1
|
Kuz CA, McFarlin S, Qiu J. The Expression and Function of the Small Nonstructural Proteins of Adeno-Associated Viruses (AAVs). Viruses 2024; 16:1215. [PMID: 39205189 PMCID: PMC11359079 DOI: 10.3390/v16081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Adeno-associated viruses (AAVs) are small, non-enveloped viruses that package a single-stranded (ss)DNA genome of 4.7 kilobases (kb) within their T = 1 icosahedral capsid. AAVs are replication-deficient viruses that require a helper virus to complete their life cycle. Recombinant (r)AAVs have been utilized as gene delivery vectors for decades in gene therapy applications. So far, six rAAV-based gene medicines have been approved by the US FDA. The 4.7 kb ssDNA genome of AAV encodes nine proteins, including three viral structural/capsid proteins, VP1, VP2, and VP3; four large nonstructural proteins (replication-related proteins), Rep78/68 and Rep52/40; and two small nonstructural proteins. The two nonstructured proteins are viral accessory proteins, namely the assembly associated protein (AAP) and membrane-associated accessory protein (MAAP). Although the accessory proteins are conserved within AAV serotypes, their functions are largely obscure. In this review, we focus on the expression strategy and functional properties of the small nonstructural proteins of AAVs.
Collapse
Affiliation(s)
| | | | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.K.); (S.M.)
| |
Collapse
|
2
|
Wang C, Liu Y, Xiong J, Xie K, Wang T, Hu Y, Fu H, Zhang B, Huang X, Bao H, Cai H, Dong B, Li Z. Genome-wide CRISPR screenings identified SMCHD1 as a host-restricting factor for AAV transduction. PLoS Pathog 2024; 20:e1012344. [PMID: 38976714 PMCID: PMC11257396 DOI: 10.1371/journal.ppat.1012344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
AAV-mediated gene therapy typically requires a high dose of viral transduction, risking acute immune responses and patient safety, part of which is due to limited understanding of the host-viral interactions, especially post-transduction viral genome processing. Here, through a genome-wide CRISPR screen, we identified SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1), an epigenetic modifier, as a critical broad-spectrum restricting host factor for post-entry AAV transgene expression. SMCHD1 knock-down by RNAi and CRISPRi or knock-out by CRISPR all resulted in significantly enhanced transgene expression across multiple viral serotypes, as well as for both single-strand and self-complementary AAV genome types. Mechanistically, upon viral transduction, SMCHD1 effectively repressed AAV transcription by the formation of an LRIF1-HP1-containing protein complex and directly binding with the AAV genome to maintain a heterochromatin-like state. SMCHD1-KO or LRIF1-KD could disrupt such a complex and thus result in AAV transcriptional activation. Together, our results highlight the host factor-induced chromatin remodeling as a critical inhibitory mechanism for AAV transduction and may shed light on further improvement in AAV-based gene therapy.
Collapse
Affiliation(s)
- Chenlu Wang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingfei Xiong
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Xie
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianshu Wang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Hu
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huancheng Fu
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Baiquan Zhang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaochao Huang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Bao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real and Best Biotech Co., Ltd., Chengdu, China
| | - Zhonghan Li
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
4
|
Kraszewska I, Sarad K, Andrysiak K, Kopacz A, Schmidt L, Krüger M, Dulak J, Jaźwa-Kusior A. Casein kinase 2 activity is a host restriction factor for AAV transduction. Mol Ther 2024; 32:84-102. [PMID: 37952087 PMCID: PMC10787142 DOI: 10.1016/j.ymthe.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
So far, the mechanisms that impede AAV transduction, especially in the human heart, are poorly understood, hampering the introduction of new, effective gene therapy strategies. Therefore, the aim of this study was to identify and overcome the main cellular barriers to successful transduction in the heart, using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs), iPSC-derived cardiac fibroblasts (iPSC-CFs), and primary endothelial cells to model vector-host interactions. Through phosphoproteome analysis we established that casein kinase 2 (CK2) signaling is one of the most significantly affected pathways upon AAV exposure. Transient inhibition of CK2 activity substantially enhanced the transduction rate of AAV2, AAV6, and AAV9 in all tested cell types. In particular, CK2 inhibition improved the trafficking of AAVs through the cytoplasm, impaired DNA damage response through destabilization of MRE11, and altered the RNA processing pathways, which were also highly responsive to AAV transduction. Also, it augmented transgene expression in already transduced iPSC-CFs, which retain AAV genomes in a functional, but probably silent form. In summary, the present study provides new insights into the current understanding of the host-AAV vector interaction, identifying CK2 activity as a key barrier to efficient transduction and transgene expression, which may translate to improving the outcome of AAV-based therapies in the future.
