1
|
Cryo-Electron Tomography of the Herpesvirus Procapsid Reveals Interactions of the Portal with the Scaffold and a Shift on Maturation. mBio 2021; 12:mBio.03575-20. [PMID: 33727359 PMCID: PMC8092310 DOI: 10.1128/mbio.03575-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.
Collapse
|
2
|
Tsurumi S, Watanabe T, Iwaisako Y, Suzuki Y, Nakano T, Fujimuro M. Kaposi's sarcoma-associated herpesvirus ORF17 plays a key role in capsid maturation. Virology 2021; 558:76-85. [PMID: 33735753 DOI: 10.1016/j.virol.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus is a human rhadinovirus of the gammaherpesvirus sub-family. Although herpesviruses are well-studied models of capsid formation and its processes, those of KSHV remain unknown. KSHV ORF17 encoding the viral protease precursor (ORF17-prePR) is thought to contribute to capsid formation; however, functional information is largely unknown. Here, we evaluated the role of ORF17 during capsid formation by generating ORF17-deficient and ORF17 protease-dead KSHV. Both mutants showed a decrease in viral production but not DNA replication. ORF17 R-mut, with a point-mutation at the restriction or release site (R-site) by which ORF17-prePR can be functionally cleaved into a protease (ORF17-PR) and an assembly region (ORF17-pAP/-AP), failed to play a role in viral production. Furthermore, wild type KSHV produced a mature capsid, whereas ORF17-deficient and protease-dead KSHV produced a B-capsid, (i.e., a closed body possessing a circular inner structure). Therefore, ORF17 and its protease function are essential for appropriate capsid maturation.
Collapse
Affiliation(s)
- Sayaka Tsurumi
- Department of Cell Biology, Kyoto Pharmaceutical University, 1 Misasagi-Shichono, Yamashina, Kyoto, 607-8412, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, 1 Misasagi-Shichono, Yamashina, Kyoto, 607-8412, Japan; Department of Virology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University, 1 Misasagi-Shichono, Yamashina, Kyoto, 607-8412, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, 1 Misasagi-Shichono, Yamashina, Kyoto, 607-8412, Japan.
| |
Collapse
|
3
|
Luo F, Liu J, Wang Y, Xu M, Ren Z. PGG impairs herpes simplex virus type 1 infection via blocking capsid assembly. Future Virol 2018. [DOI: 10.2217/fvl-2017-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Pentagalloylglucose (PGG), a hydrolyzable polyphenol was isolated from Phyllanthus emblica, which exhibited a strong inhibitory activity on HSV-1 infection, but its underlying mechanisms have not been completely delineated. Results/methodology: Using TEM, we first observed that PGG blocked the formation and maturation of HSV-1 capsid particles. Hence, we engaged in exploring the molecular mechanisms of PGG on the capsid assembly. At last, we found that PGG also blocked the relocalization of capsid proteins from the cytoplasm to the nucleus where the assembly took place. Conclusion: The current studies, for the first time, demonstrated acetylated microtubules were needed at this process of capsid proteins nuclear translocation. PGG also impairs herpes simplex virus type 1 infection by blocking capsid assembly.
Collapse
Affiliation(s)
- Fan Luo
- Guangzhou Jinan Biomedicine Research & Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
- The Industry-Academia-Research Demonstration Base of Guangdong Higher Education Institutes (Namely Innovative Culturing Base of Graduates), Jinan University, Guangzhou, Guangdong, China
- College of Life Science & Technology, Jinan University, Guangzhou, Guangdong, China
| | - Junwei Liu
- Guangzhou Jinan Biomedicine Research & Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research & Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
- The Industry-Academia-Research Demonstration Base of Guangdong Higher Education Institutes (Namely Innovative Culturing Base of Graduates), Jinan University, Guangzhou, Guangdong, China
| | - Mingfang Xu
- College of Life Science & Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research & Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
- The Industry-Academia-Research Demonstration Base of Guangdong Higher Education Institutes (Namely Innovative Culturing Base of Graduates), Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zühlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses. J Gen Virol 2017; 98:1969-1984. [PMID: 28758622 DOI: 10.1099/jgv.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During assembly of herpesvirus capsids, a protein scaffold self-assembles to ring-like structures forming the scaffold of the spherical procapsids. Proteolytic activity of the herpesvirus maturational protease causes structural changes that result in angularization of the capsids. In those mature icosahedral capsids, the packaging of viral DNA into the capsids can take place. The strictly regulated protease is called assemblin. It is inactive in its monomeric state and activated by dimerization. The structures of the dimeric forms of several assemblins from all herpesvirus subfamilies have been elucidated in the last two decades. They revealed a unique serine-protease fold with a catalytic triad consisting of a serine and two histidines. Inhibitors that disturb dimerization by binding to the dimerization area were found recently. Additionally, the structure of the monomeric form of assemblin from pseudorabies virus and some monomer-like structures of Kaposi's sarcoma-associated herpesvirus assemblin were solved. These findings are the proof-of-principle for the development of new anti-herpesvirus drugs. Therefore, the most important information on this fascinating and unique class of proteases is summarized here.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| |
Collapse
|
5
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Wu W, Newcomb WW, Cheng N, Aksyuk A, Winkler DC, Steven AC. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging. J Virol 2016; 90:5176-86. [PMID: 26984725 PMCID: PMC4859710 DOI: 10.1128/jvi.03224-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/09/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids-which develop into infectious virions-are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation damage was used to localize internal proteins of HSV-1, yielding insights into how capsid maturation is regulated. The scaffolding protein, which forms inner shells in the procapsid and B capsid, is exceptionally bubbling-prone. In the mature DNA-filled C capsid, a previously undetected protein was found to underlie the icosahedral vertices: this is tentatively assigned as a storage form of the viral protease. We also observed a capsid species that appears to contain substantial amounts of scaffolding protein as well as DNA, suggesting that DNA packaging and expulsion of the scaffolding protein are coupled processes.
Collapse
Affiliation(s)
- Weimin Wu
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - William W Newcomb
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anastasia Aksyuk
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis C Winkler
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Abstract
The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T=16 icosahedral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffolding protein. Assembly also relies on an external scaffolding protein, the triplex, an α2β heterotrimer that coordinates neighboring capsomers in the procapsid and becomes a stabilizing clamp in the mature capsid. To investigate the mechanisms that regulate its assembly, we developed a novel isolation procedure for the metastable procapsid and collected a large set of cryo-electron microscopy data. In addition to procapsids, these preparations contain maturation intermediates, which were distinguished by classifying the images and calculating a three-dimensional reconstruction for each class. Appraisal of the procapsid structure led to a new model for assembly; in it, the protomer (assembly unit) consists of one triplex, surrounded by three major capsid protein (MCP) subunits. The model exploits the triplexes’ departure from 3-fold symmetry to explain the highly skewed MCP hexamers, the triplex orientations at each 3-fold site, and the T=16 architecture. These observations also yielded new insights into maturation. This paper addresses the molecular mechanisms that govern the self-assembly of large, structurally complex, macromolecular particles, such as the capsids of double-stranded DNA viruses. Although they may consist of thousands of protein subunits of many different kinds, their assembly is precise, ranking them among the largest entities in the biosphere whose structures are uniquely defined to the atomic level. Assembly proceeds in two stages: formation of a precursor particle (procapsid) and maturation, during which major changes in structure and composition take place. Our analysis of the HSV procapsid by cryo-electron microscopy suggests a hierarchical pathway in which multisubunit “protomers” are the building blocks of the procapsid but their subunits are redistributed into different subcomplexes upon being incorporated into a nascent procapsid and are redistributed again in maturation. Assembly is a highly virus-specific process, making it a potential target for antiviral intervention.
