pizzato M, Blair ED, Schulz TF. Insertion of targeting domains into the envelope glycoprotein of Moloney murine leukemia virus (MoMLV)-based vectors modulates the route of mCAT-1-mediated viral entry. Virus Res 2005; 108:45-55. [PMID: 15681054 DOI: 10.1016/j.virusres.2004.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
Collapse
Affiliation(s)
- A Viejo-Borbolla
- Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
27
|
Morizono K, Xie Y, Ringpis GE, Johnson M, Nassanian H, Lee B, Wu L, Chen ISY. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 2005; 11:346-52. [PMID: 15711560 DOI: 10.1038/nm1192] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 12/10/2004] [Indexed: 11/08/2022]
Abstract
Targeted gene transduction to specific tissues and organs through intravenous injection would be the ultimate preferred method of gene delivery. Here, we report successful targeting in a living animal through intravenous injection of a lentiviral vector pseudotyped with a modified chimeric Sindbis virus envelope (termed m168). m168 pseudotypes have high titer and high targeting specificity and, unlike other retroviral pseudotypes, have low nonspecific infectivity in liver and spleen. A mouse cancer model of metastatic melanoma was used to test intravenous targeting with m168. Human P-glycoprotein was ectopically expressed on the surface of melanoma cells and targeted by the m168 pseudotyped lentiviral vector conjugated with antibody specific for P-glycoprotein. m168 pseudotypes successfully targeted metastatic melanoma cells growing in the lung after systemic administration by tail vein injection. Further development of this targeting technology should result in applications not only for cancers but also for genetic, infectious and immune diseases.
Collapse
Affiliation(s)
- Kouki Morizono
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA. Preferential targeting of vesicular stomatitis virus to breast cancer cells. Virology 2004; 330:24-33. [PMID: 15527831 DOI: 10.1016/j.virol.2004.06.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/17/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. We created a recombinant replicating VSV (rrVSV) with an altered surface protein that targeted preferentially to breast cancer cells. The rrVSV genome contained a single glycoprotein (gp) gene derived from Sindbis virus. This gene expressed a chimeric Sindbis E2 binding gp and the native Sindbis E1 fusion gp. The chimeric E2 binding gp, called Sindbis-SCA-erbb2, was modified to reduce its native binding function and to contain a single chain antibody (SCA) with specificity for the human epidermal growth factor receptor Her2/neu protein, erbb2. These viruses selectively infected, replicated in and killed cells expressing erbb2. The titer of rrVSV on SKBR3 cells, a human breast cancer cell line which highly expresses erbb2 was 3.1 x 10(7)/ml compared with a titer of 7.3 x 10(5)/ml on 143 cells, a human osteosarcoma cell line which does not express erbb2. The titer of rrVSV on D2F2/E2 cells, a mouse mammary cancer cell line stably transfected to express human erbb2 was 2.46 x 10(6)/ml compared with a titer of 5 x 10(4)/ml on the parent D2F2 cells which do not express erbb2. When titered on erbb2-negative cells, non-replicating pseudotype VSV coated with Sindbis-SCA-erbb2 had <3% the titer of pseudotype VSV coated with wild type Sindbis gp indicating that the chimeric Sindbis gp had severely impaired binding to the natural receptor. Analysis of the protein composition of the rrVSV found low expression of the modified Sindbis gp on the virus.
