1
|
Pratumchai I, Zak J, Huang Z, Min B, Oldstone MBA, Teijaro JR. B cell-derived IL-27 promotes control of persistent LCMV infection. Proc Natl Acad Sci U S A 2022; 119:e2116741119. [PMID: 35022243 PMCID: PMC8784116 DOI: 10.1073/pnas.2116741119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified a critical role for B cell-produced cytokines in regulating both humoral and cellular immunity. Here, we show that B cells are an essential source of interleukin-27 (IL-27) during persistent lymphocytic choriomeningitis virus (LCMV) clone 13 (Cl-13) infection. By using conditional knockout mouse models with specific IL-27p28 deletion in B cells, we observed that B cell-derived IL-27 promotes survival of virus-specific CD4 T cells and supports functions of T follicular helper (Tfh) cells. Mechanistically, B cell-derived IL-27 promotes CD4 T cell function, antibody class switch, and the ability to control persistent LCMV infection. Deletion of IL-27ra in T cells demonstrated that T cell-intrinsic IL-27R signaling is essential for viral control, optimal CD4 T cell responses, and antibody class switch during persistent LCMV infection. Collectively, our findings identify a cellular mechanism whereby B cell-derived IL-27 drives antiviral immunity and antibody responses through IL-27 signaling on T cells to promote control of LCMV Cl-13 infection.
Collapse
Affiliation(s)
- Isaraphorn Pratumchai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Booki Min
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael B A Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037;
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
2
|
Kenney LL, Carter EP, Gil A, Selin LK. T cells in the brain enhance neonatal mortality during peripheral LCMV infection. PLoS Pathog 2021; 17:e1009066. [PMID: 33400715 PMCID: PMC7785120 DOI: 10.1371/journal.ppat.1009066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022] Open
Abstract
In adult mice the severity of disease from viral infections is determined by the balance between the efficiency of the immune response and the magnitude of viral load. Here, the impact of this dynamic is examined in neonates. Newborns are highly susceptible to infections due to poor innate responses, lower numbers of T cells and Th2-prone immune responses. Eighty-percent of 7-day old mice, immunologically equivalent to human neonates, succumbed to extremely low doses (5 PFU) of the essentially non-lethal lymphocytic choriomeningitis virus (LCMV-Armstrong) given intraperitoneally. This increased lethality was determined to be dependent upon poor early viral control, as well as, T cells and perforin as assessed in knockout mice. By day 3, these neonatal mice had 400-fold higher viral loads as compared to adults receiving a 10,000-fold (5X104 PFU) higher dose of LCMV. The high viral load in combination with the subsequent immunological defect of partial CD8 T cell clonal exhaustion in the periphery led to viral entry and replication in the brain. Within the brain, CD8 T cells were protected from exhaustion, and thus were able to mediate lethal immunopathology. To further delineate the role of early viral control, neonatal mice were infected with Pichinde virus, a less virulent arenavirus, or LCMV was given to pups of LCMV-immune mothers. In both cases, peak viral load was at least 29-fold lower, leading to functional CD8 T cell responses and 100% survival.
Collapse
Affiliation(s)
- Laurie L. Kenney
- University of Massachusetts Medical School, Department of Pathology, Worcester, Massachusetts, United States of America
| | - Erik P. Carter
- University of Massachusetts Medical School, Department of Pathology, Worcester, Massachusetts, United States of America
| | - Anna Gil
- University of Massachusetts Medical School, Department of Pathology, Worcester, Massachusetts, United States of America
| | - Liisa K. Selin
- University of Massachusetts Medical School, Department of Pathology, Worcester, Massachusetts, United States of America
| |
Collapse
|
3
|
Klein H, Rabe GK, Karacay B, Bonthius DJ. T-Cells Underlie Some but Not All of the Cerebellar Pathology in a Neonatal Rat Model of Congenital Lymphocytic Choriomeningitis Virus Infection. J Neuropathol Exp Neurol 2016; 75:1031-1047. [PMID: 27667772 DOI: 10.1093/jnen/nlw079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) infection during pregnancy injures the human fetal brain. Neonatal rats inoculated with LCMV are an excellent model of congenital LCMV infection because they develop cerebellar injuries similar to those in humans. To evaluate the role of T-lymphocytes in LCMV-induced cerebellar pathology, congenitally athymic rats, deficient in T-lymphocytes were compared with euthymic rats. Peak viral titers and cellular targets of infection were similar, but viral clearance from astrocytes was impaired in the athymic rats. Cytokines and chemokines rose to higher levels and for a greater duration in the euthymic rats than in their athymic counterparts. The euthymic rats developed an intense lymphocytic infiltration, accompanied by destructive lesions of the cerebellum and a neuronal migration defect because of T-cell-mediated alteration of Bergmann glia. These pathologic changes were absent in the athymic rats but were restored by adoptive transfer of lymphocytes. Athymic rats were not free of pathologic effects, however, as the virus induced cerebellar hypoplasia. Thus, T-lymphocytes play key roles in LCMV clearance, cytokine/chemokine responses, and pathogenesis of destructive lesions and neuronal migration disturbances but not all pathology is T-lymphocyte-dependent. Cerebellar hypoplasia from LCMV occurs even in the absence of T-lymphocytes and is likely due to the viral infection itself.