Collapse
|
8
|
Zühlsdorf M, Werten S, Klupp BG, Palm GJ, Mettenleiter TC, Hinrichs W. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease. PLoS Pathog 2015; 11:e1005045. [PMID: 26161660 PMCID: PMC4498786 DOI: 10.1371/journal.ppat.1005045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137); both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution. Herpesviruses encode a unique serine protease, which is essential for herpesvirus capsid maturation and is therefore an interesting target for drug development. In solution, this protease exists in an equilibrium of an inactive monomeric and an active dimeric form. All currently available crystal structures of herpesvirus proteases represent complexes, particularly dimers. Here we show the first three-dimensional structure of the native monomeric form in addition to the native and the chemically inactivated dimeric form of the protease derived from the porcine herpesvirus pseudorabies virus. Comparison of the monomeric and dimeric form allows predictions on the structural changes that occur during dimerization and shed light onto the process of protease activation. These new crystal structures provide a rational base to develop drugs preventing dimerization and therefore impeding herpesvirus capsid maturation. Furthermore, it is likely that this mechanism is conserved throughout the herpesviruses.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sebastiaan Werten
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Gottfried J. Palm
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
9
|
Li ML, Chen JH, Zhao ZY, Zhang KJ, Li Z, Li J, Mai JY, Zhu XM, Cai MS. Molecular cloning and characterization of the pseudorabies virus US1 gene. GENETICS AND MOLECULAR RESEARCH 2013; 12:85-98. [PMID: 23359028 DOI: 10.4238/2013.january.22.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using polymerase chain reaction, a 1050-bp sequence of the US1 gene was amplified from the pseudorabies virus (PRV) Becker strain genome; identification of the US1 gene was confirmed by further cloning and sequencing. Bioinformatics analysis indicated that the PRV US1 gene encodes a putative polypeptide with 349 amino acids. The encoded protein, designated PICP22, had a conserved Herpes_IE68 domain, which was found to be closely related with the herpes virus immediate early regulatory protein family and is highly conserved among the counterparts encoded by Herpes_IE68 genes. Multiple nucleic acid sequence and amino acid sequence alignments suggested that the product of PRV US1 has a relatively higher homology with ICP22-like proteins of genus Varicellovirus than with those of other genera of Alphaherpesvirinae. In addition, phylogenetic analysis showed that PRV US1 has a close evolutionary relationship with members of the genus Varicellovirus, especially Equid herpes virus 1 (EHV-1), EHV-4 and EHV-9. Antigen prediction indicated that several potential B-cell epitopes are located in PICP22. Also, subcellular localization analysis demonstrated that PICP22 is predominantly located in the cytoplasm, suggesting that it might function as a cytoplasmic-targeted protein.
Collapse
Affiliation(s)
- M L Li
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cardone G, Heymann JB, Cheng N, Trus BL, Steven AC. Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:423-39. [PMID: 22297525 PMCID: PMC3475206 DOI: 10.1007/978-1-4614-0980-9_19] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herpesviruses, a family of animal viruses with large (125-250 kbp) linear DNA genomes, are highly diversified in terms of host range; nevertheless, their virions conform to a common architecture. The genome is confined at high density within a thick-walled icosahedral capsid with the uncommon (among viruses, generally) but unvarying triangulation number T = 16. The envelope is a membrane in which some 11 different viral glycoproteins are implanted. Between the capsid and the envelope is a capacious compartment called the tegument that accommodates ∼20-40 different viral proteins (depending on which virus) destined for delivery into a host cell. A strong body of evidence supports the hypothesis that herpesvirus capsids and those of tailed bacteriophages stem from a distant common ancestor, whereas their radically different infection apparatuses - envelope on one hand and tail on the other - reflect subsequent coevolution with divergent hosts. Here we review the molecular components of herpesvirus capsids and the mechanisms that regulate their assembly, with particular reference to the archetypal alphaherpesvirus, herpes simplex virus type 1; assess their duality with the capsids of tailed bacteriophages; and discuss the mechanism whereby, once DNA packaging has been completed, herpesvirus nucleocapsids exit from the nucleus to embark on later stages of the replication cycle.
Collapse
Affiliation(s)
- Giovanni Cardone
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Bernard Heymann
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benes L. Trus
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C. Steven
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures. J Virol 2011; 85:12698-707. [PMID: 21957296 DOI: 10.1128/jvi.05791-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.
Collapse
|
12
|
Fernandes SM, Brignole EJ, Gibson W. Cytomegalovirus capsid protease: biological substrates are cleaved more efficiently by full-length enzyme (pUL80a) than by the catalytic domain (assemblin). J Virol 2011; 85:3526-34. [PMID: 21270147 PMCID: PMC3067851 DOI: 10.1128/jvi.02663-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/19/2011] [Indexed: 11/20/2022] Open
Abstract
We compared the full-length capsid maturational protease (pPR, pUL80a) of human cytomegalovirus with its proteolytic domain (assemblin) for the ability to cleave two biological substrates, and we found that pPR is more efficient with both. Affinity-purified, refolded enzymes and substrates were combined under defined reaction conditions, and cleavage was monitored and quantified following staining of the resulting electrophoretically separated fragments. The enzymes were stabilized against self-cleavage by a single point mutation in each cleavage site (ICRMT-pPR and IC-assemblin). The substrates were pPR itself, inactivated by replacing its catalytic nucleophile (S132A-pPR), and the sequence-related assembly protein precursor (pAP, pUL80.5). Our results showed that (i) ICRMT-pPR is 5- to 10-fold more efficient than assemblin for all cleavages measured (i.e., the M site of pAP and the M, R, and I sites of S132A-pPR). (ii) Cleavage of substrate S132A-pPR proceeded M>R>I for both enzymes. (iii) Na(2)SO(4) reduced M- and R-site cleavage efficiency by ICRMT-pPR, in contrast to its enhancing effect for both enzymes on I site and small peptide cleavage. (iv) Disrupting oligomerization of either the pPR enzyme or substrate by mutating Leu382 in the amino-conserved domain reduced cleavage efficiency two- to fourfold. (v) Finally, ICRMT-pPR mutants that include the amino-conserved domain, but terminate with Pro481 or Tyr469, retain the enzymatic characteristics that distinguish pPR from assemblin. These findings show that the scaffolding portion of pPR increases its enzymatic activity on biologically relevant protein substrates and provide an additional link between the structure of this essential viral enzyme and its biological mechanism.
