1
|
Henriquez DR, Zhao C, Zheng H, Arbildua JJ, Acevedo ML, Roth MJ, Leon O. Crosslinking and mass spectrometry suggest that the isolated NTD domain dimer of Moloney murine leukemia virus integrase adopts a parallel arrangement in solution. BMC STRUCTURAL BIOLOGY 2013; 13:14. [PMID: 23844665 PMCID: PMC3750625 DOI: 10.1186/1472-6807-13-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
Abstract
Background Retroviral integrases (INs) catalyze the integration of viral DNA in the chromosomal DNA of the infected cell. This reaction requires the multimerization of IN to coordinate a nucleophilic attack of the 3’ ends of viral DNA at two staggered phosphodiester bonds on the recipient DNA. Several models indicate that a tetramer of IN would be required for two-end concerted integration. Complementation assays have shown that the N-terminal domain (NTD) of integrase is essential for concerted integration, contributing to the formation of a multimer through protein-protein interaction. The isolated NTD of Mo-MLV integrase behave as a dimer in solution however the structure of the dimer in solution is not known. Results In this work, crosslinking and mass spectrometry were used to identify regions involved in the dimerization of the isolated Mo-MLV NTD. The distances between the crosslinked lysines within the monomer are in agreement with the structure of the NTD monomer found in 3NNQ. The intermolecular crosslinked peptides corresponding to Lys 20-Lys 31, Lys 24-Lys 24 and Lys 68-Lys 88 were identified. The 3D coordinates of 3NNQ were used to derive a theoretical structure of the NTD dimer with the suite 3D-Dock, based on shape and electrostatics complementarity, and filtered with the distance restraints determined in the crosslinking experiments. Conclusions The crosslinking results are consistent with the monomeric structure of NTD in 3NNQ, but for the dimer, in our model both polypeptides are oriented in parallel with each other and the contacting areas between the monomers would involve the interactions between helices 1 and helices 3 and 4.
Collapse
Affiliation(s)
- Daniel R Henriquez
- Programa de Virologia ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
2
|
Blue native PAGE and biomolecular complementation reveal a tetrameric or higher-order oligomer organization of the physiological measles virus attachment protein H. J Virol 2010; 84:12174-84. [PMID: 20861270 DOI: 10.1128/jvi.01222-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the Paramyxovirinae subfamily rely on the concerted action of two envelope glycoprotein complexes, attachment protein H and the fusion (F) protein oligomer, to achieve membrane fusion for viral entry. Despite advances in X-ray information, the organization of the physiological attachment (H) oligomer in functional fusion complexes and the molecular mechanism linking H receptor binding with F triggering remain unknown. Here, we have applied an integrated approach based on biochemical and functional assays to the problem. Blue native PAGE analysis indicates that native H complexes extract predominantly in the form of loosely assembled tetramers from purified measles virus (MeV) particles and cells transiently expressing the viral envelope glycoproteins. To gain functional insight, we have established a bimolecular complementation (BiC) assay for MeV H, on the basis of the hypothesis that physical interaction of H with F complexes, F triggering, and receptor binding constitute distinct events. Having experimentally confirmed three distinct H complementation groups, implementation of H BiC (H-BiC) reveals that a high-affinity receptor-to-paramyxovirus H monomer stoichiometry below parity is sufficient for fusion initiation, that F binding and fusion initiation are separable in H oligomers, and that a higher relative amount of F binding-competent than F fusion initiation- or receptor binding-competent H monomers per oligomer is required for optimal fusion. By capitalizing on these findings, H-BiC activity profiles confirm the organization of H into tetramers or higher-order multimers in functional fusion complexes. Results are interpreted in light of a model in which receptor binding may affect the oligomeric organization of the attachment protein complex.
Collapse
|
3
|
Acevedo ML, Arbildúa JJ, Monasterio O, Toledo H, León O. Role of the 207-218 peptide region of Moloney murine leukemia virus integrase in enzyme catalysis. Arch Biochem Biophys 2009; 495:28-34. [PMID: 20026028 DOI: 10.1016/j.abb.2009.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 11/18/2022]
Abstract
X-ray diffraction data on a few retroviral integrases show a flexible loop near the active site. By sequence alignment, the peptide region 207-218 of Mo-MLV IN appears to correspond to this flexible loop. In this study, residues H208, Y211, R212, Q214, S215 and S216 of Mo-MLV IN were mutated to determine their role on enzyme activity. We found that Y211A, R212A, R212K and Q214A decreased integration activity, while disintegration and 3'-processing were not significantly affected. By contrast H208A was completely inactive in all the assays. The core domain of Mo-MLV integrase was modeled and the flexibility of the region 207-216 was analyzed. Substitutions with low integration activity showed a lower flexibility than wild type integrase. We propose that the peptide region 207-216 is a flexible loop and that H208, Y211, R212 and Q214 of this loop are involved in the correct assembly of the DNA-integrase complex during integration.
