1
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
2
|
Mohanty S, Harhaj EW. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020; 9:E543. [PMID: 32645846 PMCID: PMC7399876 DOI: 10.3390/pathogens9070543] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a neoplasm of CD4+CD25+ T cells that occurs in 2-5% of infected individuals after decades of asymptomatic latent infection. Multiple HTLV-1-encoded regulatory proteins, including Tax and HTLV-1 basic leucine zipper factor (HBZ), play key roles in viral persistence and latency. The HTLV-1 Tax oncoprotein interacts with a plethora of host cellular proteins to regulate viral gene expression and also promote the aberrant activation of signaling pathways such as NF-κB to drive clonal proliferation and survival of T cells bearing the HTLV-1 provirus. Tax undergoes various post-translational modifications such as phosphorylation and ubiquitination that regulate its function and subcellular localization. Tax shuttles in different subcellular compartments for the activation of anti-apoptotic genes and deregulates the cell cycle with the induction of DNA damage for the accumulation of genomic instability that can result in cellular immortalization and malignant transformation. However, Tax is highly immunogenic and therefore HTLV-1 has evolved numerous strategies to tightly regulate Tax expression while maintaining the pool of anti-apoptotic genes through HBZ. In this review, we summarize the key findings on the oncogenic mechanisms used by Tax that set the stage for the development of ATLL, and the strategies used by HTLV-1 to tightly regulate Tax expression for immune evasion and viral persistence.
Collapse
Affiliation(s)
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
3
|
Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012; 3:334. [PMID: 23060864 PMCID: PMC3444139 DOI: 10.3389/fmicb.2012.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Minato-ku, Tokyo, Japan
| | | |
Collapse
|
4
|
Norris PJ, Hirschkorn DF, DeVita DA, Lee TH, Murphy EL. Human T cell leukemia virus type 1 infection drives spontaneous proliferation of natural killer cells. Virulence 2011; 1:19-28. [PMID: 20640055 DOI: 10.4161/viru.1.1.9868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most human T cell leukemia virus type 1 (HTLV-1) infected subjects remain asymptomatic throughout their lives, with a few individuals developing HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukemia. Lymphocytes from about half of HTLV-1 infected subjects spontaneously proliferate in vitro, and how this phenomenon relates to symptomatic disease outcome and viral burden is poorly understood. Spontaneous proliferation was measured in lymphocyte subsets, and these findings were correlated with HTLV-1 proviral load and Tax expression in PBMCs. We found that in addition to previously described vigorous CD8+ T cell spontaneous proliferation, natural killer (NK) cells spontaneously proliferated to a similar high level, resulting in expansion of CD56-expressing NK cells. Spontaneous NK cell proliferation positively correlated with HTLV-1 proviral load but not with Tax expression or the presence of HAM/TSP. The strongest correlate with clinical outcome in this cohort was the ability of cells to express Tax, while HTLV-1 proviral load was more closely related to spontaneous NK cell proliferation. These results demonstrate that spontaneous proliferation, Tax expression, and proviral load are inter-related but not equivalent, and that spontaneous lymphocyte proliferation is not restricted to T cells, the targets of HTLV-1 infection.
Collapse
Affiliation(s)
- Philip J Norris
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
5
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
6
|
Kesic M, Doueiri R, Ward M, Semmes OJ, Green PL. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 2009; 6:105. [PMID: 19919707 PMCID: PMC2780990 DOI: 10.1186/1742-4690-6-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1) is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into the regulation of Rex-1 function.
Collapse
Affiliation(s)
- Matthew Kesic
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
7
|
Site-specific phosphorylation regulates human T-cell leukemia virus type 2 Rex function in vivo. J Virol 2009; 83:8859-68. [PMID: 19553333 DOI: 10.1128/jvi.00908-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 2 (HTLV-2) Rex is a transacting regulatory protein required for efficient cytoplasmic expression of the unspliced and incompletely spliced viral mRNA transcripts encoding the structural and enzymatic proteins. Previously, it was demonstrated that phosphorylation of Rex-2, predominantly on serine residues, is correlated with an altered conformation, as observed by a gel mobility shift and the detection of two related protein species (p24(Rex) and p26(Rex)). Rex-2 phosphorylation is required for specific binding to its viral-mRNA target sequence and inhibition of mRNA splicing and may be linked to subcellular compartmentalization. Thus, the phosphorylation-induced structural state of Rex in the infected cell may be a switch that determines whether HTLV exists in a latent or productive state. We conducted a phosphoryl and functional mapping of both structural forms of mammalian-cell-expressed Rex 2 using affinity purification, liquid chromatography-tandem mass spectrometry, and site-directed substitutional mutational analysis. We identified two phosphorylation sites in p24(Rex) at Ser-117 and Thr-164. We also identified six phosphorylation sites in p26(Rex) at Thr-19, Ser-117, Ser-125, Ser-151, Ser-153, and Thr-164. We evaluated the functional significance of these phosphorylation events and found that phosphorylation on Thr-164, Ser-151, and Ser-153 is critical for Rex-2 function in vivo and that phosphorylation of Ser-151 is correlated with nuclear/nucleolar subcellular localization. Overall, this work is the first to completely map the phosphorylation sites in Rex-2 and provides important insight into the phosphorylation continuum that tightly regulates Rex-2 structure, cellular localization, and function.
Collapse
|
8
|
Human T-cell leukemia virus type 2 Rex carboxy terminus is an inhibitory/stability domain that regulates Rex functional activity and viral replication. J Virol 2009; 83:5232-43. [PMID: 19279097 DOI: 10.1128/jvi.02271-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) regulatory protein, Rex, functions to increase the expression of the viral structural and enzymatic gene products. The phosphorylation of two serine residues (S151 and S153) at the C terminus is important for the function of HTLV-2 Rex (Rex-2). The Rex-2 phosphomimetic double mutant (S151D, S153D) is locked in a functionally active conformation. Since rex and tax genes overlap, Rex S151D and S153D mutants were found to alter the Tax oncoprotein coding sequence and transactivation activities. Therefore, additional Rex-2 mutants including P152D, A157D, S151Term, and S158Term were generated and characterized ("Term" indicates termination codon). All Rex-2 mutants and wild-type (wt) Rex-2 localized predominantly to the nucleus/nucleolus, but in contrast to the detection of phosphorylated and unphosphorylated forms of wt Rex-2 (p26 and p24), mutant proteins were detected as a single phosphoprotein species. We found that Rex P152D, A157D, and S158Term mutants are more functionally active than wt Rex-2 and that the Rex-2 C terminus and its specific phosphorylation state are required for stability and optimal expression. In the context of the provirus, the more active Rex mutants (A157D or S158Term) promoted increased viral protein production, increased viral infectious spread, and enhanced HTLV-2-mediated cellular proliferation. Moreover, these Rex mutant viruses replicated and persisted in inoculated rabbits despite higher antiviral antibody responses. Thus, we identified in Rex-2 a novel C-terminal inhibitory domain that regulates functional activity and is positively regulated through phosphorylation. The ability of this domain to modulate viral replication likely plays a key role in the infectious spread of the virus and in virus-induced cellular proliferation.