Collapse
Affiliation(s)
- Ira Bergman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
29
|
Bahrami S, Duch M, Pedersen FS. Change of tropism of SL3-2 murine leukemia virus, using random mutational libraries. J Virol 2004; 78:9343-51. [PMID: 15308729 PMCID: PMC506969 DOI: 10.1128/jvi.78.17.9343-9351.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SL3-2 is a polytropic murine leukemia virus with a limited species tropism. We cloned the envelope gene of this virus, inserted it into a bicistronic vector, and found that the envelope protein differs from other, similar envelope proteins that also utilize the polytropic receptor (Xpr1) in that it is severely impaired in mediating infection of human and mink cells. We found that two adjacent amino acid mutations (G212R and I213T), located in a previously functionally uncharacterized segment of the surface subunit, are responsible for the restricted tropism of the SL3-2 wild-type envelope. By selection from a two-codon library, several hydrophobic amino acids at these positions were found to enable the SL3-2 envelope to infect human TE 671 cells. In particular, an M212/V213 mutant had a titer at least 6 orders of magnitude higher than that of the wild-type envelope for human TE 671 cells and infected human, mink, and murine cells with equal efficiencies. Notably, these two amino acids are not found at homologous positions in known murine leukemia virus isolates. Functional analysis and library selection were done on the basis of sequence and tropism analyses of the SL3-2 envelope gene. Similar approaches may be valuable in the design and optimization of retroviral envelopes with altered tropisms for biotechnological purposes.
Collapse
Affiliation(s)
- Shervin Bahrami
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | | | | |
Collapse
|
30
|
Abstract
Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.
Collapse
Affiliation(s)
- V Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Unité de Virologie Humaine, INSERM U412, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
31
|
Bai J, Banda N, Lee NS, Rossi J, Akkina R. RNA-based anti-HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol Ther 2002; 6:770-82. [PMID: 12498773 DOI: 10.1006/mthe.2002.0800] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effective suppression of HIV-1 replication requires inhibition of critical viral target molecules. Tat and Rev are indispensable regulatory factors for HIV-1 replication, whereas Env mediates virus entry by direct interaction with surface receptor CD4 and coreceptor CCR5 or CXCR4. Anti-HIV-1 tat-rev and env ribozymes and Rev aptamers were previously demonstrated to provide relatively long-term protection against HIV-1 infection in vitro. However, further improvements in these constructs for clinical application in a stem-cell-based gene therapy setting requires in vivo characterization. Toward this end, we introduced these constructs into CD34(+) hematopoietic progenitor cells by retrovirus-mediated gene transduction. Ribozyme- and aptamer-transduced CD34(+) cells differentiated normally into multiple lineages of erythroid and myeloid progenies in a colony-forming unit assay. Macrophages that differentiated from the transduced CD34(+) cells expressed anti-tat-rev and -env ribozymes and Rev aptamers and displayed their normal characteristic surface markers CD14, CD4, and CCR5. Using the SCID-hu mouse in vivo human thymopoiesis model, we demonstrated that ribozyme- and aptamer-transduced CD34(+) cells retained their normal capacity to reconstitute human fetal thymus and liver tissue (thy/liv) grafts. Reconstitution by ribozyme- and aptamer-transduced CD34(+) cells reached levels of up to 87% based on HLA surface marker staining. Differentiated thymocytes derived from reconstituted grafts expressed anti-tat-rev and -env ribozymes and Rev aptamers and showed significant resistance to HIV-1 infection upon challenge. Analysis of reconstituted thymocytes by hybridization revealed an average of 0.4 to 2 copies of vector sequences per cell. Southern analysis of proviral integration junctions in progeny thymocytes demonstrated that the human thy/liv grafts were reconstituted by a few primitive hematopoietic stem cells. These results highlight the utility of RNA-based anti-HIV-1 gene therapeutic approaches and their preclinical testing in a surrogate animal model harboring human tissue.