Collapse
Affiliation(s)
- Hannah Klein
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Glenda K Rabe
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Bahri Karacay
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Daniel J Bonthius
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| |
Collapse
|
4
|
Animal models, prophylaxis, and therapeutics for arenavirus infections. Viruses 2012; 4:1802-29. [PMID: 23170184 PMCID: PMC3499831 DOI: 10.3390/v4091802] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022] Open
Abstract
Arenaviruses are enveloped, bipartite negative single-stranded RNA viruses that can cause a wide spectrum of disease in humans and experimental animals including hemorrhagic fever. The majority of these viruses are rodent-borne and the arenavirus family can be divided into two groups: the Lassa-Lymphocytic choriomeningitis serocomplex and the Tacaribe serocomplex. Arenavirus-induced disease may include characteristic symptoms ranging from fever, malaise, body aches, petechiae, dehydration, hemorrhage, organ failure, shock, and in severe cases death. Currently, there are few prophylactic and therapeutic treatments available for arenavirus-induced symptoms. Supportive care and ribavirin remain the predominant strategies for treating most of the arenavirus-induced diseases. Therefore, efficacy testing of novel therapeutic and prophylactic strategies in relevant animal models is necessary. Because of the potential for person-to-person spread, the ability to cause lethal or debilitating disease in humans, limited treatment options, and potential as a bio-weapon, the development of prophylactics and therapeutics is essential. This article reviews the current arenavirus animal models and prophylactic and therapeutic strategies under development to treat arenavirus infection.
Collapse
|
5
|
Tagliapietra V, Rosà R, Hauffe HC, Laakkonen J, Voutilainen L, Vapalahti O, Vaheri A, Henttonen H, Rizzoli A. Spatial and temporal dynamics of lymphocytic choriomeningitis virus in wild rodents, northern Italy. Emerg Infect Dis 2009; 15:1019-25. [PMID: 19624914 PMCID: PMC2744257 DOI: 10.3201/eid1507.081524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prevalence of virus infection was higher in areas of greater rodent density. We determined the prevalence of infection with lymphocytic choriomeningitis virus (LCMV) among small mammals in northern Italy and analyzed long-term dynamics of LCMV in a rodent population in the province of Trento. LCMV is circulating among the most widespread and common wild rodent species in this area (Apodemus flavicollis, Myodes glareolus, and Microtus arvalis); overall prevalence is 6.8%. During 2000–2006, intensive monitoring of LCMV in a population of yellow-necked mice (A. flavicollis) showed a positive correlation between prevalence of infection and rodent density. At the individual level, weight and sex appeared to correlate with antibody prevalence, which suggests that horizontal transmission of LCMV occurs principally among heavier, older males and occurs during fighting. Isolation and genetic characterization of this virus will be the crucial next steps for a better understanding of its ecology.
Collapse
Affiliation(s)
- Valentina Tagliapietra
- Edmund Mach Foundation-Istituto Agrario di San Michele all'Adige, San Michele all'Adige, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tagliapietra V, Rosà R, Hauffe HC, Laakkonen J, Voutilainen L, Vapalahti O, Vaheri A, Henttonen H, Rizzoli A. Spatial and Temporal Dynamics of Lymphocytic Choriomeningitis Virus in Wild Rodents, Northern Italy. Emerg Infect Dis 2009. [DOI: 10.3201/eid1507.01524] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Botten JW, Kotturi MF. Adaptive immunity to Lymphocytic choriomeningitis virus: new insights into antigenic determinants. Future Virol 2007. [DOI: 10.2217/17460794.2.5.495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is one of the most studied infectious disease models in mice. Human infection with LCMV can result in severe disease, ranging from aseptic meningitis in immunocompetent individuals, hydrocephalus, chorioretinitis or microcephaly in fetal infection, or to a highly lethal outcome in immunosuppressed individuals. This review examines recent advances in our understanding of the adaptive immune response to LCMV and how the cell-mediated and humoral immune responses contribute to protective immunity. New insights into the antigenicity of the LCMV proteome and the complexity of the cell-mediated immune response are addressed. We also discuss state-of-the-art approaches for T-cell epitope discovery in murine and human backgrounds and their recent application to LCMV. New findings regarding CD4+ T-cell dysregulation during chronic LCMV infection, and potential avenues for the treatment of chronic viral infection through modulation of the programmed cell death-1 receptor and/or IL-10 signaling pathways, are also evaluated.