Collapse
|
9
|
Kinetic analysis of human T-cell leukemia virus type 1 gene expression in cell culture and infected animals. J Virol 2009; 83:3788-97. [PMID: 19193802 DOI: 10.1128/jvi.02315-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection causes adult T-cell leukemia and is associated with a variety of lymphocyte-mediated disorders. It has been hypothesized that a highly regulated pattern of HTLV-1 gene expression is critical for virus survival and disease pathogenesis. In this study, real-time reverse transcriptase PCR was used to determine the kinetics of viral gene expression in cells transiently transfected with an HTLV-1 proviral plasmid, in newly infected human peripheral blood mononuclear cells (PBMCs), and in PBMCs from newly infected rabbits. The HTLV-1 gene expression profiles in transiently transfected and infected cells were similar; over time, all transcripts increased and then maintained stable levels. gag/pol, tax/rex, and env mRNA were detected first and at the highest levels, whereas the expression levels of the accessory genes, including the antisense Hbz, were significantly lower than the tax/rex levels (ranging from 1 to 4 logs depending on the specific mRNA). In infected rabbits, tax/rex and gag/pol mRNA levels peaked early after inoculation and progressively decreased, which correlated inversely with the proviral load and host antibody response against viral proteins. Interestingly, Hbz mRNA was detectable at 1 week postinfection and increased and stabilized. The expression levels of all other HTLV-1 genes in infected rabbit PBMCs were at or below our limit of detection. This analysis provides insight into viral gene expression under various in vitro and in vivo experimental conditions. Our in vivo data indicate that in infected rabbits, Hbz mRNA expression over time directly correlates with the proviral load, which provides the first evidence linking Hbz expression to proviral load and the survival of the virus-infected cell in the host.
Collapse
|
10
|
Human T-cell leukemia virus type 1 Tax relieves repression of proliferating cell nuclear antigen gene expression. J Virol 2008; 82:11714-22. [PMID: 18799587 DOI: 10.1128/jvi.00356-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia. The transforming ability of Tax, the viral oncoprotein, is believed to depend on interactions with cell cycle regulators and on transactivation of genes that control cellular proliferation, including proliferating cell nuclear antigen (PCNA), a cofactor associated with DNA replication and repair. Tax associates with cellular transcription factors to alter their affinity for cognate DNA elements, leading to increased or decreased transcription from that promoter. Although it has been demonstrated that Tax transactivates the PCNA promoter, the mechanism of transcriptional activation is unknown. Here we report a cellular complex that binds specifically to a novel site within the minimal Tax-responsive element of the TATAA-less PCNA promoter. Mutation at this binding site or Tax expression inhibited complex formation and increased promoter activity, suggesting that the complex is a transcriptional repressor. The activation of PCNA gene expression by Tax and consequential decrease in nucleotide excision repair mediated by PCNA overexpression could contribute to the reduced DNA repair capacity and genomic instability observed in HTLV-1-infected cells.
Collapse
|
11
|
Dayaram T, Marriott SJ. Effect of transforming viruses on molecular mechanisms associated with cancer. J Cell Physiol 2008; 216:309-14. [PMID: 18366075 DOI: 10.1002/jcp.21439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Viruses have been linked to approximately 20% of all human tumors worldwide. These transforming viruses encode viral oncoproteins that interact with cellular proteins to enhance viral replication. The transcriptional and post-transcriptional effects of these viral oncoproteins ultimately result in cellular transformation. Historically, viral research has been vital to the discovery of oncogenes and tumor suppressors with more current research aiding in unraveling some mechanisms of carcinogenesis. Interestingly, since transforming viruses affect some of the same pathways that are dysregulated in human cancers, their study enhances our understanding of the multistep process of tumorigenesis. This review will examine the cellular mechanisms targeted by oncogenic human viruses and the processes by which these effects contribute to transformation. In particular, we will focus on three transforming viruses, human T-cell leukemia virus type-I, hepatitis B virus and human papillomavirus. These viruses all encode specific oncogenes that promote cell cycle progression, inhibit DNA damage checkpoint responses and prevent programmed cell death in an effort to promote viral propagation. While the transforming properties of these viruses are probably unintended consequences of replication strategies, they provide excellent systems in which to study cancer development.
Collapse
Affiliation(s)
- Tajhal Dayaram
- Interdepartmental Program in Cell and Molecular Biology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
12
|
Expression of parathyroid hormone-related protein during immortalization of human peripheral blood mononuclear cells by HTLV-1: implications for transformation. Retrovirology 2008; 5:46. [PMID: 18541021 PMCID: PMC2435116 DOI: 10.1186/1742-4690-5-46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/09/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adult T-cell leukemia/lymphoma (ATLL) is initiated by infection with human T-lymphotropic virus type-1 (HTLV-1); however, additional host factors are also required for T-cell transformation and development of ATLL. The HTLV-1 Tax protein plays an important role in the transformation of T-cells although the exact mechanisms remain unclear. Parathyroid hormone-related protein (PTHrP) plays an important role in the pathogenesis of humoral hypercalcemia of malignancy (HHM) that occurs in the majority of ATLL patients. However, PTHrP is also up-regulated in HTLV-1-carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients without hypercalcemia, indicating that PTHrP is expressed before transformation of T-cells. The expression of PTHrP and the PTH/PTHrP receptor during immortalization or transformation of lymphocytes by HTLV-1 has not been investigated. RESULTS We report that PTHrP was up-regulated during immortalization of lymphocytes from peripheral blood mononuclear cells by HTLV-1 infection in long-term co-culture assays. There was preferential utilization of the PTHrP-P2 promoter in the immortalized cells compared to the HTLV-1-transformed MT-2 cells. PTHrP expression did not correlate temporally with expression of HTLV-1 tax. HTLV-1 infection up-regulated the PTHrP receptor (PTH1R) in lymphocytes indicating a potential autocrine role for PTHrP. Furthermore, co-transfection of HTLV-1 expression plasmids and PTHrP P2/P3-promoter luciferase reporter plasmids demonstrated that HTLV-1 up-regulated PTHrP expression only mildly, indicating that other cellular factors and/or events are required for the very high PTHrP expression observed in ATLL cells. We also report that macrophage inflammatory protein-1alpha (MIP-1alpha), a cellular gene known to play an important role in the pathogenesis of HHM in ATLL patients, was highly expressed during early HTLV-1 infection indicating that, unlike PTHrP, its expression was enhanced due to activation of lymphocytes by HTLV-1 infection. CONCLUSION These data demonstrate that PTHrP and its receptor are up-regulated specifically during immortalization of T-lymphocytes by HTLV-1 infection and may facilitate the transformation process.
Collapse
|
13
|
Yamamoto B, Li M, Kesic M, Younis I, Lairmore MD, Green PL. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo. Retrovirology 2008; 5:38. [PMID: 18474092 PMCID: PMC2405800 DOI: 10.1186/1742-4690-5-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/12/2008] [Indexed: 11/30/2022] Open
Abstract
Background Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28) was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for viral replication and cellular immortalization of primary T-lymphocytes in cell culture. However, our data indicate that p28 function is critical for viral survival in vivo. Our results are consistent with the hypothesis that p28 repression of Tax and Rex-mediated viral gene expression may facilitate survival of these cells by down-modulating overall viral gene expression.
Collapse
Affiliation(s)
- Brenda Yamamoto
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
14
|
XBP-1, a novel human T-lymphotropic virus type 1 (HTLV-1) tax binding protein, activates HTLV-1 basal and tax-activated transcription. J Virol 2008; 82:4343-53. [PMID: 18287238 DOI: 10.1128/jvi.02054-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
X-box binding protein 1 (XBP-1), a basic leucine zipper transcription factor, plays a key role in the cellular unfolded protein response (UPR). There are two XBP-1 isoforms in cells, spliced XBP-1S and unspliced XBP-1U. XBP-1U has been shown to bind to the 21-bp Tax-responsive element of the human T-lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR) in vitro and transactivate HTLV-1 transcription. Here we identify XBP-1S as a transcription activator of HTLV-1. Compared to XBP-1U, XBP-1S demonstrates stronger activating effects on both basal and Tax-activated HTLV-1 transcription in cells. Our results show that both XBP-1S and XBP-1U interact with Tax and bind to the HTLV-1 LTR in vivo. In addition, elevated mRNA levels of the gene for XBP-1 and several UPR genes were detected in the HTLV-1-infected C10/MJ and MT2 T-cell lines, suggesting that HTLV-1 infection may trigger the UPR in host cells. We also identify Tax as a positive regulator of the expression of the gene for XBP-1. Activation of the UPR by tunicamycin showed no effect on the HTLV-1 LTR, suggesting that HTLV-1 transcription is specifically regulated by XBP-1. Collectively, our study demonstrates a novel host-virus interaction between a cellular factor XBP-1 and transcriptional regulation of HTLV-1.