Collapse
MESH Headings
- Animals
- Antigens, CD34/metabolism
- Base Sequence
- Cell Differentiation
- Cell Line
- Cell Lineage
- Cytokines/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Viral
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- Genetic Therapy/methods
- HIV Infections/genetics
- HIV Infections/therapy
- HIV-1/genetics
- HIV-1/physiology
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/virology
- Humans
- Liver Transplantation
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, SCID
- Mitogens/pharmacology
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Catalytic/therapeutic use
- Receptors, CXCR4/metabolism
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Thymus Gland/virology
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Jirong Bai
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
32
|
Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 2002; 97:159-72. [PMID: 12050007 DOI: 10.1016/s0301-4622(02)00057-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cationic polymers, such as polybrene and protamine sulfate, are typically used to increase the efficiency of retrovirus-mediated gene transfer, however, the mechanism of their enhancement of transduction has remained unclear. As retrovirus transduction is fundamentally limited by the slow diffusion of virus to the target cell surface, we investigated the ability of polybrene to modulate this initial transport step. We compared the ability of both envelope (gp70) and capsid (p30) protein based assays to quantitate virus adsorption and found that p30 based assays were more reliable due to their ability to distinguish virus binding from free gp70 binding. Using the p30 based assay, we established that polybrene concentrations, which yielded 10-fold increases in transduction also, yielded a significant increase in virus adsorption rates on murine fibroblasts. Surprisingly, this enhancement, and adsorption in general, were receptor and envelope independent, as adsorption occurred equivalently on receptor positive and negative Chinese hamster ovary cells, as well as with envelope positive and negative virus particles. These findings suggest that the currently accepted physical model for early steps in retrovirus transduction may need to be reformulated to accommodate an initial adsorption step whose driving force does not include the retrovirus concentration, and the reclassification of currently designated 'receptor' molecules as fusion triggers. The implication of these findings with respect to the development of targeted retrovirus-mediated gene therapy protocols is discussed.
Collapse
Affiliation(s)
- Howard E Davis
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, MA 02114, USA
| | | | | |
Collapse
|
33
|
Affiliation(s)
- A Larochelle
- Internal Medicine Program, Siebens 6, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
34
|
Karavanas G, Marin M, Bachrach E, Papavassiliou AG, Piechaczyk M. The insertion of an anti-MHC I ScFv into the N-terminus of an ecotropic MLV glycoprotein does not alter its fusiogenic potential on murine cells. Virus Res 2002; 83:57-69. [PMID: 11864741 DOI: 10.1016/s0168-1702(01)00419-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is known that targeted infection requires the modification of the viral envelope, in order to render it capable of recognizing and specifically binding to a marker protein of the target cell. We have previously described such a recombinant envelope, which is able to extend the tropism of an ecotropic murine leukemia viruses (MLV) envelope to MHC I-expressing human cells. Although, this envelope was very efficient in binding human cells, it yielded very low infection titers. Our attempts to improve these yields by the additional cloning of a variety of spacers in the proximity of the single-chain variable fragment (ScFv) moiety did not significantly influenced human titers, although some alterations on murine titers were observed. To examine whether these low yields represent a decreased fusion capacity of the recombinant envelopes, we performed an assay which allowed the direct comparison between the fusiogenicity of the wild-type (w/t) and the chimeric envelopes. No fusiogenicity of the chimeric envelopes was observed when chimera-expressing cells were co-cultured with human cells. The inability of the chimeras to induce fusion after binding of the ScFv moiety to its ligand may explain, in part, the low infection titers on human cells. However, the several-fold differences observed between the titers of the w/t envelope and the various chimeras on murine cells were not reflected on their fusiogenic potentials, which were all in the same order of magnitude. Our results demonstrate that the binding of the ScFv moiety to its ligand induces no fusion, albeit its insertion into the envelope does not alter the intrinsic fusiogenic ability of the latter. Induction of fusion results from the binding of the envelope to the ecotropic receptor, without being directly proportional to its binding affinity. Chimeras with different infection titers on murine cells yielded similar syncytia counts after their binding to the ecotropic receptor.