Collapse
Affiliation(s)
- Steve M. Fernandes
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205
| | - Edward J. Brignole
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205
| | - Wade Gibson
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205
| |
Collapse
|
13
|
Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis. Virology 2010; 407:306-18. [PMID: 20850163 DOI: 10.1016/j.virol.2010.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/16/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
Abstract
A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-∆65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.
Collapse
|
14
|
Autographa californica multiple nucleopolyhedrovirus me53 (ac140) is a nonessential gene required for efficient budded-virus production. J Virol 2009; 83:7440-8. [PMID: 19457997 DOI: 10.1128/jvi.02390-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
me53 is a highly conserved baculovirus gene found in all lepidopteran baculoviruses that have been fully sequenced to date. The putative ME53 protein contains a zinc finger domain and has been previously described as a major early transcript. We generated an me53-null bacmid (AcDeltame53GFP), as well as a repair virus (AcRepME53:HA-GFP) carrying me53 with a C-terminal hemagglutinin (HA) tag, under the control of its native early and late promoter elements. Sf9 and BTI-Tn-5b1 cells transfected with AcDeltame53GFP resulted in a 3-log reduction in budded-virus (BV) production compared to both the parental Autographa californica multiple nucleopolyhedrosis virus and the repair bacmids, demonstrating that although me53 is not essential for replication, replication is compromised in its absence. Our data also suggest that me53 does not affect DNA replication. Cell fractionation showed that ME53 is found in both the nucleus and the cytoplasm as early as 6 h postinfection. Deletion of the early transcriptional start site resulted in a 10- to 360-fold reduction of BV yield; however, deletion of the late promoter (ATAAG) resulted in a 160- to 1,000-fold reduction, suggesting that, in the context of BV production, ME53 is required both early and late in the infection cycle. Additional Western blot analysis of purified virions from the repair virus revealed that ME53:HA is associated with both BV and occlusion-derived virions. Together, these results indicate that me53, although not essential for viral replication, is required for efficient BV production.
Collapse
|
15
|
Loveland AN, Nguyen NL, Brignole EJ, Gibson W. The amino-conserved domain of human cytomegalovirus UL80a proteins is required for key interactions during early stages of capsid formation and virus production. J Virol 2006; 81:620-8. [PMID: 17079329 PMCID: PMC1797439 DOI: 10.1128/jvi.01903-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of many spherical virus capsids is guided by an internal scaffolding protein or group of proteins that are often cleaved and eliminated in connection with maturation and incorporation of the genome. In cytomegalovirus there are at least two proteins that contribute to this scaffolding function; one is the maturational protease precursor (pUL80a), and the other is the assembly protein precursor (pUL80.5) encoded by a shorter genetic element within UL80a. Yeast GAL4 two-hybrid assays established that both proteins contain a carboxyl-conserved domain that is required for their interaction with the major capsid protein (pUL86) and an amino-conserved domain (ACD) that is required for their self-interaction and for their interaction with each other. In the work reported here, we demonstrate that when the ACD is deleted (deltaACD) or disrupted by a point mutation (L47A), the bacterially expressed mutant protein sediments as a monomer during rate-velocity centrifugation, whereas the wild-type protein sediments mainly as oligomers. We also show that the L47A mutation reduces the production of infectious virus by at least 90%, results in the formation of irregular nuclear capsids, gives rise to tube-like structures in the nucleus that resemble the capsid core in cross-section and contain UL80 proteins, slows nuclear translocation of the major capsid protein, and may slow cleavage by the maturational protease. We provide physical corroboration that mutating the ACD disrupts self-interaction of the UL80 proteins and biological support for the proposal that the ACD has a critical role in capsid assembly and production of infectious virus.
Collapse
Affiliation(s)
- Amy N Loveland
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
16
|
Singer GP, Newcomb WW, Thomsen DR, Homa FL, Brown JC. Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J Virol 2005; 79:132-9. [PMID: 15596809 PMCID: PMC538710 DOI: 10.1128/jvi.79.1.132-139.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 capsid is a protective shell that acts as a container for the genetic material of the virus. After assembly of the capsid, the viral DNA is translocated into the capsid interior through a channel formed by the portal. The portal is composed of a dodecamer of UL6 molecules which form a ring-like structure found at a single vertex within the icosahedron. Formation of portal-containing capsids minimally requires the four structural proteins (VP5, VP19C, VP23, and UL6) and a scaffolding protein (UL26.5). Recently, an interaction between UL26.5 and the portal has been identified, suggesting the scaffold functions by delivering the portal to the growing capsid shell. The aim of this study was to identify regions within UL26.5 required for its interaction with the portal. A specific region was identified by mutational analysis. Deletion of scaffold amino acids (aa) 143 to 151 was found to be sufficient to inhibit formation of the scaffold-portal complex as assayed in vitro. The aa 143 to 151 contain the sequence YYPGE, which is highly conserved among alpha herpesviruses. Although it did not bind to the portal, the Delta143-151 mutant was found to retain the ability to support assembly of morphologically normal capsids in vitro. Such capsids, however, did not contain the portal. The results suggest assembly of portal-containing capsids requires formation of a scaffold-portal complex in which intermolecular contact is dependent on scaffold aa 143 to 151.
Collapse
Affiliation(s)
- Gregory P Singer
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
17
|
Casaday RJ, Bailey JR, Kalb SR, Brignole EJ, Loveland AN, Cotter RJ, Gibson W. Assembly protein precursor (pUL80.5 homolog) of simian cytomegalovirus is phosphorylated at a glycogen synthase kinase 3 site and its downstream "priming" site: phosphorylation affects interactions of protein with itself and with major capsid protein. J Virol 2004; 78:13501-11. [PMID: 15564461 PMCID: PMC533919 DOI: 10.1128/jvi.78.24.13501-13511.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Capsid assembly among the herpes-group viruses is coordinated by two related scaffolding proteins. In cytomegalovirus (CMV), the main scaffolding constituent is called the assembly protein precursor (pAP). Like its homologs in other herpesviruses, pAP is modified by proteolytic cleavage and phosphorylation. Cleavage is essential for capsid maturation and production of infectious virus, but the role of phosphorylation is undetermined. As a first step in evaluating the significance of this modification, we have identified the specific sites of phosphorylation in the simian CMV pAP. Two were established previously to be adjacent serines (Ser156 and Ser157) in a casein kinase II consensus sequence. The remaining two, identified here as Thr231 and Ser235, are within consensus sequences for glycogen synthase kinase 3 (GSK-3) and mitogen-activated protein kinase, respectively. Consistent with Thr231 being a GSK-3 substrate, its phosphorylation required a downstream "priming" phosphate (i.e., Ser235) and was reduced by a GSK-3-specific inhibitor. Phosphorylation of Ser235 converts pAP to an electrophoretically slower-mobility isoform, pAP*; subsequent phosphorylation of pAP* at Thr231 converts pAP* to a still-slower isoform, pAP**. The mobility shift to pAP* was mimicked by substituting an acidic amino acid for either Thr231 or Ser235, but the shift to pAP** required that both positions be phosphorylated. Glu did not substitute for pSer235 in promoting phosphorylation of Thr231. We suggest that phosphorylation of Thr231 and Ser235 causes charge-driven conformational changes in pAP, and we demonstrate that preventing these modifications alters interactions of pAP with itself and with major capsid protein, suggesting a functional significance.