Collapse
Affiliation(s)
- Mónica L Acevedo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | | | | | |
Collapse
|
4
|
Vera J, Parissi V, García A, Zúñiga R, Andreola ML, Caumont-Sarcos A, Tarrago-Litvak L, Leon O. Yeast system as a model to study Moloney murine leukemia virus integrase: expression, mutagenesis and search for eukaryotic partners. J Gen Virol 2005; 86:2481-2488. [PMID: 16099906 DOI: 10.1099/vir.0.81006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Moloney murine leukemia virus (M-MuLV) integrase (IN) catalyses the insertion of the viral genome into the host chromosomal DNA. The limited solubility of the recombinant protein produced in Escherichia coli led the authors to explore the use of Saccharomyces cerevisiae for expression of M-MuLV IN. IN was expressed in yeast and purified by chromatography on nickel-NTA agarose. IN migrated as a single band in SDS-PAGE and did not contain IN degradation products. The enzyme was about twofold more active than the enzyme purified from E. coli and was free of nucleases. Using the yeast system, the substitution of the putative catalytic amino acid Asp184 by alanine was also analysed. The mutated enzyme was inactive in the in vitro assays. This is the first direct demonstration that mutation of Asp184 inactivates M-MuLV IN. Finally, S. cerevisiae was used as a model to assess the ability of M-MuLV IN to interact with eukaryotic protein partners. The expression of an active M-MuLV IN in yeast strains deficient in RAD52 induced a lethal effect. This phenotype could be attributed to cellular damage, as suggested by the viability of cells expressing inactive D184A IN. Furthermore, when active IN was expressed in a yeast strain lacking the ySNF5 transcription factor, the lethal effect was abolished, suggesting the involvement of ySNF5 in the cellular damage induced by IN. These results indicate that S. cerevisiae could be a useful model to study the interaction of IN with cellular components in order to identify potential counterparts of the natural host.
Collapse
Affiliation(s)
- Jorge Vera
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Vincent Parissi
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Andrea García
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Roberto Zúñiga
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Marie-Line Andreola
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Anne Caumont-Sarcos
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Laura Tarrago-Litvak
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Oscar Leon
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
5
|
Villanueva RA, Jonsson CB, Jones J, Georgiadis MM, Roth MJ. Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions. Virology 2003; 316:146-60. [PMID: 14599799 PMCID: PMC5653259 DOI: 10.1016/s0042-6822(03)00559-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retroviral integrases (IN) catalyze the integration of the reverse-transcribed viral DNA into the host genome, an essential process leading to virus replication. For Moloney murine leukemia virus (M-MuLV) IN, the limited solubility of the recombinant protein has restricted the development of biophysical and structural analyses. Herein, recombinant M-MuLV IN proteins, either full length or two nonoverlapping domain constructs, were purified under non-denaturing conditions from solubilized bacterial extracts by Ni(2+)-NTA resins. Additionally, WT IN was further purified by heparin chromatography. All of the purified proteins were shown to be active and stable. WT M-MuLV IN chromatographed with a peak corresponding with a dimer by gel filtration chromatography. In contrast, the single point mutant C209A IN migrated predominantly as a tetramer. For both proteins, fractions in equilibrium between dimers and tetramers were competent to assemble concerted two-end integrations and yielded a unique strand-transfer profile in the presence of a 28-mer U5 oligonucleotide substrate, indicative of a distinct conformation within the synaptic complex. This specific target-site selection was not observed with a shorter 20-mer U5 substrate. These studies provide the foundation for biophysical and structural analysis on M-MuLV IN and the mechanism of retroviral integration.
Collapse
Affiliation(s)
- Rodrigo A. Villanueva
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Colleen B. Jonsson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jennifer Jones
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Monica J. Roth
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Corresponding author. Fax +1-732-235-4783. (M.J. Roth)
| |
Collapse
|
6
|
Faust EA, Triller H. Stimulation of human flap endonuclease 1 by human immunodeficiency virus type 1 integrase: possible role for flap endonuclease 1 in 5'-end processing of human immunodeficiency virus type 1 integration intermediates. J Biomed Sci 2002; 9:273-87. [PMID: 12065902 DOI: 10.1007/bf02256074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) DNA integration intermediates consist of viral and host DNA segments separated by a 5-nucleotide gap adjacent to a 5'-AC unpaired dinucleotide. These short-flap (pre-repair) integration intermediates are structurally similar to DNA loci undergoing long-patch base excision repair in mammalian cells. The cellular proteins flap endonuclease 1 (FEN-1), proliferating cell nuclear antigen, replication factor C, DNA ligase I and DNA polymerase delta are required for the repair of this type of DNA lesion. The role of FEN-1 in the base excision repair pathway is to cleave 5'-unpaired flaps in forked structures so that DNA ligase can seal the single-stranded breaks that remain following gap repair. The rate of excision by FEN-1 of 5'-flaps from short- and long-flap oligonucleotide substrates that mimic pre- and post-repair HIV-1 integration intermediates, respectively, and the effect of HIV-1 integrase on these reactions were examined in the present study. Cleavage of 5'-flaps by FEN-1 in pre-repair HIV-1 integration intermediates was relatively inefficient and was further decreased 3-fold by HIV-1 integrase. The rate of removal of 5'-flaps by FEN-1 from post-repair HIV-1 integration intermediates containing relatively long (7-nucleotide) unpaired 5'-tails and short (1-nucleotide) gaps was increased 3-fold relative to that seen with pre-repair substrates and was further stimulated 5- to 10-fold by HIV-1 integrase. Overall, post-repair structures were cleaved 18 times more effectively in the presence of HIV-1 integrase than pre-repair structures. The site of cleavage was 1 or 2 nucleotides 3' of the branch point and was unaffected by HIV-1 integrase. Integrase alone had no detectable activity in removing 5'-flaps from either pre- or post-repair substrates.