Collapse
Affiliation(s)
- Georgios Karavanas
- Institute of Molecular Genetics, UMR 5535 IFR 24, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
35
|
Noël D, Dazard JE, Pelegrin M, Jacquet C, Piechaczyk M. Skin as a potential organ for ectopic monoclonal antibody production. J Invest Dermatol 2002; 118:288-94. [PMID: 11841546 DOI: 10.1046/j.0022-202x.2001.01625.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The therapeutic potential of monoclonal antibodies for treating a variety of severe or life-threatening diseases is high. Although intravenous infusion appears the simplest and most obvious mode of administration, it is not applicable to many long-term treatments. It might be advantageously replaced by gene/cell therapies, however, rendering treatments cost-effective and eliminating the short- and long-term side-effects associated with injection of massive doses of antibodies. We have tested whether skin can potentially be used as an organ for production and systemic delivery of ectopic antibodies. Normal human primary keratinocytes were shown to be capable of synthesis and secretion of a model monoclonal antibody directed against human thyroglobulin upon retroviral gene transduction in vitro. Neo- epidermis reconstructed in vitro, either in cell culture inserts or on dermal substrates, from such modified keratinocytes also produced the monoclonal antibody. Interestingly, the latter could cross the epidermis basal layer and be released in culture fluids. Finally, grafting of epidermis reconstituted in vitro on dermal substrates to SCID mice permitted sustained monoclonal antibody delivery into the bloodstream to be achieved. Our data thus show that genetically engineered keratinocytes can potentially be used for genetic antibody-based immunotherapies. They also indicate that proteins as big as 150 kDa, after release by engineered keratinocytes into skin intercellular spaces, can migrate to the general circulation, which is potentially important for a number of other gene-based therapies.
Collapse
Affiliation(s)
- Danièle Noël
- Institut de Génétique Moléculaire de Montpellier, UMR5535/IGR 24, Montpellier, France
| | | | | | | | | |
Collapse
|
36
|
Morizono K, Bristol G, Xie YM, Kung SK, Chen IS. Antibody-directed targeting of retroviral vectors via cell surface antigens. J Virol 2001; 75:8016-20. [PMID: 11483746 PMCID: PMC115045 DOI: 10.1128/jvi.75.17.8016-8020.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted stable transduction of specific cells is a highly desirable goal for gene therapy applications. We report an efficient and broadly applicable approach for targeting retroviral vectors to specific cells. We find that the envelope of the alphavirus Sindbis virus can pseudotype human immunodeficiency virus type 1- and murine leukemia virus-based retroviral vectors. When modified to contain the Fc-binding domain of protein A, this envelope gives a significant enhancement in specificity in combination with antibodies specific for HLA and CD4 relative to that without antibody. Unlike previous targeting strategies for retroviral transduction, the virus titers are relatively high and stable and can be further increased by ultracentrifugation. This study provides proof of principle for a targeting strategy that would be generally useful for many gene therapy applications.
Collapse
Affiliation(s)
- K Morizono
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
37
|
Pizzato M, Blair ED, Fling M, Kopf J, Tomassetti A, Weiss RA, Takeuchi Y. Evidence for nonspecific adsorption of targeted retrovirus vector particles to cells. Gene Ther 2001; 8:1088-96. [PMID: 11526456 DOI: 10.1038/sj.gt.3301494] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 05/01/2001] [Indexed: 11/09/2022]
Abstract
The ability to specifically target a cell-type is important for the development of vectors for in vivo gene therapy. In order to produce retrovirus vectors targeting ovarian cancer cells, which specifically overexpress alpha folate receptor (alphaFR), a single chain antibody was fused as an N-terminal extension of the ecotropic and amphotropic murine leukemia virus (MLV) envelope glycoproteins. Vector particles bearing the modified glycoproteins were produced and analysed. Although conventional FACS studies indicated that viral particles bearing the modified Env could bind to ovarian cancer cells, targeted infection was not achieved. The initial step of virus-cell interaction was further studied using an immunofluorescence technique, which allows visualisation of single retrovirus particles. Vectors bearing chimeric or wild-type glycoproteins bound equally well to cells with or without the targeted receptor, although soluble chimeric glycoproteins bound specifically to FBP. Our results indicate that the incorporation of specific ligands to the virus envelope does not necessarily result in significant enhancement of vector particle binding. A similar interaction was also observed using Env-defective virus particles, suggesting that cellular factors incorporated into the lipid envelope play a dominant role in promoting initial adsorption of virus particles to cells. Significant implications arise from these observations on the interpretation of previous reports on 'targeted' vectors, and for the development of vectors for in vivo gene therapy protocols.