Collapse
|
15
|
Barbeau B, Mesnard JM. Does the HBZ gene represent a new potential target for the treatment of adult T-cell leukemia? Int Rev Immunol 2008; 26:283-304. [PMID: 18027202 DOI: 10.1080/08830180701690843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Links between human T-cell leukemia virus type 1 and adult T-cell leukemia (ATL) were first suspected in 1980. Provirus integration has since been found in all ATL cells. Although the viral Tax protein is involved in the proliferation of the infected cells during the preleukemic stage, Tax expression is not systematically detected in primary leukemic cells. Recent studies found that the viral HBZ gene was always expressed in leukemic cells, suggesting its involvement in the progression of the infected cells toward malignancy. How could this new discovery be translated into possible new avenues for the prevention or treatment of ATL?
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | | |
Collapse
|
16
|
Murata K, Yamada Y. The state of the art in the pathogenesis of ATL and new potential targets associated with HTLV-1 and ATL. Int Rev Immunol 2008; 26:249-68. [PMID: 18027200 DOI: 10.1080/08830180701709817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Almost 30 years have passed since adult T-cell leukemia (ATL) was identified as a new disease entity in Japan. During this period, its causative agent, human T-cell leukemia virus (HTLV-1), was discovered, and a crucial role of the viral product Tax in ATL leukemogenesis was demonstrated. Recently, another HTLV-1 product, HBZ, which is encoded on the negative strand, was found, and it has now become a subject of intensive research because of its possible activity in cell proliferation. It is, however, impossible to elucidate the whole process of ATL leukemogenesis by studying only HTLV-1, and aberrations of cellular genes such as tumor suppressor genes are also profoundly involved in the later stages of ATL development. In contrast with the progress in the understanding of ATL pathogenesis, more progress in developing therapy for ATL is needed, and there has been only slight improvement in the prognosis. Recently, unique therapeutic approaches targeting molecules and/or mechanisms involved in the pathogenesis have been explored, and some of them produced encouraging results that might lead to breakthrough therapies. One of these approaches, the use of monoclonal antibody against chemokine receptor CCR4, is now ongoing as a multicenter clinical trial in Japan. Here we review the state of the art regarding our understanding of ATL leukemogenesis and new potential molecular targets in ATL therapy.
Collapse
Affiliation(s)
- Ken Murata
- Division of Hematology/Clinical Laboratory Medicine, Tottori University, Yonago, Tottori, Japan
| | | |
Collapse
|
17
|
Schavinsky-Khrapunsky Y, Priel E, Aboud M. Dose-dependent dual effect of HTLV-1 tax oncoprotein on p53-dependent nucleotide excision repair in human T-cells. Int J Cancer 2008; 122:305-16. [PMID: 17918160 DOI: 10.1002/ijc.23091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we investigated the effect of Tax on nucleotide excision repair (NER) in human T-cell lines by using the host cell repair analysis of UVC-irradiated reporter plasmid. This analysis revealed a p53-dependent NER activity in wild type (w.t.) p53-containing T-cells and p53-independent NER in w.t. p53-lacking T-cells. Notably, in the w.t. p53-containing cells Tax exerted a dose-dependent dual effect on NER. While low Tax doses markedly stimulated this repair, high Tax doses strongly reduced it. Further experiments demonstrated that the low Tax doses enhanced, in these cells, the level and the transcriptional function of their w.t. p53 protein. On the other hand, although the high Tax doses further increased the level of p53, they functionally inactivated its accumulating molecules. Both of these Tax effects on p53 proved to be mediated by Tax-induced NF-kappaB-related mechanisms. Together, these data suggest that by NF-kappaB activation Tax elevates the level of the cellular w.t. p53. However, while at low Tax doses the elevating w.t. p53 molecules are functionally active and capable of stimulating NER, intensifying further the NF-kappaB activation by the high Tax doses concomitantly evokes certain mechanism(s) which functionally inactivates the accumulating p53 protein. In contrast to this dual effect on the p53-dependent NER, Tax displayed only an inhibitory effect on the p53-independent NER by its high doses, whereas its low doses had no effect on this repair. The mechanisms of the NF-kappaB-associated effects on the level and function of the cellular w.t.p53 and of the p53-independent NER noted in our experimental systems are further investigated in our laboratory.
Collapse
Affiliation(s)
- Yana Schavinsky-Khrapunsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and Cancer Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
18
|
Gupta SK, Guo X, Durkin SS, Fryrear KF, Ward MD, Semmes OJ. Human T-cell Leukemia Virus Type 1 Tax Oncoprotein Prevents DNA Damage-induced Chromatin Egress of Hyperphosphorylated Chk2. J Biol Chem 2007; 282:29431-40. [PMID: 17698850 DOI: 10.1074/jbc.m704110200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
De novo expression of human T-cell leukemia virus type 1 Tax results in cellular genomic instability. We demonstrated previously that Tax associates with the cell cycle check point regulator Chk2 and proposed that the inappropriate activation of Chk2 provides a model for Tax-induced loss of genetic integrity (Haoudi, A., Daniels, R. C., Wong, E., Kupfer, G., and Semmes, O. J. (2003) J. Biol. Chem. 278, 37736-37744). Here we provide an explanation for how Tax induces some Chk2 activities but represses others. We show that Tax interaction with Chk2 generates two activation signals in Chk2, oligomerization and autophosphorylation. However, egress of Chk2 from chromatin, normally observed in response to ionizing radiation, was repressed in Tax-expressing cells. Analysis of chromatin-bound Chk2 from Tax-expressing cells revealed phosphorylation at Thr(378), Ser(379), Thr(383), Thr(387), and Thr(389). In contrast, chromatin-bound Chk2 in the absence of Tax was phosphorylated at Thr(383) and Thr(387) in response to ionizing radiation. We further establish that Tax binds to the kinase domain of Chk2. Confocal microscopy revealed a redistribution of Chk2 to colocalize with Tax in Tax speckled structures, which we have shown previously to coincide with interchromatin granules. We propose that Tax binding via the Chk2 kinase domain sequesters phosphorylated Chk2 within chromatin, thus hindering chromatin egress and appropriate response to DNA damage.
Collapse
Affiliation(s)
- Saurabh K Gupta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | |
Collapse
|
19
|
Li M, Green PL. Detection and quantitation of HTLV-1 and HTLV-2 mRNA species by real-time RT-PCR. J Virol Methods 2007; 142:159-68. [PMID: 17337070 PMCID: PMC2048902 DOI: 10.1016/j.jviromet.2007.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/18/2007] [Accepted: 01/26/2007] [Indexed: 11/17/2022]
Abstract
HTLV-1 and HTLV-2 are highly related delta-retroviruses that infect and transform T-lymphocytes, but have distinct pathogenic properties. HTLV replication and survival requires the expression of multiple gene products from an unspliced and a series of highly related alternatively spliced mRNA species. To date, the comparative levels of all known HTLV-1 and HTLV-2 viral mRNAs in different transformed cell lines and at different stages of virus infection have not been assessed. In this study, we compiled a series of oligonucleotide primer pairs and probes to quantify both HTLV-1 and HTLV-2 mRNA species using real-time RT-PCR. The optimized reaction for detection of each mRNA had amplification efficiency greater than 90% with a linear range spanning 25-2.5 x 10(7) copies. The R(2)'s of all standard curves were greater than 0.97. Quantitation of HTLV mRNAs between different cell lines showed variability (gag/pol>or=tax/rex>env>or=accessory proteins), but the overall levels of each mRNA relative to each other within a cell line were similar. These results provide a method to quantify all specific mRNAs from both HTLV-1 and HTLV-2, which can be used to evaluate further viral gene expression and correlate transcript levels to key stages of the virus life cycle and ultimately, pathogenesis.