Collapse
Affiliation(s)
- Jason W Botten
- The Scripps Research Institute, Molecular & Integrative Neurosciences Department, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maya F Kotturi
- La Jolla Institute for Allergy & Immunology, Division of Vaccine Discovery, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Crotty S, McCausland MM, Aubert RD, Wherry EJ, Ahmed R. Hypogammaglobulinemia and exacerbated CD8 T-cell–mediated immunopathology in SAP-deficient mice with chronic LCMV infection mimics human XLP disease. Blood 2006; 108:3085-93. [PMID: 16788096 DOI: 10.1182/blood-2006-04-018929] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractThe human genetic disease X-linked lymphoproliferative disease (XLP), which is caused by mutations in SH2D1A/SAP that encode SLAM-associated protein (SAP), is characterized by an inability to control Epstein-Barr virus (EBV) and hypogammaglobulinemia. It is unclear which aspects of XLP disease are specific to herpesvirus infection and which reflect general immunologic functions performed by SAP. We examined SAP– mice during a chronic LCMV infection, specifically to address the following question: Which SAP deficiency immunologic problems are general, and which are EBV specific? Illness, weight loss, and prolonged viral replication were much more severe in SAP– mice. Aggressive immunopathology was observed. This inability to control chronic LCMV was associated with both CD8 T-cell and B-cell response defects. Importantly, we demonstrate that SAP– CD8 T cells are the primary cause of the immunopathology and clinical illness, because depletion of CD8 T cells blocked disease. This is the first direct demonstration of SAP– CD8 T-cell–mediated immunopathology, confirming 30 years of XLP clinical observations and indirect experimentation. In addition, germinal center formation was extremely defective in chronically infected SAP– animals, and hypogammaglobulinemia was observed. These findings in a chronic viral infection mouse model recapitulate key features of human XLP and clarify SAP's critical role regulating both cellular and humoral immunity.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
9
|
Botten J, Alexander J, Pasquetto V, Sidney J, Barrowman P, Ting J, Peters B, Southwood S, Stewart B, Rodriguez-Carreno MP, Mothe B, Whitton JL, Sette A, Buchmeier MJ. Identification of protective Lassa virus epitopes that are restricted by HLA-A2. J Virol 2006; 80:8351-61. [PMID: 16912286 PMCID: PMC1563871 DOI: 10.1128/jvi.00896-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/15/2006] [Indexed: 11/20/2022] Open
Abstract
Recovery from Lassa virus (LASV) infection usually precedes the appearance of neutralizing antibodies, indicating that cellular immunity plays a primary role in viral clearance. To date, the role of LASV-specific CD8(+) T cells has not been evaluated in humans. To facilitate such studies, we utilized a predictive algorithm to identify candidate HLA-A2 supertype epitopes from the LASV nucleoprotein and glycoprotein precursor (GPC) genes. We identified three peptides (GPC(42-50), GLVGLVTFL; GPC(60-68), SLYKGVYEL; and GPC(441-449), YLISIFLHL) that displayed high-affinity binding (< or =98 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LASV GPC in human HLA-A*0201-positive target cells. HLA-A*0201 mice immunized with either GPC(42-50) or GPC(60-68) were protected against challenge with a recombinant vaccinia virus that expressed LASV GPC. The epitopes identified in this study represent potential diagnostic reagents and candidates for inclusion in epitope-based vaccine constructs. Our approach is applicable to any pathogen with existing sequence data, does not require manipulation of the actual pathogen or access to immune human donors, and should therefore be generally applicable to category A through C agents and other emerging pathogens.