Collapse
Affiliation(s)
- M Pizzato
- Wohl Virion Centre, Windeyer Institute of Medical Sciences, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Sakai N, Miyake K, Suzuki N, Shimada T. Selective transduction of HIV-1-infected cells by the combination of HIV and MMLV vectors. Int J Hematol 2001; 73:476-482. [PMID: 11503962 DOI: 10.1007/bf02994010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus 1 (HIV-1)-infected cells are important targets of gene therapy for acquired immune deficiency syndrome. We have developed a novel strategy for targeted gene transfer into HIV-1-infected cells based on 2-step gene transfer. The first step involves the stable introduction of the HIV vector containing the ecotropic Moloney murine leukemia virus (MMLV) receptor gene (EcoRec) into human CD4+ T cells as a molecular switch. Because the HIV-long terminal repeat (HIV-LTR) is Tat inducible, it is expected that EcoRec is expressed only after HIV-1 infection. Northern blot analysis and a retrovirus binding assay confirmed that the HIV-LTR of the integrated vector was silent in transduced cells but strongly transactivated in HIV-1 infection. High levels of EcoRec expression were observed only in HIV-1-infected cells. These cells became highly susceptible to ecotropic MMLV infection and, therefore, in the second step, HIV-1-infected cells were selectively transduced with ecotropic MMLV vectors. More than 70% of HIV-1-infected cells were transduced by this strategy. These findings indicate that this 2-step method can be used for selective and stable gene transfer into HIV-1-infected cells.
Collapse
Affiliation(s)
- Noriyasu Sakai
- Department of Biochemistry and Molecular Biology, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
- Department of Dermatology;Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
- Division of Gene Therapy Research, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Noriko Suzuki
- Department of Biochemistry and Molecular Biology, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
- Division of Gene Therapy Research, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan.
- Division of Gene Therapy Research, Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan.
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan.
| |
Collapse
|
39
|
Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001; 38:177-92. [PMID: 11369253 DOI: 10.1016/s1040-8428(01)00103-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cancer gene therapy represents one of the most rapidly evolving areas in pre-clinical and clinical cancer research. Application of gene transfer techniques in clinical trials has made increasingly obvious that several issues will need to be addressed prior to meaningful incorporation of gene therapy in the care of cancer patients. Two of the most important problems to overcome are lack of selectivity of the existing vectors and low efficiency of gene transfer. This review focuses on use of targeting and replication competent vectors in order to overcome these obstacles. Targeted gene therapy of malignancies can be achieved through vector targeting or transcriptional targeting and can improve the therapeutic index of gene transfer by preventing damage of normal tissues, an important requirement if systemic gene delivery is contemplated. Replication competent viral vectors can improve the efficiency of gene transfer. Provisionally replicating viruses can also improve the therapeutic index by targeting toxicity to tumor cells. A variety of provisionally replicating viruses, such as the attenuated adenovirus ONYX-015, the adenovirus CN706 that selectively replicates in prostate cancer cells, the double mutant herpes simplex virus G207, the human reovirus, and the Newcastle disease virus are currently in clinical trials. Early clinical results and limitations in the application of these vectors are discussed.