Collapse
Affiliation(s)
- Min Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210
- * Corresponding Author: Patrick L. Green, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, Tel: (614)-688-4899, Fax: (614)-292-6473,
| |
Collapse
|
20
|
Silbermann K, Grassmann R. Human T cell leukemia virus type 1 Tax-induced signals in cell survival, proliferation, and transformation. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Younis I, Yamamoto B, Phipps A, Green PL. Human T-cell leukemia virus type 1 expressing nonoverlapping tax and rex genes replicates and immortalizes primary human T lymphocytes but fails to replicate and persist in vivo. J Virol 2006; 79:14473-81. [PMID: 16282446 PMCID: PMC1287553 DOI: 10.1128/jvi.79.23.14473-14481.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus associated primarily with adult T-cell leukemia and neurological disease. HTLV-1 encodes the positive trans-regulatory proteins Tax and Rex, both of which are essential for viral replication. Tax activates transcription initiation from the viral long terminal repeat and modulates the transcription or activity of a number of cellular genes. Rex regulates gene expression posttranscriptionally by facilitating the cytoplasmic expression of incompletely spliced viral mRNAs. Tax and Rex mutants have been identified that have defective activities or impaired biochemical properties associated with their function. To ultimately determine the contribution of specific protein activities on viral replication and cellular transformation of primary T cells, mutants need to be characterized in the context of an infectious molecular clone. Since the tax and rex genes are in partially overlapping reading frames, mutation in one gene frequently disrupts the other, confounding interpretation of mutational analyses in the context of the virus. Here we generated and characterized a unique proviral clone (H1IT) in which the tax and rex genes were separated by expressing Tax from an internal ribosome entry site. We showed that H1IT expresses both functional Tax and Rex. In short- and long-term coculture assays, H1IT was competent to infect and immortalize primary human T cells similar to wild-type HTLV-1. In contrast, H1IT failed to efficiently replicate and persist in inoculated rabbits, thus emphasizing the importance of temporal and quantitative regulation of specific mRNA for viral survival in vivo.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
22
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
23
|
Marriott SJ, Semmes OJ. Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene 2005; 24:5986-95. [PMID: 16155605 DOI: 10.1038/sj.onc.1208976] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human T-cell lymphotropic virus type I (HTLV-I) is the etiologic agent of adult T-cell leukemia (ATL), a rapidly progressing, clonal malignancy of CD4+ T lymphocytes. Fewer than one in 20 infected individuals typically develop ATL and the onset of this cancer occurs after decades of relatively symptom-free infection. Leukemic cells from ATL patients display extensive and varied forms of chromosomal abnormalities and this genomic instability is thought to be a major contributor to the development of ATL. HTLV-I encodes a regulatory protein, Tax, which is necessary and sufficient to transform cells and is therefore considered to be the viral oncoprotein. Tax interacts with numerous cellular proteins to reprogram cellular processes including, but not limited to, transcription, cell cycle regulation, DNA repair, and apoptosis. This review presents an overview of the impact of HTLV-I infection in general, and Tax expression in particular, on cell cycle progression and the repair of DNA damage. The contribution of these activities to genome instability and cellular transformation will be discussed.
Collapse
Affiliation(s)
- Susan J Marriott
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
24
|
Bal HP, Cheng J, Murakami A, Tallarico ASC, Wang W, Zhou D, Vasicek TJ, Marasco WA. GITR overexpression on CD4+CD25+ HTLV-1 transformed cells: detection by massively parallel signature sequencing. Biochem Biophys Res Commun 2005; 332:569-84. [PMID: 15896717 DOI: 10.1016/j.bbrc.2005.04.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
HTLV-I is the etiologic agent of adult T-cell leukemia (ATL), a fatal T-cell malignancy that is associated with profound immunosuppression. In this study, comprehensive gene expression profiling was performed using massively parallel signature sequencing (MPSS) to investigate virus-host interactions in acutely HTLV-1 transformed cells. The analysis revealed the modulation of numerous genes across different functional classes, many of which have not been previously implicated in HTLV-1 transformation or ATL. Differences in the transcriptomes of transformed cell lines were observed that have provided clues on how different clonal populations of cells respond to virus transformation. Quantitation of HTLV-1 transcription was possible, thus making MPSS a useful tool to study emerging pathogens and unknown microbial causes of human diseases. Importantly, overexpression of GITR, an activation marker that has not been previously reported to be upregulated by HTLV-1-infection or in transformed/leukemic cells and that is associated with the suppressor phenotype of CD4+CD25+ regulatory T-cells (Tregs), was also observed. The deep and quantitative gene expression profile generated by MPSS should provide additional leads for discovery research that can be applied to better understand the pathobiology of HTLV-1 transformation and ATL as well as to developing new therapies.
Collapse
Affiliation(s)
- Harshawardhan P Bal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Altanerova V, Holicova D, Kucerova L, Altaner C, Lairmore MD, Boris-Lawrie K. Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology 2005; 329:434-9. [PMID: 15518821 PMCID: PMC3049242 DOI: 10.1016/j.virol.2004.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/19/2004] [Accepted: 09/03/2004] [Indexed: 01/19/2023]
Abstract
Bovine leukemia virus (BLV) infection of rabbits is a tractable model system to evaluate vaccination strategies against lymphotropic retroviruses, which represent a global human health problem. We have previously developed genetically simplified BLV structural gene vector (SGV) that replicates BLV structural and enzymatic genes independently of BLV regulatory and accessory genes. Results of a 20-month study in a rabbit model demonstrated that BLV SGV induces an antiviral immunological response and lacks pathogenicity. Here, these chronically infected-BLV SGV rabbits are assessed in a proof-of-principle study of preventative vaccination against challenge with pathogenic BLV. This study commences 24 months after BLV SGV inoculation and proceeds for an additional 20 months. The previously characterized BLV SGV rabbits and age-matched control rabbits were challenged with 1 x 10(8) fetal lamb kidney/BLV producer cells. BLV SGV rabbits seroconverted upon BLV challenge, but did not progress to BLV infection nor clinical disease. By contrast, naive rabbits became infected and succumbed to lymphotropic disease. Our findings provide proof-of-principle that chronic infection with BLV SGV induces protection against BLV infection. The data indicate that SGV based on HTLV or HIV is a promising approach against lymphotropic disease by human retroviruses.