Collapse
Affiliation(s)
- Emmanuel A Faust
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill AIDS Center, Montreal, Canada.
| | | |
Collapse
|
7
|
Yang F, Roth MJ. Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase. J Virol 2001; 75:9561-70. [PMID: 11559787 PMCID: PMC114526 DOI: 10.1128/jvi.75.20.9561-9570.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer assays indicates that zinc is required for efficient concerted integration utilizing plasmid DNA as target. Complementation assays using a pair of nonoverlapping integrase domains, consisting of the HHCC domain and the core/C-terminal region, yielded products containing the correct 4-base target site duplication. The efficiency of the coordinated two-end integration varied depending on the order of addition of the individual protein and DNA components in the complementation assay. Two-end integration was most efficient when the long terminal repeat (LTR) was premixed with either the target DNA or the HHCC domain. The preference for two-end integration through preincubation of the HHCC finger with the viral DNA supports the role of this domain in the recognition and/or positioning of the LTR.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-- Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
8
|
Holmes-Son ML, Appa RS, Chow SA. Molecular genetics and target site specificity of retroviral integration. ADVANCES IN GENETICS 2001; 43:33-69. [PMID: 11037298 DOI: 10.1016/s0065-2660(01)43003-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Integration is an essential step in the life cycle of retroviruses, resulting in the stable joining of the viral cDNA to the host cell chromosomes. While this critical process makes retroviruses an attractive vector for gene delivery, it also presents a potential hazard. The sites where integration occurs are nonspecific. Therefore,it is possible that integration of retroviral DNA will affect host gene expression and disrupt normal cellular functions. The mechanism by which integration sites are chosen is not well understood, and is influenced by several factors, including DNA sequence and structure, DNA-binding proteins, DNA methylation, and transcription. Integrase, the viral enzyme responsible for catalyzing integration, also plays a key role in controlling the choice of target sites. The integrase domain responsible for target site selection has been mapped to the central core region. A better understanding of the interaction between the target-specifying motif of integrase and the target DNA may allow a means to manipulate integration into particular chromosomal sites. Another approach to directing integration is to fuse integrase with a sequence-specific DNA-binding protein, which results in a bias of integration in vitro into the recognition site of the fusion partner. Successful incorporation of the fusion protein into infectious virions and the identification of optimal proteins that can be fused to integrase will advance the development of site-specific vectors. Retroviruses are promising for the delivery of genes in experimental and therapeutic protocols. A better understanding of integration will aid in the design of safer and more effective gene transfer vectors.
Collapse
Affiliation(s)
- M L Holmes-Son
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
9
|
van den Ent FM, Vos A, Plasterk RH. Dissecting the role of the N-terminal domain of human immunodeficiency virus integrase by trans-complementation analysis. J Virol 1999; 73:3176-83. [PMID: 10074170 PMCID: PMC104080 DOI: 10.1128/jvi.73.4.3176-3183.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) integrase protein (IN) catalyzes two reactions required to integrate HIV DNA into the human genome: 3' processing of the viral DNA ends and integration. IN has three domains, the N-terminal zinc-binding domain, the catalytic core, and the C-terminal SH3 domain. Previously, it was shown that IN proteins mutated in different domains could complement each other. We now report that this does not require any overlap between the two complementing proteins; an N-terminal domain, provided in trans, can restore IN activity of a mutant lacking this domain. Only the zinc-coordinating form of the N-terminal domain can efficiently restore IN activity of an N-terminal deletion mutant. This suggests that interaction between different domains of IN is needed for functional multimerization. We find that the N-terminal domain of feline immunodeficiency virus IN can support IN activity of an N-terminal deletion mutant of HIV type 2 IN. These cross-complementation experiments indicate that the N-terminal domain contributes to the recognition of specific viral DNA ends.
Collapse
Affiliation(s)
- F M van den Ent
- Division of Molecular Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Yang F, Leon O, Greenfield NJ, Roth MJ. Functional interactions of the HHCC domain of moloney murine leukemia virus integrase revealed by nonoverlapping complementation and zinc-dependent dimerization. J Virol 1999; 73:1809-17. [PMID: 9971758 PMCID: PMC104420 DOI: 10.1128/jvi.73.3.1809-1817.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1998] [Accepted: 12/09/1998] [Indexed: 11/20/2022] Open
Abstract
The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3' processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|