Collapse
Affiliation(s)
- Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luisa Schmidt
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Rostami MR, Leopold PL, Vasquez JM, de Mulder Rougvie M, Al Shakaki A, Hssain AA, Robay A, Hackett NR, Mezey JG, Crystal RG. Predicted deleterious variants in the human genome relevant to gene therapy with adeno-associated virus vectors. Mol Ther Methods Clin Dev 2023; 31:101136. [PMID: 38089635 PMCID: PMC10711236 DOI: 10.1016/j.omtm.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/11/2023] [Indexed: 01/02/2025]
Abstract
Based on the observation that humans have variable responses of gene expression with the same dose of an adeno-associated vector, we hypothesized that there are deleterious variants in genes coding for processes required for adeno-associated virus (AAV)-mediated gene transfer/expression that may hamper or enhance the effectiveness of AAV-mediated gene therapy. To assess this hypothesis, we evaluated 69,442 whole genome sequences from three populations (European, African/African American, and Qatari) for predicted deleterious variants in 62 genes known to play a role in AAV-mediated gene transfer/expression. The analysis identified 5,564 potentially deleterious mutations of which 27 were classified as common based on an allele frequency ≥1% in at least one population studied. Many of these deleterious variants are predicated to prevent while others enhance effective AAV gene transfer/expression, and several are linked to known hereditary disorders. The data support the hypothesis that, like other drugs, human genetic variability contributes to the person-to-person effectiveness of AAV gene therapy and the screening for genetic variability should be considered as part of future clinical trials.
Collapse
Affiliation(s)
| | - Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenifer M. Vasquez
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Alya Al Shakaki
- Department of Genetic Medicine, Weill Cornell Medicine - Qatar, Doha, Qatar
| | | | - Amal Robay
- Department of Genetic Medicine, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Oh N, Tarte NH. Subcellular distribution of the rAAV genome depends on genome structure. Sci Rep 2023; 13:17325. [PMID: 37833341 PMCID: PMC10575858 DOI: 10.1038/s41598-023-44074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Many studies have been conducted on the transduction efficiency of recombinant adeno-associated virus (rAAV) depending on the serotype and genome structure, such as single-stranded (ss) and self-complementary (sc). To understand the variation in therapeutic efficacy, we focused on investigating subcellular distribution of viral genome depending on rAAV genome structure. It is critical to ascertain the location of the virus within the host cell after the entry because a larger amount of the viral genome placed in the nucleus facilitates viral genome replication by utilizing the host cell's system, thereby enhancing the therapeutic outcome. In this sense, tracking the location of the virus within the host cell's organelles can inform a new strategy to improve therapeutic efficacy. Therefore, we attempted to stain only the viral genome with APEX2 and DAB chemicals specifically, and the distribution of the viral genome was examined by transmission electron microscopy (TEM). Consequently, when the two types of rAAV were transduced for 6 h, scAAV2 tended to be more located in the lysosome and nucleus compared to ssAAV2.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea.
| | - Naresh H Tarte
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| |
Collapse
|
7
|
Large EE, Chapman MS. Adeno-associated virus receptor complexes and implications for adeno-associated virus immune neutralization. Front Microbiol 2023; 14:1116896. [PMID: 36846761 PMCID: PMC9950413 DOI: 10.3389/fmicb.2023.1116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Adeno-associated viruses (AAV) are among the foremost vectors for in vivo gene therapy. A number of monoclonal antibodies against several serotypes of AAV have previously been prepared. Many are neutralizing, and the predominant mechanisms have been reported as the inhibition of binding to extracellular glycan receptors or interference with some post-entry step. The identification of a protein receptor and recent structural characterization of its interactions with AAV compel reconsideration of this tenet. AAVs can be divided into two families based on which domain of the receptor is strongly bound. Neighboring domains, unseen in the high-resolution electron microscopy structures have now been located by electron tomography, pointing away from the virus. The epitopes of neutralizing antibodies, previously characterized, are now compared to the distinct protein receptor footprints of the two families of AAV. Comparative structural analysis suggests that antibody interference with protein receptor binding might be the more prevalent mechanism than interference with glycan attachment. Limited competitive binding assays give some support to the hypothesis that inhibition of binding to the protein receptor has been an overlooked mechanism of neutralization. More extensive testing is warranted.