Collapse
Affiliation(s)
- Veronika Altanerova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
- Centre of Excellence of SAS Bratislava Molecular Medicine, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Dana Holicova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Cestmir Altaner
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
- Centre of Excellence of SAS Bratislava Molecular Medicine, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Michael D. Lairmore
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210-1093, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210-1093, USA
- Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, 43210-1093, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210-1093, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210-1093, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210-1093, USA
- Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, 43210-1093, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210-1093, USA
- Corresponding author. Center for Retrovirus Research, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210-1093. Fax: +1 614 292 6473.
| |
Collapse
|
26
|
Younis I, Khair L, Dundr M, Lairmore MD, Franchini G, Green PL. Repression of human T-cell leukemia virus type 1 and type 2 replication by a viral mRNA-encoded posttranscriptional regulator. J Virol 2004; 78:11077-83. [PMID: 15452228 PMCID: PMC521841 DOI: 10.1128/jvi.78.20.11077-11083.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are complex retroviruses that persist in the host, eventually causing leukemia and neurological disease in a small percentage of infected individuals. In addition to structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory (open reading frame I and II) proteins. The viral Tax and Rex proteins positively regulate virus production. Tax activates viral and cellular transcription to promote T-cell growth and, ultimately, malignant transformation. Rex acts posttranscriptionally to facilitate cytoplasmic expression of viral mRNAs that encode the structural and enzymatic gene products, thus positively controlling virion expression. Here, we report that both HTLV-1 and HTLV-2 have evolved accessory genes to encode proteins that act as negative regulators of both Tax and Rex. HTLV-1 p30(II) and the related HTLV-2 p28(II) inhibit virion production by binding to and retaining tax/rex mRNA in the nucleus. Reduction of viral replication in a cell carrying the provirus may allow escape from immune recognition in an infected individual. These data are consistent with the critical role of these proteins in viral persistence and pathogenesis in animal models of HTLV-1 and HTLV-2 infection.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
27
|
Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 2004; 1:20. [PMID: 15310405 PMCID: PMC514576 DOI: 10.1186/1742-4690-1-20] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Accepted: 08/13/2004] [Indexed: 11/17/2022] Open
Abstract
HTLV-1 is the etiological agent of adult T-cell leukemia (ATL), the neurological syndrome TSP/HAM and certain other clinical disorders. The viral Tax protein is considered to play a central role in the process leading to ATL. Tax modulates the expression of many viral and cellular genes through the CREB/ATF-, SRF- and NF-κB-associated pathways. In addition, Tax employs the CBP/p300 and p/CAF co-activators for implementing the full transcriptional activation competence of each of these pathways. Tax also affects the function of various other regulatory proteins by direct protein-protein interaction. Through these activities Tax sets the infected T-cells into continuous uncontrolled replication and destabilizes their genome by interfering with the function of telomerase and topoisomerase-I and by inhibiting DNA repair. Furthermore, Tax prevents cell cycle arrest and apoptosis that would otherwise be induced by the unrepaired DNA damage and enables, thereby, accumulation of mutations that can contribute to the leukemogenic process. Together, these capacities render Tax highly oncogenic as reflected by its ability to transform rodent fibroblasts and primary human T-cells and to induce tumors in transgenic mice. In this article we discuss these effects of Tax and their apparent contribution to the HTLV-1 associated leukemogenic process. Notably, however, shortly after infection the virus enters into a latent state, in which viral gene expression is low in most of the HTLV-1 carriers' infected T-cells and so is the level of Tax protein, although rare infected cells may still display high viral RNA. This low Tax level is evidently insufficient for exerting its multiple oncogenic effects. Therefore, we propose that the latent virus must be activated, at least temporarily, in order to elevate Tax to its effective level and that during this transient activation state the infected cells may acquire some oncogenic mutations which can enable them to further progress towards ATL even if the activated virus is re-suppressed after a while. We conclude this review by outlining an hypothetical flow of events from the initial virus infection up to the ultimate ATL development and comment on the risk factors leading to ATL development in some people and to TSP/HAM in others.
Collapse
Affiliation(s)
- Inbal Azran
- Department of Microbiology and Immunology and Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yana Schavinsky-Khrapunsky
- Department of Microbiology and Immunology and Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mordechai Aboud
- Department of Microbiology and Immunology and Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
28
|
Lu H, Pise-Masison CA, Linton R, Park HU, Schiltz RL, Sartorelli V, Brady JN. Tax relieves transcriptional repression by promoting histone deacetylase 1 release from the human T-cell leukemia virus type 1 long terminal repeat. J Virol 2004; 78:6735-43. [PMID: 15194748 PMCID: PMC421680 DOI: 10.1128/jvi.78.13.6735-6743.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. In this study, we have analyzed the role of histone deacetylase 1 (HDAC1) on HTLV-1 gene expression from an integrated template. First we show that trichostatin A, an HDAC inhibitor, enhances Tax expression in HTLV-1-transformed cells. Second, using a cell line containing a single-copy HTLV-1 long terminal repeat, we demonstrate that overexpression of HDAC1 represses Tax transactivation. Furthermore, a chromatin immunoprecipitation assay allowed us to analyze the interaction of transcription factors, coactivators, and HDACs with the basal and activated HTLV-1 promoter. We demonstrate that HDAC1 is associated with the inactive, but not the Tax-transactivated, HTLV-1 promoter. In vitro and in vivo glutathione S-transferase-Tax pull-down and coimmunoprecipitation experiments demonstrated that there is a direct physical association between Tax and HDAC1. Importantly, biotinylated chromatin pull-down assays demonstrated that Tax inhibits and/or dissociates the binding of HDAC1 to the HTLV-1 promoter. Our results provide evidence that Tax interacts directly with HDAC1 and regulates binding of the repressor to the HTLV-1 promoter.
Collapse
Affiliation(s)
- Hanxin Lu
- Virus Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Anderson MD, Ye J, Xie L, Green PL. Transformation studies with a human T-cell leukemia virus type 1 molecular clone. J Virol Methods 2004; 116:195-202. [PMID: 14738988 DOI: 10.1016/j.jviromet.2003.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In in vitro studies human T-cell leukemia virus type 1 (HTLV-1) may be produced by stable or transient transfection of target cells with an infectious molecular clone. Studies using primary human T cells, the natural targets of HTLV-1 infection, are hampered by difficulty in achieving significant infection with cell-free virus and a poor efficiency of transfection of primary cells. A method is described for the generation of stable cell lines expressing HTLV-1 from an infectious proviral clone. The stably transfected cells can be irradiated and cocultured with human peripheral blood mononuclear cells (PBMC) resulting in infected primary cells. These cells become immortalized, IL-2 dependent lines, which contain integrated copies of provirus and express a full spectrum of viral proteins. Analysis of cellular markers indicates that immortalized cell lines consist of CD3+/CD4+ T cells, matching the most common adult T-cell leukemia (ATL) cell phenotype. The method described has great utility in the study of the replication and transformation capacity of HTLV and HTLV mutant viruses in their natural targets, primary human T lymphocytes.
Collapse
Affiliation(s)
- Matthew D Anderson
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
30
|
Narayan M, Younis I, D'Agostino DM, Green PL. Functional domain structure of human T-cell leukemia virus type 2 rex. J Virol 2004; 77:12829-40. [PMID: 14610204 PMCID: PMC262564 DOI: 10.1128/jvi.77.23.12829-12840.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex protein of human T-cell leukemia virus (HTLV) acts posttranscriptionally to induce the cytoplasmic expression of the unspliced and incompletely spliced viral RNAs encoding the viral structural and enzymatic proteins and is therefore essential for efficient viral replication. Rex function requires nuclear import, RNA binding, multimerization, and nuclear export. In addition, it has been demonstrated that the phosphorylation status of HTLV-2 Rex (Rex-2) correlates with RNA binding and inhibition of splicing in vitro. Recent mutational analyses of Rex-2 revealed that the phosphorylation of serine residues 151 and 153 within a novel carboxy-terminal domain is critical for function in vivo. To further define the functional domain structure of Rex-2, we evaluated a panel of Rex-2 mutants for subcellular localization, RNA binding capacity, multimerization and trans-dominant properties, and the ability to shuttle between the nucleus and the cytoplasm. Rex-2 mutant S151A,S153A, which is defective in phosphorylation and function, showed diffuse cytoplasmic staining, whereas mutant S151D,S153D, previously shown to be functional and in a conformation corresponding to constitutive phosphorylation, displayed increased intense speckled staining in the nucleoli. In vivo RNA binding analyses indicated that mutant S151A,S153A failed to efficiently bind target RNA, while its phosphomimetic counterpart, S151D,S153D, bound twofold more RNA than wild-type Rex-2. Taken together, these findings provide direct evidence that the phosphorylation status of Rex-2 is linked to cellular trafficking and RNA binding capacity. Mutants with substitutions in either of the two putative multimerization domains or in the putative activation domain-nuclear export signal displayed a dominant negative phenotype as well as defects in multimerization and nucleocytoplasmic shuttling. Several carboxy-terminal mutants that displayed wild-type levels of phosphorylation and localized to the nucleolus were also partially impaired in shuttling. This is consistent with the hypothesis that the carboxy terminus of Rex-2 contains a novel domain that is required for efficient shuttling. This work thus provides a more detailed functional domain map of Rex-2 and further insight into its regulation of HTLV replication.