Collapse
Affiliation(s)
- Rebecca J Casaday
- Department of Pharmacology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2105, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Knejzlík Z, Strohalm M, Sedlácková L, Kodícek M, Sakalian M, Ruml T. Isolation and characterization of the Mason–Pfizer monkey virus p12 protein. Virology 2004; 324:204-12. [PMID: 15183067 DOI: 10.1016/j.virol.2004.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 12/22/2003] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
The Mason-Pfizer monkey virus (M-PMV) Gag protein, precursor to the structural proteins of the infectious virion, assembles into immature capsid-like particles when expressed at high levels in bacterial cells. Similar capsid-like particles can be obtained by in vitro assembly using a high concentration of isolated Gag. M-PMV Gag contains a p12 protein that has no corresponding analogues in most other retroviruses and has been suggested to contain an internal scaffold domain (ISD). We have expressed and purified p12 and the N- and C-terminal halves (Np12 and Cp12) that are predicted to be structurally independent domains. The behavior of these proteins was analyzed using chemical cross-linking, CD spectroscopy, and electron microscopy. The N-terminal half of p12 is largely alpha-helical although the C-terminal portion lacks any apparent ordered structure. Both p12 and Np12 form high-order oligomers in vitro and when expressed in E. coli produce organized structures that are visible by electron microscopy. Interestingly, Cp12, as well as the whole protein, can form dimers in the presence of SDS. The data show that both domains of p12 contribute to its ability to multimerize with much of this potential residing in its N-terminal part, most probably within the leucine zipper-like (LZL) sequence.
Collapse
Affiliation(s)
- Zdenek Knejzlík
- Department of Biochemistry and Microbiology and Center for Integrated Genomics, Institute of Chemical Technology, 166 28 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
19
|
Hardies SC, Comeau AM, Serwer P, Suttle CA. The complete sequence of marine bacteriophage VpV262 infecting vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology 2003; 310:359-71. [PMID: 12781722 DOI: 10.1016/s0042-6822(03)00172-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 46,012-bp sequence of the marine bacteriophage VpV262 infecting the bacterium Vibrio parahaemolyticus is reported. The VpV262 sequence reveals that it is a distant relative of marine Roseophage SIO1, and an even more distant relative of coliphage T7. VpV262 and SIO1 appear to represent a widespread marine phage group that lacks an RNA polymerase gene and is ancestral to the T7-like phages. We propose that this group together with the T7-like phages be designated as the T7 supergroup. The ancestral head structure gene module for the T7 supergroup was reconstructed by using sensitive biased Psi-blast searches supplemented by statistical support derived from gene order. In the early and replicative segments, these phages have participated in extensive interchange with the viral gene pool. VpV262 carries a different replicative module than SIO1 and the T7-like phages.
Collapse
Affiliation(s)
- Stephen C Hardies
- Department of Biochemistry, MSC 7760, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
20
|
Rose A, Gindullis F, Meier I. A novel alpha-helical protein, specific to and highly conserved in plants, is associated with the nuclear matrix fraction. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1133-1141. [PMID: 12654864 DOI: 10.1093/jxb/erg114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA for a novel plant protein was isolated from tomato. Nuclear Matrix Protein 1 (NMP1) is a ubiquitously expressed 36 kDa protein, which has no homologues in animals and fungi, but is highly conserved among flowering and non-flowering plants, including gymnosperms, moss, and the liverwort Marchantia polymorpha. NMP1 is predominantly alpha-helical with multiple stretches of short amphipathic regions. Cell fractionation, immunofluorescence, and GFP localization experiments showed that NMP1 is located both in the cytoplasm and nucleus and that the nuclear fraction is associated with the nuclear matrix. NMP1 is a candidate for a plant-specific structural protein with a function both in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Annkatrin Rose
- Plant Biotechnology Center and Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
21
|
Walters JN, Sexton GL, McCaffery JM, Desai P. Mutation of single hydrophobic residue I27, L35, F39, L58, L65, L67, or L71 in the N terminus of VP5 abolishes interaction with the scaffold protein and prevents closure of herpes simplex virus type 1 capsid shells. J Virol 2003; 77:4043-59. [PMID: 12634364 PMCID: PMC150648 DOI: 10.1128/jvi.77.7.4043-4059.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein interactions drive the assembly of the herpes simplex virus type 1 (HSV-1) capsid. A key interaction occurs between the C-terminal tail of the scaffold protein (pre-22a) and the major capsid protein (VP5). Previously (Z. Hong, M. Beaudet-Miller, J. Durkin, R. Zhang, and A. D. Kwong, J. Virol. 70:533-540, 1996) it was shown that the minimal domain in the scaffold protein necessary for this interaction was composed of a hydrophobic amphipathic helix. The goal of this study was to identify the hydrophobic residues in VP5 important for this bimolecular interaction. Results from the genetic analysis of second-site revertant virus mutants identified the importance of the N terminus of VP5 for the interaction with the scaffold protein. This allowed us to focus our efforts on a small region of this large polypeptide. Twenty-four hydrophobic residues, starting at L23 and ending at F84, were mutated to alanine. All the mutants were first screened for interaction with pre-22a in the yeast two-hybrid assay. From this in vitro assay, seven residues, I27, L35, F39, L58, L65, L67, and L71, that eliminated the interaction when mutated were identified. All 24 mutants were introduced into the virus genome with a genetic marker rescue/marker transfer system. For this system, viruses and cell lines that greatly facilitated the introduction of the mutants into the genome were made. The same seven mutants that abolished interaction of VP5 with pre-22a resulted in an absolute requirement for wild-type VP5 for growth of the viruses. The viruses encoding these mutations in VP5 were capable of forming capsid shells comprised of VP5, VP19C, VP23, and VP26, but the closure of these shells into an icosahedral structure was prevented. Mutation at L75 did not affect the ability of this protein to interact with pre-22a, as judged from the in vitro assay, but this mutation specified a lethal effect for virus growth and abolished the formation of any detectable assembled structure. Thus, it appears that the L75 residue is important for another essential interaction of VP5 with the capsid shell proteins. The congruence of the data from the previous and present studies demonstrates the key roles of two regions in the N terminus of this large protein that are crucial for this bimolecular interaction. Thus, residues I27, L35, and F39 comprise the first subdomain and residues L58, L65, L67 and L71 comprise a second subdomain of VP5. These seven hydrophobic residues are important for the interaction of VP5 with the scaffold protein and consequently the formation of an icosahedral shell structure that encloses the viral genome.