Collapse
Affiliation(s)
- E Galanis
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
40
|
Affiliation(s)
| | - Warren Pear
- University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
41
|
Zavorotinskaya T, Albritton LM. Two point mutations increase targeted transduction and stabilize vector association of a modified retroviral envelope protein. Mol Ther 2001; 3:323-8. [PMID: 11273774 DOI: 10.1006/mthe.2001.0262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current strategy of targeting retroviral vector transduction by inserting a peptide ligand into the envelope protein has met with several obstacles. These modified proteins redirected vector binding to a new cognate receptor on a specific cell type but gave little or no gene transfer because they did not fuse the vector and target cell membranes. They dissociated readily from vectors and often required coassembly of wild-type envelope protein. Here we report a novel strategy to overcome the fusion and stability defects of modified retroviral envelope proteins. We inserted a prototypic ligand, the receptor binding domain of amphotropic murine leukemia virus, into an ecotropic murine leukemia virus envelope protein mutant containing glutamine 227-to-arginine plus aspartate 243-to-tyrosine substitutions. This modified protein increased transduction redirected to human cells expressing the amphotropic receptor to a level within 10-fold that of wild-type amphotropic virus, an increase of as great as 2000-fold over transduction by modified protein lacking the mutations. In addition to suppressing the fusion defect, these mutations unexpectedly stabilized the association of the modified protein with vector particles. Insertion of clinically relevant ligands into this envelope mutant should improve the efficiency and reliability of retroviral transduction of specific cell types for gene therapy applications.
Collapse
Affiliation(s)
- T Zavorotinskaya
- Department of Microbiology & Immunology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
42
|
Lin AH, Kasahara N, Wu W, Stripecke R, Empig CL, Anderson WF, Cannon PM. Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein. Hum Gene Ther 2001; 12:323-32. [PMID: 11242525 DOI: 10.1089/10430340150503957] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The entry of retroviral vectors into cells requires two events: binding to a cell surface receptor and the subsequent fusion of viral and cellular membranes. The host range of a vector is therefore determined largely by the receptor specificity of the fusion protein contained in the outer viral envelope. Previous attempts to generate targeted retroviral vectors have included the addition of targeting ligands to the murine leukemia virus envelope protein (MuLV Env). Although such proteins frequently display modified cell-binding characteristics, the interaction with the targeted receptors fails to trigger virus-cell fusion. Here, we report the use of a binding-defective but fusion-competent hemagglutinin (HA) protein to complement the fusion defect in a chimeric MuLV Env targeted to the Flt-3 receptor. Retroviral vectors containing both proteins showed enhanced transduction of cells expressing Flt-3, which was abrogated by preincubating the target cells with soluble Flt-3 ligand. Furthermore, the fusion function of HA was absolutely required. These data demonstrate that it is possible to separate the binding and fusion events of retroviral entry, using two separate proteins, and suggest that varying the binding protein component in this scheme may allow a general strategy for targeting retroviral vectors.
Collapse
Affiliation(s)
- A H Lin
- Gene Therapy Laboratories, Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Snitkovsky S, Niederman TM, Carter BS, Mulligan RC, Young JA. A TVA-single-chain antibody fusion protein mediates specific targeting of a subgroup A avian leukosis virus vector to cells expressing a tumor-specific form of epidermal growth factor receptor. J Virol 2000; 74:9540-5. [PMID: 11000224 PMCID: PMC112384 DOI: 10.1128/jvi.74.20.9540-9545.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously described an approach that employs retroviral receptor-ligand bridge proteins to target retroviral vectors to specific cell types. To determine whether targeted retroviral entry can also be achieved using a retroviral receptor-single-chain antibody bridge protein, the TVA-MR1 fusion protein was generated. TVA-MR1 is comprised of the extracellular domain of the TVA receptor for subgroup A avian leukosis viruses (ALV-A), fused to the MR1 single-chain antibody that binds specifically to EGFRvIII, a tumor-specific form of the epidermal growth factor receptor. We show that TVA-MR1 binds specifically to a murine version of EGFRvIII and promotes ALV-A entry selectively into cells that express this cell surface marker. These studies demonstrate that it is possible to target retroviral vectors to specific cell types through the use of a retroviral receptor-single-chain antibody fusion protein.