Collapse
Affiliation(s)
- Jason Botten
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Casadevall A, Pirofski LA. A Reappraisal of Humoral Immunity Based on Mechanisms of Antibody‐Mediated Protection Against Intracellular Pathogens. Adv Immunol 2006; 91:1-44. [PMID: 16938537 DOI: 10.1016/s0065-2776(06)91001-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sometime in the mid to late twentieth century the study of antibody-mediated immunity (AMI) entered the doldrums, as many immunologists believed that the function of AMI was well understood, and was no longer deserving of intensive investigation. However, beginning in the 1990s studies using monoclonal antibodies (mAbs) revealed new functions for antibodies, including direct antimicrobial effects and their ability to modify host inflammatory and cellular responses. Furthermore, the demonstration that mAbs to several intracellular bacterial and fungal pathogens were protective issued a serious challenge to the paradigm that host defense against such microbes was strictly governed by cell-mediated immunity (CMI). Hence, a new view of AMI is emerging. This view is based on the concept that a major function of antibody (Ab) is to amplify or subdue the inflammatory response to a microbe. In this regard, the "damage-response framework" of microbial pathogenesis provides a new conceptual viewpoint for understanding mechanisms of AMI. According to this view, the ability of an Ab to affect the outcome of a host-microbe interaction is a function of its capacity to modify the damage ensuing from such an interaction. In fact, it is increasingly apparent that the efficacy of an Ab cannot be defined either by immunoglobulin or epitope characteristics alone, but rather by a complex function of Ab variables, such as specificity, isotype, and amount, host variables, such as genetic background and immune status, and microbial variables, such as inoculum, mechanisms of avoiding host immune surveillance and pathogenic strategy. Consequently, far from being understood, recent findings in AMI imply a system with unfathomable complexity and the field is poised for a long overdue renaissance.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefoire Medical Center, Bronx, New York, USA
| | | |
Collapse
|
11
|
Gros L, Dreja H, Fiser AL, Plays M, Pelegrin M, Piechaczyk M. Induction of long-term protective antiviral endogenous immune response by short neutralizing monoclonal antibody treatment. J Virol 2005; 79:6272-80. [PMID: 15858011 PMCID: PMC1091728 DOI: 10.1128/jvi.79.10.6272-6280.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term immune control of viral replication still remains a major challenge in retroviral diseases. Several monoclonal antibodies (MAbs) have already shown antiviral activities in vivo, including in the clinic but their effects on the immune system of treated individuals are essentially unknown. Using the lethal neurodegeneration induced in mice upon infection of neonates by the FrCas(E) retrovirus as a model, we report here that transient treatment by a neutralizing MAb shortly after infection can, after an immediate antiviral effect, favor the development of a strong protective host immune response containing viral propagation long after the MAb has disappeared. In vitro virus neutralization- and complement-mediated cell lysis assays, as well as in vivo viral challenges and serum transfer experiments, indicate a clear and essential contribution of the humoral response to antiviral protection. Our observation may have important therapeutic consequences as it suggests that short antibody-based therapies early after infection should be considered, at least in the case of maternally infected infants, as adjunctive treatment strategies against human immunodeficiency virus, not only for a direct effect on the viral load but also for favoring the emergence of an endogenous antiviral immune response.
Collapse
Affiliation(s)
- Laurent Gros
- Mireia Pelegrin: Institut de Génétique Moléculaire de Montpellier, UMR 5535-IFR 122, CNRS 1919, Route de Mende 34293, Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Arturo Casadevall
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|
13
|
Recher M, Hunziker L, Ciurea A, Harris N, Lang KS. Public, private and non-specific antibodies induced by non-cytopathic viral infections. Curr Opin Microbiol 2004; 7:426-33. [PMID: 15358263 DOI: 10.1016/j.mib.2004.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lymphocytic choriomeningitis virus (LCMV) represents a useful experimental model of murine infection with a non-cytopathic virus, bearing resemblance to HIV and hepatitis C virus (HCV) infections in humans. Recent data from the LCMV model indicate that the humoral immune response that is induced by non-cytopathic viruses is far more complex than previously appreciated. LCMV-induced IgG production is largely polyclonal, with more than 90% of the antibody repertoire constituting non-relevant specificities. A delayed virus-neutralizing antibody response is induced, including specificities directed not only against the parental LCMV-strain present in the host but also cross-specifically against LCMV-variants isolated from other hosts. These findings provide novel insights to aid our understanding of clinically relevant observations that are recorded following human infection with HIV, HCV and dengue viruses.
Collapse
Affiliation(s)
- Mike Recher
- Institute for Experimental Immunology, University Hospital, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Recher M, Lang KS, Hunziker L, Freigang S, Eschli B, Harris NL, Navarini A, Senn BM, Fink K, Lötscher M, Hangartner L, Zellweger R, Hersberger M, Theocharides A, Hengartner H, Zinkernagel RM. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat Immunol 2004; 5:934-42. [PMID: 15300247 DOI: 10.1038/ni1102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/06/2004] [Indexed: 12/15/2022]
Abstract
The B cell response to lymphocytic choriomeningitis virus is characterized by a CD4(+) T cell-dependent polyclonal hypergammaglobulinemia and delayed formation of virus-specific neutralizing antibodies. Here we provide evidence that, paradoxically, because of polyclonal B cell activation, virus-specific T cell help impairs the induction of neutralizing antibody responses. Experimental reduction in CD4(+) T cell help in vivo resulted in potent neutralizing antibody responses without impairment of CD8(+) T cell activity. These unexpected consequences of polyclonal B cell activation may affect vaccine strategies and the treatment of clinically relevant chronic bacterial, parasitic and viral infections in which hypergammaglobulinemia is regularly found.