Collapse
Affiliation(s)
- Jewell N Walters
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
22
|
Chan CK, Brignole EJ, Gibson W. Cytomegalovirus assemblin (pUL80a): cleavage at internal site not essential for virus growth; proteinase absent from virions. J Virol 2002; 76:8667-74. [PMID: 12163586 PMCID: PMC136994 DOI: 10.1128/jvi.76.17.8667-8674.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) maturational proteinase is synthesized as an enzymatically active 74-kDa precursor that cleaves itself at four sites. Two of these, called the maturational (M) and release (R) sites, are conserved in the homologs of all herpesviruses. The other two, called the internal (I) and cryptic (C) sites, have recognized consensus sequences only among cytomegalovirus (CMV) homologs and are located in the 28-kDa proteolytic portion of the precursor, called assemblin. I-site cleavage cuts assemblin in half without detected effect on its enzymatic behavior in vitro. To investigate the requirement for this cleavage during virus infection, we used the CMV-bacterial artificial chromosome system (E. M. Borst, G. Hahn, U. H. Koszinowski, and M. Messerle, J. Virol. 73:8320-8329, 1999) to construct a virus encoding a mutant I site (Ala143 to Val) intended to be blocked for cleavage. Characterizations of the resulting mutant (i) confirmed the presence of the mutation in the viral genome and the inability of the mutant virus to effect I-site cleavage in infected cells; (ii) determined that the mutation has no gross effect on the rate of virus production or on the amounts of extracellular virions, noninfectious enveloped particles (NIEPs), and dense bodies; (iii) established that assemblin and its cleavage products are present in NIEPs but are absent from CMV virions, an apparent difference from what is found for virions of herpes simplex virus; and (iv) showed that the 23-kDa protein product of C-site cleavage is more abundant in mutant virus-than in wild-type virus-infected cells and NIEPs. We conclude that the production of infectious CMV requires neither I-site cleavage of assemblin nor the presence of assemblin in the mature virion.
Collapse
Affiliation(s)
- Chee-Kai Chan
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
23
|
McClelland DA, Aitken JD, Bhella D, McNab D, Mitchell J, Kelly SM, Price NC, Rixon FJ. pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. J Virol 2002; 76:7407-17. [PMID: 12097553 PMCID: PMC136365 DOI: 10.1128/jvi.76.15.7407-7417.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Assembly of the infectious herpes simplex virus type 1 virion is a complex, multistage process that begins with the production of a procapsid, which is formed by the condensation of capsid shell proteins around an internal scaffold fashioned from multiple copies of the scaffolding protein, pre-VP22a. The ability of pre-VP22a to interact with itself is an essential feature of this process. However, this self-interaction must subsequently be reversed to allow the scaffolding proteins to exit from the capsid to make room for the viral genome to be packaged. The nature of the process by which dissociation of the scaffold is accomplished is unknown. Therefore, to investigate this process, the properties of isolated scaffold particles were investigated. Electron microscopy and gradient sedimentation studies showed that the particles could be dissociated by low concentrations of chaotropic agents and by moderate reductions in pH (from 7.2 to 5.5). Fluorescence spectroscopy and circular dichroism analyses revealed that there was relatively little change in tertiary and secondary structures under these conditions, indicating that major structural transformations are not required for the dissociation process. We suggest the possibility that dissociation of the scaffold may be triggered by a reduction in pH brought about by the entry of the viral DNA into the capsid.
Collapse
Affiliation(s)
- David A McClelland
- MRC Virology Unit, Faculty of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wittwer AJ, Funckes-Shippy CL, Hippenmeyer PJ. Recombinant full-length human cytomegalovirus protease has lower activity than recombinant processed protease domain in purified enzyme and cell-based assays. Antiviral Res 2002; 55:291-306. [PMID: 12103430 DOI: 10.1016/s0166-3542(02)00051-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpesviruses encode a protease that is essential for virus replication. The protease undergoes cleavage to a processed form during capsid maturation. A recombinant 75 kDa form of the protease from human cytomegalovirus was purified and compared with the recombinant 29 kDa processed form. Modification with an active site titrant suggested that most of each recombinant protease preparation was active (66 and 86%, respectively). Protease activity was compared using a low-molecular weight peptide substrate and the native substrate, capsid assembly protein. In addition, a cell-based assay for both enzymes was developed in which the target sequence of the protease has been fused inframe into the herpes simplex virus VP16 molecule. Cleavage of the fusion protein by the protease releases the carboxyl terminal transactivation domain, resulting in a decrease in the ability of the fusion molecule to transactivate a target promoter linked to a reporter gene in mammalian cells. Results suggest that the 75 kDa form of the enzyme is significantly less active than the 29 kDa form by all criteria.
Collapse
Affiliation(s)
- Arthur J Wittwer
- Pharmacia Discovery Research, 700 Chesterfield Village Parkway North, St. Louis, MO 63198, USA
| | | | | |
Collapse
|
25
|
Preston VG, McDougall IM. Regions of the herpes simplex virus scaffolding protein that are important for intermolecular self-interaction. J Virol 2002; 76:673-87. [PMID: 11752158 PMCID: PMC136825 DOI: 10.1128/jvi.76.2.673-687.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) scaffolding protein encoded by gene UL26.5 promotes the formation of the icosahedral capsid shell through its association with the major capsid protein VP5 and through intermolecular interactions with itself. Inside the capsid shell, the UL26.5 product together with the maturational protease, a minor protein, form a spherical structure which is broken down and released from the capsid during packaging of the viral genome. Selected residues from four internal regions of the HSV-1 scaffolding protein that have significant conservation of amino acids within the scaffolding proteins of alphaherpesviruses were mutated, and the properties of the proteins were examined. Only the HSV-1 scaffolding protein with mutations in the conserved N-terminal domain showed reduced interaction with the varicella-zoster virus homologue in a cell-based immunofluorescence assay, providing the first evidence that this domain in the HSV-1 protein is likely to be involved in intermolecular self-interaction. Scaffolding protein with mutations in this domain or in either of two other domains failed to assemble into scaffold-like particles but retained the ability to self-interact, although the aggregates were significant smaller than most of the aggregates formed by the wild-type protein. These results suggest that there are multiple domains involved in the intermolecular self-association of the HSV-1 scaffolding protein that can act independently of one another. This conclusion was supported by the observation that none of the mutant proteins with lesions in an individual domain, including a protein with mutations in a central region previously implicated in self-interaction (A. Pelletier, F. Dô, J. J. Brisebois, L. Lagacé, and M. G. Cordingley, J. Virol. 71:5197-5208, 1997), interfered with capsid assembly in a baculovirus expression system. A protein mutated in the central region and another conserved domain, both of which had been predicted to form coiled coils, was impaired for capsid formation but still retained the capacity to interact with VP5.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baculoviridae/genetics
- Capsid/genetics
- Capsid/metabolism
- Capsid/ultrastructure
- Capsid Proteins
- Cell Line
- Centrifugation, Density Gradient
- Chlorocebus aethiops
- Conserved Sequence/genetics
- Genome, Viral
- Herpesvirus 1, Human/chemistry
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/ultrastructure
- Herpesvirus 3, Human/chemistry
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Mutation/genetics
- Protein Binding
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Sequence Homology
- Vero Cells
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/ultrastructure
- Virus Assembly
Collapse
Affiliation(s)
- Valerie G Preston
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom.