Collapse
Affiliation(s)
- S Snitkovsky
- Committee on Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Bachrach E, Marin M, Pelegrin M, Karavanas G, Piechaczyk M. Efficient cell infection by Moloney murine leukemia virus-derived particles requires minimal amounts of envelope glycoprotein. J Virol 2000; 74:8480-6. [PMID: 10954548 PMCID: PMC116359 DOI: 10.1128/jvi.74.18.8480-8486.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrovirus entry into cells is mediated by specific interactions between the retrovirally encoded Env envelope glycoprotein and a host cell surface receptor. Though a number of peptide motifs responsible for the structure as well as for the binding and fusion activities of Env have been identified, only a few quantitative data concerning the infection process are available. Using an inducible expression system, we have expressed various amounts of ecotropic and amphotropic Env at the surfaces of Moloney murine leukemia virus-derived vectors and assayed for the infectivity of viral particles. Contrary to the current view that numerous noncooperative Env-viral receptor interactions are required for cell infection, we report here that very small amounts of Env are sufficient for optimal infection. However, increasing Env density clearly accelerates the rate at which infectious attachment to cells occurs. Moreover, our data also show that a surprisingly small number of Env molecules are sufficient to drive infection, albeit at a reduced efficiency, and that, under conditions of low expression, Env molecules act cooperatively. These observations have important consequences for our understanding of natural retroviral infection as well as for the design of cell-targeted infection techniques involving retroviral vectors.
Collapse
Affiliation(s)
- E Bachrach
- Institut de Génétique Moléculaire, UMR 5535/IFR24, CNRS, BP 5051, 34293 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
The efficient delivery of therapeutic genes and appropriate gene expression are the crucial issues for clinically relevant gene therapy. Viruses are naturally evolved vehicles which efficiently transfer their genes into host cells. This ability made them desirable for engineering virus vector systems for the delivery of therapeutic genes. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Among these vector systems, retrovirus vectors represent the most prominent delivery system, since these vectors have high gene transfer efficiency and mediate high expression of therapeutic genes. Members of the DNA virus family such as adenovirus-, adeno-associated virus or herpesvirus have also become attractive for efficient gene delivery as reflected by the fast growing number of clinical trials using these vectors. The first clinical trials were designed to test the feasibility and safety of viral vectors. Numerous viral vector systems have been developed for ex vivo and in vivo applications. More recently, increasing efforts have been made to improve infectivity, viral targeting, cell type specific expression and the duration of expression. These features are essential for higher efficacy and safety of RNA- and DNA-virus vectors. From the beginning of development and utilisation of viral vectors it was apparent that they harbour risks such as toxicities, immunoresponses towards viral antigens or potential viral recombination, which limit their clinical use. However, many achievements have been made in vector safety, the retargeting of virus vectors and improving the expression properties by refining vector design and virus production. This review addresses important issues of the current status of viral vector design and discusses their key features as delivery systems in gene therapy of human inherited and acquired diseases at the level of laboratory developments and of clinical applications.
Collapse
Affiliation(s)
- W Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
46
|
Suzuki S, Shimada T. A retroviral vector capable of targeted gene transfer into cells expressing HIV envelope glycoprotein. Biochem Biophys Res Commun 2000; 271:672-6. [PMID: 10814520 DOI: 10.1006/bbrc.2000.2690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expression vector encoding a chimeric envelope protein composed of CD4 and ecotropic retroviral envelope glycoprotein was constructed with the aim of accomplishing targeted gene transfer into HIV-1-infected cells. The chimeric protein was efficiently expressed and transported to the surfaces of various cell types and supported HIV-1 entry into human cells. A packaging cell line producing retroviral vectors carrying chimeric envelope proteins was then established. The vector particles produced were shown to be capable of specific gene transfer into human cells expressing HIV envelope glycoprotein. Blocking experiments confirmed that the vector particles entered the cells via an interaction between the chimeric and HIV envelope proteins. This targeting vector may thus be a useful tool with which to develop effective gene therapies against HIV infection.