Collapse
Affiliation(s)
- Murli Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
31
|
Ye J, Silverman L, Lairmore MD, Green PL. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro. Blood 2003; 102:3963-9. [PMID: 12907436 PMCID: PMC2852248 DOI: 10.1182/blood-2003-05-1490] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex-) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex- proviral clone produced low detectable levels of p19 Gag. 729HTLVRex- stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex- cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)-dependent growth of primary T lymphocytes. These cells carried the HTLVRex- genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex- cells or 729HTLVRex- cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo.
Collapse
Affiliation(s)
- Jianxin Ye
- The Ohio State University, 1925 Coffey Rd, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
32
|
Haoudi A, Daniels RC, Wong E, Kupfer G, Semmes OJ. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response. J Biol Chem 2003; 278:37736-44. [PMID: 12842897 DOI: 10.1074/jbc.m301649200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.
Collapse
Affiliation(s)
- Abdelali Haoudi
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | | | | | | | | |
Collapse
|
33
|
Gatza ML, Watt JC, Marriott SJ. Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene 2003; 22:5141-9. [PMID: 12910251 DOI: 10.1038/sj.onc.1206549] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human T-cell leukemia virus type I (HTLV-I) is an oncogenic retrovirus that is responsible for adult T-cell leukemia and a neurological disease, HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I encodes an oncogenic protein, Tax, which affects a variety of cellular functions prompting it to be referred to as a jack-of-all trades. The ability of Tax to both transcriptionally regulate cellular gene expression and to functionally inactivate proteins involved in cell-cycle progression and DNA repair provide the basis for Tax-mediated transformation and leukemogenesis. This review will concentrate on the effects of Tax on the dysregulation of the G(1)/S and G(2)/M checkpoints as well as the suppression of DNA damage repair leading to cellular transformation.
Collapse
Affiliation(s)
- Michael L Gatza
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Ye J, Xie L, Green PL. Tax and overlapping rex sequences do not confer the distinct transformation tropisms of human T-cell leukemia virus types 1 and 2. J Virol 2003; 77:7728-35. [PMID: 12829812 PMCID: PMC161933 DOI: 10.1128/jvi.77.14.7728-7735.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/15/2003] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8(+) T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.
Collapse
Affiliation(s)
- Jianxin Ye
- Department of Veterinary Bioscience, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
35
|
Leclercq I, Mortreux F, Rabaaoui S, Jonsson CB, Wattel E. Naturally occurring substitutions of the human T-cell leukemia virus type 1 3' LTR influence strand-transfer reaction. J Virol Methods 2003; 109:105-17. [PMID: 12711052 DOI: 10.1016/s0166-0934(03)00052-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Having isolated somatically mutated HTLV-1 3' LTR sequences from six infected individuals, the effect of these mutations on the integration process in vitro was investigated. Double-strand pre-processed HTLV-1 3' LTR ends (53-54 bp) were used in an in vitro strand-transfer reaction, together with HTLV-1 purified integrase and using a synthetic double-strand naked DNA oligonucleotide as target. Integration efficiency was measured by a fluorescent PCR assay. No significant difference in the pattern of strand transfer was observed between the distinct patients consensus sequences. For each patient, the effect of acquired somatic mutations was then assessed by comparing the strand-transfer efficiency of the mutated sequences (n=8, each harboring one to two substitutions) with that of the corresponding patient consensus sequence. Five somatic mutations or deletions at positions 7, 10, 21, 30, and 53 from the proviral 3' end did not alter the reaction efficiency. By contrast, a single G-->A transition at position 52 was found to result in 33% gain of function. Furthermore, a C-->T transition at 41 bp from the provirus 3' end decreased the reaction efficiency by 80%. This is the first study investigating the effect of naturally acquired substitutions on the strand-transfer capacity of long LTR sequences in vitro. Disproving the hitherto assumed opinion that integration specificity is restricted to the extreme boundary of the LTR end, i.e. the last 12-20 bp of the unintegrated provirus, the present results demonstrate that naturally occurred substitutions of the HTLV-1 LTR can alter significantly its strand-transfer capacity.
Collapse
Affiliation(s)
- India Leclercq
- Unité d'Oncogenèse Virale, UMR5537 CNRS-Université Claude Bernard, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon cedex 08, France
| | | | | | | | | |
Collapse
|
36
|
Haoudi A, Semmes OJ. The HTLV-1 tax oncoprotein attenuates DNA damage induced G1 arrest and enhances apoptosis in p53 null cells. Virology 2003; 305:229-39. [PMID: 12573569 DOI: 10.1006/viro.2002.1642] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transformation of cells by the human T cell leukemia virus type 1 occurs via mechanisms unique among oncogenic retroviruses. A prevailing hypothesis for HTLV-1-mediated cellular transformation is that expression of the viral transactivator, Tax, induces genomic instability. Tax-mediated failure in the cellular repair response is one possible mechanism for loss in genomic integrity. Here we have examined the in vivo repair response of Tax-expressing cells to determine the underlying defects that contribute to loss of genomic integrity. In these studies we examined the effects of de novo Tax-expression in naive "pre-neoplastic" REF52 cells. DNA-damage-induced p53 stabilization and concomitant transient stabilization of p21 were clearly evident in Tax-expressing cells. Likewise, the damage-induced apoptotic response of Tax-expressing cells was normal. However, the damage-induced G1 checkpoint was abrogated in either p53+ or p53- cellular backgrounds. Although nucleotide excision repair (NER) of asynchronous Tax-expressing cells was impaired, cell-cycle-independent assessment of NER in the global excision repair assay demonstrated comparable NER activity in Tax-expressing cells, suggesting that the failure of G1 checkpoint contributes to NER deficiency. Interestingly, we observed a dramatic increase in apoptosis and UV sensitivity of Tax-expressing p53-/- cells when compared to Tax-expressing p53+/+ cells. These data demonstrate that Tax-mediated cellular genomic instability arises from attenuation of cell-cycle checkpoint and imply a clonal dependence on p53 status separate from genomic integrity.
Collapse
Affiliation(s)
- Abdelali Haoudi
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | |
Collapse
|
37
|
Mortreux F, Gabet AS, Wattel E. Molecular and cellular aspects of HTLV-1 associated leukemogenesis in vivo. Leukemia 2003; 17:26-38. [PMID: 12529656 DOI: 10.1038/sj.leu.2402777] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 07/31/2002] [Indexed: 11/09/2022]
Abstract
Most cancers and leukemias are preceded by a prolonged period of clinical latency during which cellular, chromosomal and molecular aberrations help move normal cell towards the malignant phenotype. The problem is that premalignant cells are usually indistinguishable from their normal counterparts, thereby ruling out the possibility to investigate the events that govern early leukemogenesis in vivo. Adult T cell leukemia/lymphoma (ATLL) is a T cell malignancy that occurs after a 40-60-year period of clinical latency in about 3-5% of HTLV-1-infected individuals. ATLL cells are monoclonally expanded and harbor an integrated provirus. A persistent oligo/polyclonal expansion of HTLV-1-bearing cells has been shown to precede ATLL, supporting the fact that in ATLL tumor cells arise from a clonally expanding non-malignant cell. It is possible to isolate infected, ie preleukemic, cells during the premalignant asymptomatic phase of the infection, thus providing an exceptional system to study the mechanisms underlying human cancers. Here we review some of the consequences of HTLV-1 on its host cell in vivo, at different stages of infection.