| | | |
Collapse
|
26
|
Buisson M, Valette E, Hernandez JF, Baudin F, Ebel C, Morand P, Seigneurin JM, Arlaud GJ, Ruigrok RW. Functional determinants of the Epstein-Barr virus protease. J Mol Biol 2001; 311:217-28. [PMID: 11469870 DOI: 10.1006/jmbi.2001.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus proteases are essential for the production of progeny virus. They cleave the assembly protein that fills the immature capsid in order to make place for the viral DNA. The recombinant protease of the human gamma-herpesvirus Epstein-Barr virus (EBV) was expressed in Escherichia coli and purified. Circular dichroism indicated that the protein was properly folded with a secondary structure content similar to that of other herpesvirus proteases. Gel filtration and sedimentation analysis indicated a fast monomer-dimer equilibrium of the protease with a K(d) of about 60 microM. This value was not influenced by glycerol but was lowered to 1.7 microM in the presence of 0.5 M sodium citrate. We also developed an HPLC-based enzymatic assay using a 20 amino acid residue synthetic peptide substrate derived from one of the viral target sequences for the protease. We found that conditions that stabilised the dimer also led to a higher enzymatic activity. Through sequential deletion of amino acid residues from either side of the cleavage site, the minimal peptide substrate for the protease was determined as P5-P2'. This minimal sequence is shorter than that for other herpesvirus proteases. The implications of our findings are discussed with reference to the viral life-cycle. These results are the first ever published on the EBV protease and represent a first step towards the development of protease inhibitors.
Collapse
Affiliation(s)
- M Buisson
- Laboratoire de Virologie, Hôpital Michallon, Grenoble Cedex 9, 38043, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stavolone L, Herzog E, Leclerc D, Hohn T. Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol 2001; 75:7739-43. [PMID: 11462048 PMCID: PMC115011 DOI: 10.1128/jvi.75.16.7739-7743.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plant pararetroviruses belong to the Caulimoviridae family. This family contains six genera of viruses with different biological, serological, and molecular characteristics. Although some important mechanisms of viral replication and host infection are understood, much remains to be discovered about the many functions of the viral proteins. The focus of this study, the virion-associated protein (VAP), is conserved among all members of the group and contains a coiled-coil structure that has been shown to assemble as a tetramer in the case of cauliflower mosaic virus. We have used the yeast two-hybrid system to characterize self-association of the VAPs of four distinct plant pararetroviruses, each belonging to a different genus of Caulimoviridae. Chemical cross-linking confirmed that VAPs assemble into tetramers. Tetramerization is thus a common property of these proteins in plant pararetroviruses. The possible implications of this conserved feature for VAP function are discussed.
Collapse
Affiliation(s)
- L Stavolone
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
28
|
Sheaffer AK, Newcomb WW, Gao M, Yu D, Weller SK, Brown JC, Tenney DJ. Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J Virol 2001; 75:687-98. [PMID: 11134282 PMCID: PMC113965 DOI: 10.1128/jvi.75.2.687-698.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Packaging of DNA into preformed capsids is a fundamental early event in the assembly of herpes simplex virus type 1 (HSV-1) virions. Replicated viral DNA genomes, in the form of complex branched concatemers, and unstable spherical precursor capsids termed procapsids are thought to be the substrates for the DNA-packaging reaction. In addition, seven viral proteins are required for packaging, although their individual functions are undefined. By analogy to well-characterized bacteriophage systems, the association of these proteins with various forms of capsids, including procapsids, might be expected to clarify their roles in the packaging process. While the HSV-1 UL6, UL15, UL25, and UL28 packaging proteins are known to associate with different forms of stable capsids, their association with procapsids has not been tested. Therefore, we isolated HSV-1 procapsids from infected cells and used Western blotting to identify the packaging proteins present. Procapsids contained UL15 and UL28 proteins; the levels of both proteins are diminished in more mature DNA-containing C-capsids. In contrast, UL6 protein levels were approximately the same in procapsids, B-capsids, and C-capsids. The amount of UL25 protein was reduced in procapsids relative to that in more mature B-capsids. Moreover, C-capsids contained the highest level of UL25 protein, 15-fold higher than that in procapsids. Our results support current hypotheses on HSV DNA packaging: (i) transient association of UL15 and UL28 proteins with maturing capsids is consistent with their proposed involvement in site-specific cleavage of the viral DNA (terminase activity); (ii) the UL6 protein may be an integral component of the capsid shell; and (iii) the UL25 protein may associate with capsids after scaffold loss and DNA packaging, sealing the DNA within capsids.
Collapse
Affiliation(s)
- A K Sheaffer
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Newcomb WW, Homa FL, Thomsen DR, Brown JC. In Vitro Assembly of the Herpes Simplex Virus Procapsid: Formation of Small Procapsids at Reduced Scaffolding Protein Concentration. J Struct Biol 2001; 133:23-31. [PMID: 11356061 DOI: 10.1006/jsbi.2001.4329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus 1 capsid is formed in the infected cell nucleus by way of a spherical, less robust intermediate called the procapsid. Procapsid assembly requires the capsid shell proteins (VP5, VP19C, and VP23) plus the scaffolding protein, pre-VP22a, a major component of the procapsid that is not present in the mature virion. Pre-VP22a is lost as DNA is packaged and the procapsid is transformed into the mature, icosahedral capsid. We have employed a cell-free assembly system to examine the role of the scaffolding protein in procapsid formation. While other reaction components (VP5, VP19C, and VP23) were held constant, the pre-VP22a concentration was varied, and the resulting procapsids were analyzed by electron microscopy and SDS-polyacrylamide gel electrophoresis. The results demonstrated that while standard-sized (T = 16) procapsids with a measured diameter of approximately 100 nm were formed above a threshold pre-VP22a concentration, at lower concentrations procapsids were smaller. The measured diameter was approximately 78 nm and the predicted triangulation number was 9. No procapsids larger than the standard size or smaller than 78-nm procapsids were observed in appreciable numbers at any pre-VP22a concentration tested. SDS-polyacrylamide gel analyses indicated that small procapsids contained a reduced amount of scaffolding protein compared to the standard 100-nm form. The observations indicate that the scaffolding protein concentration affects the structure of nascent procapsids with a minimum amount required for assembly of procapsids with the standard radius of curvature and scaffolding protein content.