Collapse
Affiliation(s)
- Mike Recher
- Institute for Experimental Immunology, University Hospital Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Krieg C, Maier R, Meyerhans A. Gut-homing (alpha(4)beta(7)(+)) Th1 memory responses after inactivated poliovirus immunization in poliovirus orally pre-immunized donors. J Gen Virol 2004; 85:1571-1579. [PMID: 15166441 DOI: 10.1099/vir.0.79919-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mucosal infections are prevented by a specialized local immune system. Immune cells of this compartment can also be found in the blood and are characterized by the expression of mucosa-specific homing molecules. Here, the cellular immune responses after inactivated poliovirus immunization (IPV) in poliovirus orally pre-immunized donors were investigated. Subcutaneous IPV induced a transient increase in the proliferative response against poliovirus antigen and in the number of poliovirus-specific CD4(+) T cells in the blood of the vaccinees. These cells were characterized to be of the effector memory type (CD45RA(-)/CD45RO(+)/CCR7(-)/CD27(+)) and expressed the homing molecule alpha(4)beta(7), indicating their origin from the gut. Together these data show the recurrence of gut-derived poliovirus-specific cells upon IPV and evaluate the whole-blood assay as a powerful tool for monitoring the success of a vaccination.
Collapse
Affiliation(s)
- Carsten Krieg
- Institute of Medical Microbiology and Hygiene, Department of Virology, Building 47, University of the Saarland, Kirrberger Strasse, 66421 Homburg/Saar, Germany
| | - Reinhard Maier
- Institute of Medical Microbiology and Hygiene, Department of Virology, Building 47, University of the Saarland, Kirrberger Strasse, 66421 Homburg/Saar, Germany
| | - Andreas Meyerhans
- Institute of Medical Microbiology and Hygiene, Department of Virology, Building 47, University of the Saarland, Kirrberger Strasse, 66421 Homburg/Saar, Germany
| |
Collapse
|
16
|
Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 2004; 104:735-43. [PMID: 15069016 DOI: 10.1182/blood-2003-10-3413] [Citation(s) in RCA: 530] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder with familial and acquired forms. The familial form is associated with mutations in the perforin gene and both forms are associated with severe defects in lymphocyte cytotoxic function. We examined perforin-deficient mice as a model of HLH in order to gain insight into this poorly understood disorder. While these mice do not spontaneously develop HLH-like symptoms, we found that they manifest all of the features of HLH after infection with lymphocytic choriomeningitic virus (LCMV). Following LCMV infection, perforin-deficient mice develop fever, splenomegaly, pancytopenia, hypertriglyceridemia, hypofibrinogenemia, and elevation of multiple serum cytokine levels, and hemophagocytosis is evident in many tissues. Investigation into how this phenotype develops has revealed that CD8+ T cells, but not natural killer (NK) cells, are necessary for the development of this disorder. Cytokine neutralization studies have revealed that interferon gamma (IFNgamma) is uniquely essential as well. Finally, the excessive amount of IFNgamma seen in affected mice appears to be driven by increased antigen presentation to CD8+ T cells. These studies provide insight into the pathophysiology of HLH, and provide new targets for specific therapeutic intervention in this fatal disorder.
Collapse
Affiliation(s)
- Michael B Jordan
- Integrated Department of Immunology, University of Colorado Health Sciences Center, Denver, USA.
| | | | | | | |
Collapse
|
17
|
Slifka MK. Mechanisms of humoral immunity explored through studies of LCMV infection. Curr Top Microbiol Immunol 2002; 263:67-81. [PMID: 11987820 DOI: 10.1007/978-3-642-56055-2_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- M K Slifka
- OHSU Vaccine and Gene Therapy Institute, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
18
|
Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJM, Verbeek JS, Ossendorp F. Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2240-6. [PMID: 11859111 DOI: 10.4049/jimmunol.168.5.2240] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dendritic cells (DCs) require a maturation signal to acquire efficient CTL-priming capacity. In vitro FcgammaR-mediated internalization of Ag-Ab immune complexes (ICs) can induce maturation of DCs. In this study, we show that IC-induced DC maturation in vitro enables DCs to prime peptide-specific CD8+ CTLs in vivo, independently of CD4+ Th cells. Importantly, OVA/anti-OVA IC-treated DCs not only primed CD8+ CTLs to an exogenously loaded peptide nonrelated to OVA, but also efficiently primed CTLs against the dominant CTL epitope derived from the OVA Ag present in the ICs. Our studies show that ICs fulfill a dual role in priming of CD8+ CTL responses to exogenous Ags: enhancement of Ag uptake by DCs and activation of DCs, resulting in "license to kill." These findings indicate that the presence of specific Abs can crucially affect the induction of cytotoxic cellular responses.