Collapse
Affiliation(s)
- F Mortreux
- Unité d'Oncogenèse Virale, UMR5537 CNRS-Université Claude Bernard, Centre Léon Bérard, Lyon, France
| | | | | |
Collapse
|
38
|
Kao SY, Lemoine FJ, Marriott SJ. p53-independent induction of apoptosis by the HTLV-I tax protein following UV irradiation. Virology 2001; 291:292-8. [PMID: 11878898 DOI: 10.1006/viro.2001.1200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) encodes a transforming protein, Tax. Tax is a promiscuous viral transactivator involved in both cell growth and death control. We have previously shown that Tax sensitizes cells to apoptosis induced by DNA-damaging agents and this report further characterizes the Tax-mediated apoptosis pathway. We found that Tax-mediated apoptosis in response to UV irradiation was inhibited by Bcl-2 and Bcl-X(L) overexpression and by treatment with the caspase inhibitor z-VAd-FMK. Since Tax has been shown to functionally inactivate the apoptosis regulator p53, the effect of Tax on apoptosis in the absence of p53 was examined. In these studies, Tax sensitized p53-negative cells to apoptose, suggesting that Tax can mediate a p53-independent form of apoptosis. In addition, cells expressing both Tax and p53 displayed higher levels of apoptosis than cells expressing either protein alone, suggesting that the apoptosis-inducing activities of Tax and p53 are not completely overlapping. These observations demonstrate that Tax can utilize a p53-independent mechanism to induce apoptotic cell death following UV irradiation.
Collapse
Affiliation(s)
- S Y Kao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
39
|
Narayan M, Kusuhara K, Green PL. Phosphorylation of two serine residues regulates human T-cell leukemia virus type 2 Rex function. J Virol 2001; 75:8440-8. [PMID: 11507189 PMCID: PMC115089 DOI: 10.1128/jvi.75.18.8440-8448.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.
Collapse
Affiliation(s)
- M Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
40
|
Portis T, Grossman WJ, Harding JC, Hess JL, Ratner L. Analysis of p53 inactivation in a human T-cell leukemia virus type 1 Tax transgenic mouse model. J Virol 2001; 75:2185-93. [PMID: 11160722 PMCID: PMC114802 DOI: 10.1128/jvi.75.5.2185-2193.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). The HTLV-1 Tax protein has been strongly linked to oncogenesis and is considered to be the transforming protein of this virus. A Tax transgenic mouse model was utilized to study the contribution of p53 inactivation to Tax-mediated tumorigenesis. These mice develop primary, peripheral tumors consisting of large granular lymphocytic (LGL) cells, which also infiltrate the lymph nodes, bone marrow, spleen, liver, and lungs. Primary Tax-induced tumors and tumor-derived cell lines exhibited functional inactivation of the p53 apoptotic pathway; such tumors and tumor cell lines were resistant to an apoptosis-inducing stimulus. In contrast, p53 mutations in tumors were found to be associated with secondary organ infiltration. Three of four identified mutations inhibited transactivation and apoptosis induction activities in vitro. Furthermore, experiments which involved mating Tax transgenic mice with p53-deficient mice demonstrated minimal acceleration in initial tumor formation, but significantly accelerated disease progression and death in mice heterozygous for p53. These studies suggest that functional inactivation of p53 by HTLV-1 Tax, whether by mutation or another mechanism, is not critical for initial tumor formation, but contributes to late-stage tumor progression.
Collapse
Affiliation(s)
- T Portis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
41
|
Torgeman A, Mor-Vaknin N, Zelin E, Ben-Aroya Z, Löchelt M, Flügel RM, Aboud M. Sp1-p53 heterocomplex mediates activation of HTLV-I long terminal repeat by 12-O-tetradecanoylphorbol-13-acetate that is antagonized by protein kinase C. Virology 2001; 281:10-20. [PMID: 11222091 DOI: 10.1006/viro.2000.0779] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) activates human T-cell leukemia virus type-I long terminal repeat (LTR) in Jurkat cells by a protein kinase C (PKC)-independent mechanism involving a posttranslational activation of Sp1 binding to an Sp1 site located within the Ets responsive region-1 (ERR-1). By employing the PKC inhibitor, bisindolylmaleimide I and cotransfecting the reporter LTR construct with a vector expressing PKC-alpha, we demonstrated, in the present study, that this effect of TPA was not only independent of, but actually antagonized by, PKC. Electrophoretic mobility shift assays together with antibody-mediated supershift and immuno-coprecipitation analyses, revealed that the posttranslational activation of Sp1 was exerted by inducing the formation of Sp1-p53 heterocomplex capable of binding to the Sp1 site in ERR-1. Furthermore, we demonstrated that Jurkat cells contain both wild-type (w.t.) and mutant forms of p53 and we detected both of them in this complex at variable combinations; some molecules of the complex contained either the w.t. or the mutant p53 separately, whereas others contained the two of them together. Finally, we showed that the Sp1-p53 complexes could bind also to an Sp1 site present in the promoter of another gene such as the cyclin-dependent kinase inhibitor p21(WAF-1), but not to consensus recognition sequences of the w.t. p53. Therefore, we speculate that there might be several other PKC-independent biological effects of TPA which result from interaction of such Sp1-p53 complexes with Sp1 recognition sites residing in the promoters of a wide variety of cellular and viral genes.
Collapse
Affiliation(s)
- A Torgeman
- Department of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Kao SY, Lemoine FJ, Marriott SJ. Suppression of DNA repair by human T cell leukemia virus type 1 Tax is rescued by a functional p53 signaling pathway. J Biol Chem 2000; 275:35926-31. [PMID: 10931836 DOI: 10.1074/jbc.m004397200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tax protein of human T cell leukemia virus type 1 is a viral transactivator and transforming protein. Tax is known to suppress cellular nucleotide excision repair (NER), and this activity has been proposed to play an important role in Tax transformation. In this study we have investigated the mechanism by which Tax suppresses NER with specific focus on the previously characterized ability of Tax to inhibit p53 function. Suppression of NER by Tax was rescued by overexpression of wild-type p53; however, a p53 transactivation-incompetent mutant did not restore NER activity. The cyclin-dependent kinase inhibitor p21, a major transcriptional target of p53, plays an important role in regulating DNA replication and repair. Overexpression of p21 reversed Tax-induced suppression of NER; however, a p21 C-terminal mutant that lacks the proliferating cell nuclear antigen binding domain did not restore NER activity. Thus, p53 and its downstream effector p21 can inhibit Tax-mediated suppression of DNA repair. These results imply that the inactivation of p53 function by Tax contributes to Tax suppression of DNA repair.
Collapse
Affiliation(s)
- S Y Kao
- Department of Molecular Virology and Microbiology and Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Lemoine FJ, Kao SY, Marriott SJ. Suppression of DNA repair by HTLV type 1 Tax correlates with Tax trans-activation of proliferating cell nuclear antigen gene expression. AIDS Res Hum Retroviruses 2000; 16:1623-7. [PMID: 11080801 DOI: 10.1089/08892220050193056] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) viral oncoprotein Tax acts as a transcriptional trans-activator affecting viral as well as cellular gene expression. To understand how Tax induces transformation, the consequences of its ability to alter expression of cellular genes must be examined. We have previously demonstrated that Tax activates expression of the cellular gene, proliferating cell nuclear antigen (PCNA), and that Tax suppresses DNA repair. In this study we tested the ability of previously described Tax mutants to activate PCNA gene expression and their ability to interfere with DNA repair. The results revealed a strong correlation between Tax trans-activation of PCNA gene expression and its ability to inhibit DNA repair via the nucleotide excision repair (NER) pathway. Thus, a consequence of activated PCNA gene expression appears to be reduced DNA repair capacity. These effects of Tax are likely to play important roles in its transforming activity.