Collapse
Affiliation(s)
- W W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
30
|
Sheaffer AK, Newcomb WW, Brown JC, Gao M, Weller SK, Tenney DJ. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J Virol 2000; 74:6838-48. [PMID: 10888623 PMCID: PMC112201 DOI: 10.1128/jvi.74.15.6838-6848.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) capsids are initially assembled with an internal protein scaffold. The scaffold proteins, encoded by overlapping in-frame UL26 and UL26.5 transcripts, are essential for formation and efficient maturation of capsids. UL26 encodes an N-terminal protease domain, and its C-terminal oligomerization and capsid protein-binding domains are identical to those of UL26.5. The UL26 protease cleaves itself, releasing minor scaffold proteins VP24 and VP21, and the more abundant UL26.5 protein, releasing the major scaffold protein VP22a. Unlike VP21 and VP22a, which are removed from capsids upon DNA packaging, we demonstrate that VP24 (containing the protease domain) is quantitatively retained. To investigate factors controlling UL26 capsid incorporation and retention, we used a mutant virus that fails to express UL26.5 (DeltaICP35 virus). Purified DeltaICP35 B capsids showed altered sucrose gradient sedimentation and lacked the dense scaffold core seen in micrographs of wild-type B capsids but contained capsid shell proteins in wild-type amounts. Despite C-terminal sequence identity between UL26 and UL26.5, DeltaICP35 capsids lacking UL26.5 products did not contain compensatory high levels of UL26 proteins. Therefore, HSV capsids can be maintained and/or assembled on a minimal scaffold containing only wild-type levels of UL26 proteins. In contrast to UL26.5, increased expression of UL26 did not compensate for the DeltaICP35 growth defect. While indirect, these findings are consistent with the view that UL26 products are restricted from occupying abundant UL26.5 binding sites within the capsid and that this restriction is not controlled by the level of UL26 protein expression. Additionally, DeltaICP35 capsids contained an altered complement of DNA cleavage and packaging proteins, suggesting a previously unrecognized role for the scaffold in this process.
Collapse
Affiliation(s)
- A K Sheaffer
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | |
Collapse
|
31
|
Herzog E, Guerra-Peraza O, Hohn T. The rice tungro bacilliform virus gene II product interacts with the coat protein domain of the viral gene III polyprotein. J Virol 2000; 74:2073-83. [PMID: 10666237 PMCID: PMC111688 DOI: 10.1128/jvi.74.5.2073-2083.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly.
Collapse
Affiliation(s)
- E Herzog
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
32
|
Greene B, King J. Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. J Biol Chem 1999; 274:16141-6. [PMID: 10347166 DOI: 10.1074/jbc.274.23.16141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
33
|
Newcomb WW, Homa FL, Thomsen DR, Trus BL, Cheng N, Steven A, Booy F, Brown JC. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol 1999; 73:4239-50. [PMID: 10196320 PMCID: PMC104203 DOI: 10.1128/jvi.73.5.4239-4250.1999] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Accepted: 02/09/1999] [Indexed: 11/20/2022] Open
Abstract
An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.
Collapse
Affiliation(s)
- W W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Trus BL, Gibson W, Cheng N, Steven AC. Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 1999; 73:2181-92. [PMID: 9971801 PMCID: PMC104463 DOI: 10.1128/jvi.73.3.2181-2192.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used cryoelectron microscopy and image reconstruction to study B-capsids recovered from both the nuclear and the cytoplasmic fractions of cells infected with simian cytomegalovirus (SCMV). SCMV, a representative betaherpesvirus, could thus be compared with the previously described B-capsids of the alphaherpesviruses, herpes simplex virus type 1 (HSV-1) and equine herpesvirus 1 (EHV-1), and of channel catfish virus, an evolutionarily remote herpesvirus. Nuclear B-capsid architecture is generally conserved with SCMV, but it is 4% larger in inner radius than HSV-1, implying that its approximately 30% larger genome should be packed more tightly. Isolated SCMV B-capsids retain a relatively well preserved inner shell (or "small core") of scaffolding-assembly protein, whose radial-density profile indicates that this protein is approximately 16-nm long and consists of two domains connected by a low-density linker. As with HSV-1, the hexons but not the pentons of the major capsid protein (151 kDa) bind the smallest capsid protein (approximately 8 kDa). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed cytoplasmic B-capsid preparations to contain proteins similar in molecular weight to the basic phosphoprotein (approximately 119 kDa) and the matrix proteins (65 to 70 kDa). Micrographs revealed that these particles had variable amounts of surface-adherent material not present on nuclear B-capsids that we take to be tegument proteins. Cytoplasmic B-capsids were classified accordingly as lightly, moderately, or heavily tegumented. By comparing the three corresponding density maps with each other and with the nuclear B-capsid, two interactions were identified between putative tegument proteins and the capsid surface. One is between the major capsid protein and a protein estimated by electron microscopy to be 50 to 60 kDa; the other involves an elongated molecule estimated to be 100 to 120 kDa that is anchored on the triplexes, most likely on its dimer subunits. Candidates for the proteins bound at these sites are discussed. This first visualization of such linkages makes a step towards understanding the organization and functional rationale of the herpesvirus tegument.
Collapse
Affiliation(s)
- B L Trus
- Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
35
|
Plafker SM, Gibson W. Cytomegalovirus assembly protein precursor and proteinase precursor contain two nuclear localization signals that mediate their own nuclear translocation and that of the major capsid protein. J Virol 1998; 72:7722-32. [PMID: 9733808 PMCID: PMC110077 DOI: 10.1128/jvi.72.10.7722-7732.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179-190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has two clusters of basic residues (e.g., KRRRER [NLS1] and KARKRLK [NLS2], for simian CMV) that resemble the simian virus 40 large-T-antigen NLS (D. Kalderon et al., Cell 39:499-509, 1984) and one of these (NLS1) has a counterpart in the pAP homologs of other herpesviruses. The work described here establishes that NLS1 and NLS2 are mutually independent NLS that can act (i) in cis to translocate pAP and the related proteinase precursor (pNP1) into the nucleus and (ii) in trans to transport MCP into the nucleus. By using combinations of NLS mutants and carboxy-terminal deletion constructs, we demonstrated a self-interaction of pAP and cytoplasmic interactions of pAP with pNP1 and of pNP1 with itself. The relevance of these findings to early steps in capsid assembly, the mechanism of MCP nuclear transport, and the possible cytoplasmic formation of protocapsomeric substructures is discussed.