Collapse
Affiliation(s)
- Danita H Schuurhuis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hunziker L, Klenerman P, Zinkernagel RM, Ehl S. Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by B cells or CD4+ T cells. Eur J Immunol 2002; 32:374-82. [PMID: 11813156 DOI: 10.1002/1521-4141(200202)32:2<374::aid-immu374>3.0.co;2-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid disappearance of antiviral CTL after transfusion into persistently infected individuals is a serious limitation of adoptive immunotherapy protocols. In the mouse model of persistent infection with lymphocytic choriomeningitis virus (LCMV) naive or immune virus-specific donor CD8+ T cells are exhausted after transfusion into carrier recipients with similar kinetics. Here we show that cotransfusion of immune CD4+ T cells prevents exhaustion of immune CD8+ T cells. Interestingly, cotransfer of primed B cells also prevented CD8+ T cell exhaustion in carriers even in the absence of T helper cells. This effect required the presence of immune B cells as repetitive treatment with hyperimmune serum led to the generation of antibody escape mutants. A combination of primed CD4+ T cells and primed B cells enhanced antiviral effects and prevented exhaustion also of naive CD8+ T cells. One key factor for prevention of CD8+ T cell exhaustion was the antiviral effect of the cotransfused cells thus reducing the time that CD8+ T cells are confronted with a high systemic viral load. These findings have implications for improving adoptive immunotherapy for persistent human viral infections.
Collapse
Affiliation(s)
- Lukas Hunziker
- Institute of Experimental Immunology, Department of Pathology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
20
|
Ou R, Zhou S, Huang L, Moskophidis D. Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 2001; 75:8407-23. [PMID: 11507186 PMCID: PMC115086 DOI: 10.1128/jvi.75.18.8407-8423.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2001] [Accepted: 06/11/2001] [Indexed: 01/12/2023] Open
Abstract
Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8(+) T cells. In this work we studied the down-regulation of the virus-specific CD8(+)-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-alpha/beta]), type II (IFN-gamma), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8(+)-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8(+) T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.
Collapse
Affiliation(s)
- R Ou
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
21
|
Ciurea A, Hunziker L, Klenerman P, Hengartner H, Zinkernagel RM. Impairment of CD4(+) T cell responses during chronic virus infection prevents neutralizing antibody responses against virus escape mutants. J Exp Med 2001; 193:297-305. [PMID: 11157050 PMCID: PMC2195917 DOI: 10.1084/jem.193.3.297] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2000] [Accepted: 12/25/2000] [Indexed: 01/12/2023] Open
Abstract
We have shown previously that neutralizing antibodies (nAbs) are important contributors to the long-term immune control of lymphocytic choriomeningitis virus infection, particularly if cytotoxic T cell responses are low or absent. Nevertheless, virus escape from the nAb response due to mutations within the surface glycoprotein gene may subsequently allow the virus to persist. Here we show that most of the antibody-escape viral mutants retain their immunogenicity. We present evidence that the failure of the infected host to mount effective humoral responses against emerging neutralization-escape mutants correlates with the rapid loss of CD4(+) T cell responsiveness during the establishment of viral persistence. Similar mechanisms may contribute to the persistence of some human pathogens such as hepatitis B and C viruses, and human immunodeficiency virus.
Collapse
Affiliation(s)
- A Ciurea
- Institute for Experimental Immunology, University Hospital, CH-8091 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Zinkernagel RM, LaMarre A, Ciurea A, Hunziker L, Ochsenbein AF, McCoy KD, Fehr T, Bachmann MF, Kalinke U, Hengartner H. Neutralizing antiviral antibody responses. Adv Immunol 2001; 79:1-53. [PMID: 11680006 PMCID: PMC7130890 DOI: 10.1016/s0065-2776(01)79001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neutralizing antibodies are evolutionarily important effectors of immunity against viruses. Their evaluation has revealed a number of basic insights into specificity, rules of reactivity (tolerance), and memory—namely, (1) Specificity of neutralizing antibodies is defined by their capacity to distinguish between virus serotypes; (2) B cell reactivity is determined by antigen structure, concentration, and time of availability in secondary lymphoid organs; and (3) B cell memory is provided by elevated protective antibody titers in serum that are depending on antigen stimulation. These perhaps slightly overstated rules are simple, correlate with in vivo evidence as well as clinical observations, and appear to largely demystify many speculations about antibodies and B cell physiology. The chapter also considers successful vaccines and compares them with those infectious diseases where efficient protective vaccines are lacking, it is striking to note that all successful vaccines induce high levels of neutralizing antibodies (nAbs) that are both necessary and sufficient to protect the host from disease. Successful vaccination against infectious diseases such as tuberculosis, leprosy, or HIV would require induction of additional long-lasting T cell responses to control infection.