Collapse
Affiliation(s)
- F J Lemoine
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
44
|
Kao SY, Lemoine FJ, Mariott SJ. HTLV-1 Tax protein sensitizes cells to apoptotic cell death induced by DNA damaging agents. Oncogene 2000; 19:2240-8. [PMID: 10822374 DOI: 10.1038/sj.onc.1203559] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient HTLV-1 Tax expression suppresses cellular nucleotide excision repair, and this effect correlates with Tax transactivation of the proliferating cell nuclear antigen promoter. The inability to repair DNA damage typically induces apoptotic cell death. Therefore, we investigated the effect of Tax-mediated suppression of DNA repair on apoptosis in stable Tax-expressing cells. Constitutive Tax expression reduced cellular nucleotide excision repair activity compared with parental and control cells. Tax-expressing cells were also more sensitive to apoptosis induced by DNA damaging agents than control cells. Even though Tax-expressing cells displayed reduced DNA repair, they showed increased DNA replication following UV damage. These results suggest that Tax suppresses the cell's ability to repair DNA damage and stimulates DNA replication even in the presence of damage. The inability to repair DNA damage is likely to stimulate apoptotic cell death in the majority of Tax-expressing cells while the ability to promote DNA replication may also allow the survival of a small population of cells. We propose that together these effects contribute to the monoclonal nature and low efficiency of HTLV-1 transformation.
Collapse
Affiliation(s)
- S Y Kao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
Ross TM, Narayan M, Fang ZY, Minella AC, Green PL. Human T-cell leukemia virus type 2 tax mutants that selectively abrogate NFkappaB or CREB/ATF activation fail to transform primary human T cells. J Virol 2000; 74:2655-62. [PMID: 10684280 PMCID: PMC111754 DOI: 10.1128/jvi.74.6.2655-2662.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) Tax protein has been implicated in the HTLV oncogenic process, primarily due to its pleiotropic effects on cellular genes involved in growth regulation and cell cycle control. To date, several approaches attempting to correlate Tax activation of the CREB/activating transcription factor (ATF) or NFkappaB/Rel transcriptional activation pathway to cellular transformation have yielded conflicting results. In this study, we use a unique HTLV-2 provirus (HTLV(c-enh)) that replicates by a Tax-independent mechanism to directly assess the role of Tax transactivation in HTLV-mediated T-lymphocyte transformation. A panel of well-characterized tax-2 mutations is utilized to correlate the respective roles of the CREB/ATF or NFkappaB/Rel signaling pathway. Our results demonstrate that viruses expressing tax-2 mutations that selectively abrogate NFkappaB/Rel or CREB/ATF activation display distinct phenotypes but ultimately fail to transform primary human T lymphocytes. One conclusion consistent with our results is that the activation of NFkappaB/Rel provides a critical proliferative signal early in the cellular transformation process, whereas CREB/ATF activation is required to promote the fully transformed state. However, complete understanding will require correlation of Tax domains important in cellular transformation to those Tax domains important in the modulation of gene transcription, cell cycle control, induction of DNA damage, and other undefined activities.
Collapse
Affiliation(s)
- T M Ross
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | |
Collapse
|
46
|
Robek MD, Ratner L. Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol 1999; 73:4856-65. [PMID: 10233947 PMCID: PMC112529 DOI: 10.1128/jvi.73.6.4856-4865.1999] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transcriptional trans-activator Tax has been demonstrated to have transforming activity in multiple cell culture and transgenic-mouse models. In addition to activating transcription from the viral long terminal repeat (LTR) through the cyclic AMP response element binding protein/activating transcription factor (CREB/ATF) family of transcription factors, Tax activates the expression of multiple cellular promoters through the NF-kappaB pathway of transcriptional activation. The Tax mutants M22 and M47 have previously been demonstrated to selectively abrogate the ability of Tax to activate transcription through the NF-kappaB or CREB/ATF pathway, respectively. These mutations were introduced in the tax gene of the ACH functional molecular clone of HTLV-1, and virus produced from the mutant ACH clones was examined for the ability to replicate and immortalize primary human lymphocytes. While virus derived from the clone containing the M47 mutation retained the ability to immortalize T lymphocytes, the M22 mutant lost the ability to immortalize infected cells. These results indicate that activation of the CREB/ATF pathway by Tax is dispensable for the immortalization of T cells by HTLV-1, whereas activation of the NF-kappaB pathway may be critical.
Collapse
Affiliation(s)
- M D Robek
- Departments of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
47
|
Kao SY, Marriott SJ. Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein. J Virol 1999; 73:4299-304. [PMID: 10196328 PMCID: PMC104211 DOI: 10.1128/jvi.73.5.4299-4304.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is a transcriptional transactivator and viral oncogene. Since cellular transformation has been frequently linked to alterations in genome stability, we investigated the effect of Tax on nucleotide excision repair (NER), a prominent cellular DNA repair pathway. Cells expressing Tax exhibited a reduced capacity for NER as measured by unscheduled DNA synthesis and host cell reactivation assays. The cellular proliferating cell nuclear antigen (PCNA) gene product regulates DNA replication and repair pathways, including NER. Since Tax activates transcription of the PCNA promoter, we investigated whether this activity contributes to the reduction of NER. Tax increased endogenous PCNA protein expression, and analysis of Tax mutant proteins demonstrated that the reduction in NER correlated with Tax transactivation of PCNA gene expression. Direct overexpression of PCNA also reduced NER. We propose that overexpression of PCNA, and disruption of NER induced by Tax, predisposes cells to accumulate DNA damage and contributes to HTLV-1 transformation.
Collapse
Affiliation(s)
- S Y Kao
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Krause Boehm A, Stawhecker JA, Semmes OJ, Jankowski PE, Lewis R, Hinrichs SH. Analysis of potential phosphorylation sites in human T cell leukemia virus type 1 Tax. J Biomed Sci 1999; 6:206-12. [PMID: 10343169 DOI: 10.1007/bf02255904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) Tax is a phosphoprotein, however, the contribution of phosphorylation to Tax activity is unknown. Previous studies have shown that phosphorylation of Tax occurs on serine residue(s), within one tryptic fragment, in response to 4beta-phorbol-12beta-myristate-13alpha-acetate, in both mouse and human cells. Studies were conducted in multiple cell lines to identify the specific phosphorylated serines as a prelude to functional analysis. The phosphorylation pattern of Tax was found to be different in 293T and COS-7 cells in comparison with MT-4 and Px-1 cells. However, one tryptic fragment remained consistent in comigration analyses among all cell lines. Using selected Tax serine mutants a tryptic fragment containing a serine at residue 113 believed to be the site of phosphorylation of Tax did not comigrate with the common phosphorylated tryptic fragment. Analysis of selected Tax mutants for ability to trans-activate the cytomegalovirus promoter demonstrated mutation of serine 77 to alanine reduced trans-activation by 90% compared to wild-type Tax. However, examination of the phosphorylation pattern of the serine 77 mutant demonstrated that it is not the site of phosphorylation. These studies demonstrate the importance of using relevant cell lines to characterize the role of phosphorylation in protein function.
Collapse
Affiliation(s)
- A Krause Boehm
- Department of Pathology and Microbiology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|