Collapse
Affiliation(s)
- S M Plafker
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
36
|
Abstract
Assembly of the bacteriophage P22 requires a 303 amino acid residue scaffolding protein. Two scaffolding protein deletion mutants, consisting of residues 141 to 303 and 141 to 292, have been described. We report here that the 141-303 fragment, but not the 141-292 fragment, promoted procapsid assembly in vitro, bound to preformed shells of coat protein, and bound to a coat protein affinity column. These findings suggest that the carboxyl-terminal half of the scaffolding protein is sufficient for promoting assembly, and that the 11 amino acid residues at the extreme carboxyl terminus are required for binding to the coat protein. Analysis of the products of in vitro assembly reactions suggests that the maximum amount of scaffolding protein that can pack into a procapsid is dictated by the internal volume of the procapsid rather than by a finite number of binding sites. However, when the amount of scaffolding protein was reduced to limiting values, both the wild-type protein and the 141-303 fragment assembled procapsids with the same number, rather than the same mass, of scaffolding protein molecules. When the 141-292 fragment was added to a mixture of coat and scaffolding proteins, the initial phase of procapsid assembly was inhibited, but the final yield and composition of the procapsids were not affected. Assembly by a covalent dimeric mutant scaffolding protein (R74C/L177I) was not inhibited by the 141-292 fragment, which suggests that the inhibition is due to the formation of inactive heterodimers between the 141-292 fragment and the monomeric scaffolding protein. The 141-303 fragment, which has less tendency to self-associate than the wild-type protein, formed aberrant species as well as normal procapsid-like particles when the rate of assembly was high, suggesting that scaffolding protein dimerization may play a role in ensuring fidelity of assembly. Alternatively, residues 1 to 140 may play a direct structural role in preventing inappropriate scaffolding/coat protein interactions.
Collapse
Affiliation(s)
- M H Parker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | |
Collapse
|
37
|
Tuma R, Parker MH, Weigele P, Sampson L, Sun Y, Krishna NR, Casjens S, Thomas GJ, Prevelige PE. A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein. J Mol Biol 1998; 281:81-94. [PMID: 9680477 DOI: 10.1006/jmbi.1998.1916] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The scaffolding protein of bacteriophage P22 directs the assembly of an icosahedral procapsid, a metastable shell that is the precursor for DNA packaging. The full-length protein has been shown previously to exist in a monomer-dimer-tetramer equilibrium of elongated and predominantly alpha-helical molecules. Two deletion-mutant fragments of the scaffolding protein, comprising amino acid residues 141 to 303 and 141 to 292, respectively, have been constructed, overexpressed in Escherichia coli, and purified. Removal of residues 1 to 140 yields a protein that is assembly-active both in vitro and in vivo, while the removal of the C-terminal 11 residues (293 to 303) leads to complete loss of scaffolding activity. Sedimentation analysis reveals that both scaffolding fragments exist in a monomer-dimer equilibrium governed by apparent dissociation constants Kd(141-303)=640 microM and Kd(141-292)=880 microM. Tetramer formation is not observed for either fragment; thus, the tetramerization domain of the scaffolding subunit resides in the N-terminal portion of the polypeptide chain. Examination of both fragments by circular dichroism, Raman and NMR spectroscopies indicates a highly alpha-helical fold in each case. Nonetheless, pronounced differences are observed between spectral signatures of the two fragments. Notably, Raman spectra of fragments 141-292 and 141-303 indicate that elimination of residues 293 to 303 results in unfolding of an alpha-helical coat protein "recognition" domain encompassing about 20 to 30 residues. The thermostability of fragment 141-303, monitored over a wide concentration range by circular dichroism and Raman spectroscopy, indicates a broad denaturation transition for the monomeric (low concentration) form, while more cooperative unfolding is observed for the dimeric (high concentration) form. A lesser increase in cooperativity upon dimerization is obtained for fragment 141-292. Additionally, the C-terminal recognition domain constitutes the most stable and cooperative unit in the 141-303 fragment. Measurement of hydrogen-isotope exchange kinetics in scaffolding fragments by time-resolved Raman spectroscopy shows that the C terminus is the only protected segment of the polypeptide chain. On the basis of the measured hydrodynamic and spectroscopic properties, a domain structure is proposed for the scaffolding subunit. The roles of these domains in P22 procapsid assembly are discussed.
Collapse
Affiliation(s)
- R Tuma
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou ZH, Macnab SJ, Jakana J, Scott LR, Chiu W, Rixon FJ. Identification of the sites of interaction between the scaffold and outer shell in herpes simplex virus-1 capsids by difference electron imaging. Proc Natl Acad Sci U S A 1998; 95:2778-83. [PMID: 9501166 PMCID: PMC19645 DOI: 10.1073/pnas.95.6.2778] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation of herpes simplex virus-1 capsids requires the presence of intact scaffolding proteins. The C terminus of the abundant scaffolding protein associates with the major capsid shell protein VP5 through hydrophobic interactions. After cleavage by the viral encoded protease, which removes their C-terminal 25 aa, the scaffolding proteins are released from the capsid. We have used electron cryomicroscopy and computer image processing to determine, to 13 A, the three-dimensional structures of capsids containing either cleaved or uncleaved scaffolding proteins. Detailed comparisons show that the structures of the outer icosahedral shells are almost identical in the two capsid types. Differences are apparent in the radial distribution of the density inside the capsid shell (within a radius of 460 ) which represents the scaffolding core. However, in both capsid types, the bulk of this internal density exhibits no icosahedral symmetry. Close examination revealed localized regions of icosahedrally arranged extra density at the interface between the outer shell and the scaffold of protease-minus capsids. Rod-like densities extending inwards for approximately 40 from the capsid shell are present under four of the six quasi-equivalent triplex positions. Under triplexes Tb, Tc, and Te, the major additional densities appear as pairs with the rods in each pair situated 37 apart. We propose that these rods are formed by the C-termini of the scaffolding proteins and represent the sites of interaction between the capsid shell and scaffold.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Person S, Desai P. Capsids are formed in a mutant virus blocked at the maturation site of the UL26 and UL26.5 open reading frames of herpes simplex virus type 1 but are not formed in a null mutant of UL38 (VP19C). Virology 1998; 242:193-203. [PMID: 9501049 DOI: 10.1006/viro.1997.9005] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we reported that null mutant viruses of UL19 (VP5) or of UL18 (VP23), essential components of herpes simplex virus type 1 (HSV-1) capsid shells, do not form precursor capsid structures as judged by sedimentation and electron microscope analysis. A goal of the present experiments was to isolate a null mutant virus for the remaining essential component of capsid shells, VP19C, encoded by the UL38 open reading frame (ORF). Furthermore, we wished to determine if a virus altered in the UL26 maturation cleavage site at residues 610 and 611 produced a lethal phenotype. Therefore, we decided to isolate cell lines that encode and express multiple capsid genes. Several cell lines were isolated by transformation of Vero cells and one designated C32 expressed all of the essential capsid proteins. Using this cell line we isolated a null mutant virus in the UL38 ORF and a mutant virus that was altered at residues 610 and 611 of the UL26 and UL26.5 gene products. We found that the null mutant in VP19C did not form a detectable product as judged by sedimentation and electron microscope analyses following infection of nonpermissive cells. The mutant virus altered at the UL26 maturation site resulted in the accumulation of B capsids. Therefore, cleavage at this site was essential for the maturation of B capsids into C capsids. Interestingly, the absence of cleavage at the maturation site was required for the retention of VP24 in the capsid.
Collapse
Affiliation(s)
- S Person
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|