Collapse
Affiliation(s)
- R M Zinkernagel
- Institute of Experimental Immunology, Department of Pathology, University Hospital, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Earl PL, Sugiura W, Montefiori DC, Broder CC, Lee SA, Wild C, Lifson J, Moss B. Immunogenicity and protective efficacy of oligomeric human immunodeficiency virus type 1 gp140. J Virol 2001; 75:645-53. [PMID: 11134278 PMCID: PMC113961 DOI: 10.1128/jvi.75.2.645-653.2001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biologically active form of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein is oligomeric. We previously described a soluble HIV-1 IIIB Env protein, gp140, with a stable oligomeric structure composed of uncleaved gp120 linked to the ectodomain of gp41 (P. L. Earl, C. C. Broder, D. Long, S. A. Lee, J. Peterson, S. Chakrabarti, R. W. Doms, and B. Moss, J. Virol. 68:3015-3026, 1994). Here we compared the antibody responses of rabbits to gp120 and gp140 that had been produced and purified in an identical manner. The gp140 antisera exhibited enhanced cross-reactivity with heterologous Env proteins as well as greater neutralization of HIV-1 compared to the gp120 antisera. To examine both immunogenicity and protective efficacy, we immunized rhesus macaques with oligomeric gp140. Strong neutralizing antibodies against a homologous virus and modest neutralization of heterologous laboratory-adapted isolates were elicited. No neutralization of primary isolates was observed. However, a substantial fraction of the neutralizing activity could not be blocked by a V3 loop peptide. After intravenous challenge with simian-HIV virus SHIV-HXB2, three of the four vaccinated macaques exhibited no evidence of virus replication.
Collapse
Affiliation(s)
- P L Earl
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Lassa fever has been estimated to cause 5,000 deaths annually in West Africa. Recently, war in the zone where Lassa fever is hyperendemic has severely impeded control and treatment. Vaccination is the most viable control measure. There is no correlation between antibody levels and outcome in human patients, and inactivated vaccines produce high titers of antibodies to all viral proteins but do not prevent virus replication and death in nonhuman primates. Accordingly, we vaccinated 44 macaques with vaccinia virus-expressed Lassa virus structural proteins separately and in combination, with the object of inducing a predominantly TH1-type immune response. Following Lassa virus challenge, all unvaccinated animals died (0% survival). Nine of 10 animals vaccinated with all proteins survived (90% survival). Although no animals that received full-length glycoprotein alone had a high titer of antibody, 17 of 19 survived challenge (88%). In contrast, all animals vaccinated with nucleoprotein developed high titers of antibody but 12 of 15 died (20% survival). All animals vaccinated with single glycoproteins, G1 or G2, died, but all those that received both single glycoproteins (G1 plus G2) at separate sites survived, showing that both glycoproteins are independently important in protection. Neither group had demonstrable antibody levels prior to challenge. We demonstrate that in primates, immune responses to epitopes on both glycoproteins are required to protect against lethal challenge with Lassa virus without having untoward side effects and that this protection is likely to be primarily cell mediated. We show that an effective, safe vaccine against Lassa virus can and should be made and that its evaluation for human populations is a matter of humanitarian priority.
Collapse
Affiliation(s)
- S P Fisher-Hoch
- Special Pathogens Branch, Division of Viral, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
25
|
Seiler P, Senn BM, Klenerman P, Kalinke U, Hengartner H, Zinkernagel RM. Additive effect of neutralizing antibody and antiviral drug treatment in preventing virus escape and persistence. J Virol 2000; 74:5896-901. [PMID: 10846070 PMCID: PMC112085 DOI: 10.1128/jvi.74.13.5896-5901.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poorly cytopathic or noncytopathic viruses can escape immune surveillance and establish a chronic infection. Here we exploited the strategy of combining antiviral drug treatment with the induction of a neutralizing antibody response to avoid the appearance of neutralization-resistant virus variants. Despite the fact that H25 immunoglobulin transgenic mice infected with lymphocytic choriomeningitis virus mounted an early neutralizing antibody response, the virus escaped from neutralization and persisted. After ribavirin treatment of H25 transgenic mice, the appearance of neutralization-resistant virus was prevented and virus was cleared. Thus, the combination of virus-neutralizing antibodies and chemotherapy efficiently controlled the infection, whereas each defense line alone did not. Similar additive effects may be unexpectedly efficient and beneficial in humans after infections with persistent viruses such as hepatitis C virus and hepatitis B virus and possibly human immunodeficiency virus.
Collapse
Affiliation(s)
- P Seiler
- Department of Pathology, Institute of Experimental Immunology, University of Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
26
|
Ciurea A, Klenerman P, Hunziker L, Horvath E, Senn BM, Ochsenbein AF, Hengartner H, Zinkernagel RM. Viral persistence in vivo through selection of neutralizing antibody-escape variants. Proc Natl Acad Sci U S A 2000; 97:2749-54. [PMID: 10688894 PMCID: PMC16001 DOI: 10.1073/pnas.040558797] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite initial virus control by CD8(+) cytotoxic T lymphocytes (CTLs), noncytopathic or variably cytopathic viruses (e.g., hepatitis B and C viruses, HIV) are able to establish persistent infections. The role of neutralizing antibodies (nAbs) in controlling disease progression is unclear. Therefore, the phenomenon of viral evasion from the nAb response and its implications for virus persistence remain controversial. Here we demonstrate nAb-mediated viral clearance in CTL-deficient mice infected with the prototypic noncytopathic lymphocytic choriomeningitis virus (strain WE). During prolonged CTL absence, neutralization-resistant virus mutants were selected in individual mice within 70-90 days. In naive animals infected with these virus variants only low nAb responses were induced, resulting in an increased tendency of virus to persist.