Collapse
Affiliation(s)
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Rogers GL, Huang C, Clark RDE, Seclén E, Chen HY, Cannon PM. Optimization of AAV6 transduction enhances site-specific genome editing of primary human lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:198-209. [PMID: 34703842 PMCID: PMC8517001 DOI: 10.1016/j.omtm.2021.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus serotype 6 (AAV6) is a valuable reagent for genome editing of hematopoietic cells due to its ability to serve as a homology donor template. However, a comprehensive study of AAV6 transduction of hematopoietic cells in culture, with the goal of maximizing ex vivo genome editing, has not been reported. Here, we evaluated how the presence of serum, culture volume, transduction time, and electroporation parameters could influence AAV6 transduction. Based on these results, we identified an optimized protocol for genome editing of human lymphocytes based on a short, highly concentrated AAV6 transduction in the absence of serum, followed by electroporation with a targeted nuclease. In human CD4+ T cells and B cells, this protocol improved editing rates up to 7-fold and 21-fold, respectively, when compared to standard AAV6 transduction protocols described in the literature. As a result, editing frequencies could be maintained using 50- to 100-fold less AAV6, which also reduced cellular toxicity. Our results highlight the important contribution of cell culture conditions for ex vivo genome editing with AAV6 vectors and provide a blueprint for improving AAV6-mediated homology-directed editing of human T and B cells.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D E Clark
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eduardo Seclén
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Riyad JM, Weber T. Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Ther 2021; 28:683-696. [PMID: 33658649 PMCID: PMC8413391 DOI: 10.1038/s41434-021-00243-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
In the last two decades, recombinant adeno-associated virus has emerged as the most popular gene therapy vector. Recently AAV gene therapy has been approved by the FDA for the treatment of two rare genetic disorders, namely the early childhood blindness disease Leber congenital amaurosis and spinal muscular atrophy (SMA). As is the case for the treatment of SMA, if the AAV vector must be administered systemically, very high vector doses are often required for therapeutic efficacy. But higher vector doses inevitably increase the risk of adverse events. The tragic death of three children in a clinical trial to treat X-linked myotubular myopathy with an AAV vector has thrown this limitation into sharp relief. Regardless of the precise cause(s) that led to the death of the two children, it is critical that we develop better AAV vectors to achieve therapeutic levels of expression with lower vector doses. To transduce successfully a target cell, AAV has to overcome both systemic as well as cellular roadblocks. In this review, we discuss some of the most prominent cellular roadblocks that AAV must get past to deliver successfully its therapeutic payload. We also highlight recent advancements in our knowledge of AAV biology that can potentially be harnessed to improve AAV vector performance and thereby make AAV gene therapy safer.
Collapse
Affiliation(s)
- Jalish M Riyad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Weber
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Dudek AM, Porteus MH. Answered and Unanswered Questions in Early-Stage Viral Vector Transduction Biology and Innate Primary Cell Toxicity for Ex-Vivo Gene Editing. Front Immunol 2021; 12:660302. [PMID: 34122418 PMCID: PMC8195279 DOI: 10.3389/fimmu.2021.660302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated virus is a highly efficient DNA delivery vehicle for genome editing strategies that employ CRISPR/Cas9 and a DNA donor for homology-directed repair. Many groups have used this strategy in development of therapies for blood and immune disorders such as sickle-cell anemia and severe-combined immunodeficiency. However, recent events have called into question the immunogenicity of AAV as a gene therapy vector and the safety profile dictated by the immune response to this vector. The target cells dictating this response and the molecular mechanisms dictating cellular response to AAV are poorly understood. Here, we will investigate the current known AAV capsid and genome interactions with cellular proteins during early stage vector transduction and how these interactions may influence innate cellular responses. We will discuss the current understanding of innate immune activation and DNA damage response to AAV, and the limitations of what is currently known. In particular, we will focus on pathway differences in cell line verses primary cells, with a focus on hematopoietic stem and progenitor cells (HSPCs) in the context of ex-vivo gene editing, and what we can learn from HSPC infection by other parvoviruses. Finally, we will discuss how innate immune and DNA damage response pathway activation in these highly sensitive stem cell populations may impact long-term engraftment and clinical outcomes as these gene-editing strategies move towards the clinic, with the aim to propose pathways relevant for improved hematopoietic stem cell survival and long-term engraftment after AAV-mediated genome editing.