Collapse
Affiliation(s)
- S Suzuki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, 113-8602, Japan
| | | |
Collapse
|
47
|
|
48
|
Abstract
Retroviral vectors have become a standard tool for gene transfer technology. Compared with other gene transfer systems, retroviral vectors have several advantages, including their ability to transduce a variety of cell types, to integrate efficiently into the genomic DNA of the recipient cells and to express the transduced gene at high levels. The relatively well understood biology of retroviruses has made possible the development of packaging cell lines which provide in trans all the viral proteins required for viral particle formation. The design of different types of packaging cells has evolved to reduce the possibility of helper virus production. The host range of retroviruses has been expanded by pseudotyping the vectors with heterologous viral glycoproteins and receptor-specific ligands. The development of lentivirus vectors has allowed efficient gene transfer to quiescent cells. This review describes different strategies adopted for developing vectors to be used in gene therapy applications.
Collapse
Affiliation(s)
- G Palù
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Italy
| | | | | | | |
Collapse
|
49
|
Strehlow D, Jodo S, Ju ST. Retroviral membrane display of apoptotic effector molecules. Proc Natl Acad Sci U S A 2000; 97:4209-14. [PMID: 10737766 PMCID: PMC18199 DOI: 10.1073/pnas.070049197] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retroviruses have been widely used in gene transmission studies. In this paper, we show that nonviral apoptotic proteins can be displayed on viral membrane surfaces and that the displayed proteins can execute their normal effector functions. We introduced the genes encoding the apoptosis effector proteins, human CD95 ligand (hFasL) or human tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL), into a cell line that packages Moloney murine leukemia virus vectors. Retrovirus preparations from these lines killed target cells efficiently, and target killing was prevented by Fas-Ig fusion protein or soluble TRAIL receptor (sDR5), respectively. We show that the virus preparation exhibiting Fas-specific cytotoxicity has the same density as a retrovirus, contains full-length FasL protein, and can be depleted of infectivity by immunoadsorption with anti-FasL antibody. This novel property of retroviruses-the display of functional effector proteins-may allow the custom design of reagents whose normal function requires their being embedded in a membrane.
Collapse
Affiliation(s)
- D Strehlow
- The Arthritis Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
50
|
Lorimer IA, Lavictoire SJ. Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods 2000; 237:147-57. [PMID: 10725459 DOI: 10.1016/s0022-1759(99)00219-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated targeting of retroviral vectors to a mutant EGF receptor (EGFRvIII) that is expressed in cancers of the brain, breast, lung and ovary, but is not found in any normal tissues. An expression plasmid was made in which a single chain Fv antibody specific for EGFRvIII was inserted at a novel position within a disulphide-bonded surface loop near the native receptor binding site of the Moloney leukemia virus ecotropic envelope glycoprotein. This fusion protein was expressed and incorporated into retroviral particles as efficiently as normal envelope glycoprotein. Retroviral vectors made with the fusion protein were able to bind peptide antigen and EGFRvIII expressed on the surface of human glioblastoma cells. The retroviral vectors had normal levels of infectivity on mouse cells, showing that the envelope glycoprotein tolerated a large insertion at this site, but did not show significant infectivity to human cells expressing EGFRvIII. Thus we were able to redirect retrovirus binding to this tumour-specific target without perturbing the normal function of the ecotropic envelope glycoprotein, but this was not sufficient to mediate infectivity via this receptor.
Collapse
Affiliation(s)
- I A Lorimer
- Ottawa Regional Cancer Centre, Cancer Research Group, 501 Smyth Road, Ottawa, Ontario, Canada, K1H 8L6.
| | | |
Collapse
|