Collapse
Affiliation(s)
- A Ciurea
- Institute for Experimental Immunology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Reiss CS, Plakhov IV, Komatsu T. Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann N Y Acad Sci 1998; 855:751-61. [PMID: 9929681 DOI: 10.1111/j.1749-6632.1998.tb10655.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This communication describes our ongoing studies of the interaction of the mouse host and vesicular stomatitis virus (VSV). When VSV is applied to the nasal neuroepithelium, it initially replicates in olfactory receptor neurons, and is transmitted along the olfactory nerve to the central nervous system (CNS) within 12 hours. In the olfactory bulb, the virus replicates invasively through the layers of the olfactory bulb, reaching the olfactory ventricle by day 4-5 post infection, and the hindbrain by day 8 post infection. In mice, infection may result in a 50% mortality rate. The crucial host innate and specific immune responses responsible for restricting viral propagation and caudal spread of the virus will be discussed. The efficacy of interleukin-12 (IL-12) treatment for enhanced viral clearance and promotion of host recovery are described along with the implications for treatment of human encephalitis. The hosts' response to infection is also regulated by the sex of the host, and the age at infection. The role of specific mucosal humoral immunity and systemic cellular immunity in prevention of infection are described.
Collapse
Affiliation(s)
- C S Reiss
- Biology Department, New York University, New York 10003-6688, USA.
| | | | | |
Collapse
|
28
|
Keşmir C, De Boer RJ. How does cytopathicity affect the production of neutralizing antibody? Scand J Immunol 1998; 48:347-9. [PMID: 9790303 DOI: 10.1046/j.1365-3083.1998.00425.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytopathic viruses evoke an earlier neutralizing antibody (nAb) response than noncytopathic viruses do. This was previously explained by the elimination of infected B cells by the cytotoxic T cells (CTLs), which predominate during infections with noncytopathic viruses. Using a simple mathematical model we provide a much simpler explanation for this difference in the kinetics of neutralizing antibody production. The analysis of the model shows that the delay in nAb production during infections with noncytopathic viruses is a simple consequence of the cytopathic effect alone: noncytopathic viruses infect a larger fraction of nAb-producing B cells and as a result nAb response is delayed. Extending the model with CTLs, we find that a major effect of CTLs is to limit the antigenic stimulus of the nAb-producing B cells. Thus, by reducing the proliferation rate of nAb-producing B cells, CTLs further delay the production of neutralizing antibodies.
Collapse
Affiliation(s)
- C Keşmir
- Department of Biochemistry & Nutrition, Technical University of Denmark, Lyngby
| | | |
Collapse
|
29
|
Affiliation(s)
- D R Burton
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
30
|
Hassett DE, Zhang J, Whitton JL. Neonatal DNA immunization with a plasmid encoding an internal viral protein is effective in the presence of maternal antibodies and protects against subsequent viral challenge. J Virol 1997; 71:7881-8. [PMID: 9311877 PMCID: PMC192144 DOI: 10.1128/jvi.71.10.7881-7888.1997] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Conventional vaccines are remarkably effective in adults but are much less successful in the very young, who are less able to initiate a mature immune response and who may carry maternal antibodies which inactivate standard vaccines. We set out to determine whether DNA immunization might circumvent these problems. We have previously shown that intramuscular injection of plasmid DNA encoding the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) is capable of inducing immune responses and protecting 50% of adult mice against lethal and sublethal challenge with LCMV. Here we demonstrate that mouse pups injected with the same plasmid hours or days after birth produce major histocompatibility complex-restricted, NP-specific cytotoxic T lymphocytes (CTL) that persist into adulthood; 48% of vaccinated pups responded to subsequent sublethal viral challenge by the accelerated production of anti-NP LCMV-specific CTL, indicating that these animals had been successfully immunized by the plasmid DNA. In addition, these mice showed a >95% reduction in splenic viral titers 4 days postinfection compared to control mice, demonstrating a more rapid control of infection in vivo. Furthermore, pups born of and suckled on LCMV-immune dams (and therefore containing passively acquired anti-LCMV antibodies at the time of DNA inoculation) responded to the DNA vaccine in a similar manner, showing that maternally derived anti-LCMV antibodies do not significantly inhibit the generation of protective immune responses following DNA vaccination. These findings suggest that, at least in this model system, DNA immunization circumvents many of the problems associated with neonatal immunization.
Collapse
Affiliation(s)
- D E Hassett
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|