Collapse
Affiliation(s)
- Amanda Mary Dudek
- Department of Pediatrics, Stanford University, Stanford, CA, United States.,Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Matthew Hebden Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, United States.,Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
11
|
Journey to the Center of the Cell: Tracing the Path of AAV Transduction. Trends Mol Med 2020; 27:172-184. [PMID: 33071047 DOI: 10.1016/j.molmed.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
As adeno-associated virus (AAV)-based gene therapies are being increasingly approved for use in humans, it is important that we understand vector-host interactions in detail. With the advances in genome-wide genetic screening tools, a clear picture of AAV-host interactions is beginning to emerge. Understanding these interactions can provide insights into the viral life cycle. Accordingly, novel strategies to circumvent the current limitations of AAV-based vectors may be explored. Here, we summarize our current understanding of the various stages in the journey of the vector from the cell surface to the nucleus and contextualize the roles of recently identified host factors.
Collapse
|
12
|
Breaking the sound barrier: Towards next-generation AAV vectors for gene therapy of hearing disorders. Hear Res 2020; 413:108092. [PMID: 33268240 DOI: 10.1016/j.heares.2020.108092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Owing to the advances in transgenic animal technology and the advent of the next-generation sequencing era, over 120 genes causing hereditary hearing loss have been identified by now. In parallel, the field of human gene therapy continues to make exciting and rapid progress, culminating in the recent approval of several ex vivo and in vivo applications. Despite these encouraging developments and the growing interest in causative treatments for hearing disorders, gene therapeutic interventions in the inner ear remain in their infancy and await clinical translation. This review focuses on the adeno-associated virus (AAV), which nowadays represents one of the safest and most promising vectors in gene therapy. We first provide an overview of AAV biology and outline the principles of therapeutic gene transfer with recombinant AAV vectors, before pointing out major challenges and solutions for clinical translation including vector manufacturing and species translatability. Finally, we highlight seminal technologies for engineering and selection of next-generation "designer" AAV capsids, and illustrate their power and potential with recent examples of their application for inner ear gene transfer in animals.
Collapse
|
13
|
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020; 28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Szostak-Paluch
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland; Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland
| | - Magdalena Przybyło
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Marek Langner
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| | | | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Research and Development Center, Regional Specialized Hospital, Wrocław, Poland.
| |
Collapse
|
14
|
Butterfield JSS, Hege KM, Herzog RW, Kaczmarek R. A Molecular Revolution in the Treatment of Hemophilia. Mol Ther 2020; 28:997-1015. [PMID: 31843450 PMCID: PMC7132613 DOI: 10.1016/j.ymthe.2019.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
For decades, the monogenetic bleeding disorders hemophilia A and B (coagulation factor VIII and IX deficiency) have been treated with systemic protein replacement therapy. Now, diverse molecular medicines, ranging from antibody to gene to RNA therapy, are transforming treatment. Traditional replacement therapy requires twice to thrice weekly intravenous infusions of factor. While extended half-life products may reduce the frequency of injections, patients continue to face a lifelong burden of the therapy, suboptimal protection from bleeding and joint damage, and potential development of neutralizing anti-drug antibodies (inhibitors) that require less efficacious bypassing agents and further reduce quality of life. Novel non-replacement and gene therapies aim to address these remaining issues. A recently approved factor VIII-mimetic antibody accomplishes hemostatic correction in patients both with and without inhibitors. Antibodies against tissue factor pathway inhibitor (TFPI) and antithrombin-specific small interfering RNA (siRNA) target natural anticoagulant pathways to rebalance hemostasis. Adeno-associated virus (AAV) gene therapy provides lasting clotting factor replacement and can also be used to induce immune tolerance. Multiple gene-editing techniques are under clinical or preclinical investigation. Here, we provide a comprehensive overview of these approaches, explain how they differ from standard therapies, and predict how the hemophilia treatment landscape will be reshaped.
Collapse
Affiliation(s)
| | - Kerry M Hege
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
15
|
Gorovits B, Fiscella M, Havert M, Koren E, Long B, Milton M, Purushothama S. Recommendations for the Development of Cell-Based Anti-Viral Vector Neutralizing Antibody Assays. AAPS JOURNAL 2020; 22:24. [DOI: 10.1208/s12248-019-0403-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
16
|
Butterfield JS, Biswas M, Shirley JL, Kumar SR, Sherman A, Terhorst C, Ling C, Herzog RW. TLR9-Activating CpG-B ODN but Not TLR7 Agonists Triggers Antibody Formation to Factor IX in Muscle Gene Transfer. Hum Gene Ther Methods 2019; 30:81-92. [PMID: 31140323 PMCID: PMC6590725 DOI: 10.1089/hgtb.2019.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Innate immune signals that promote B cell responses in gene transfer are generally ill-defined. In this study, we evaluate the effect of activating endosomal Toll-like receptors 7, 8, and 9 (TLR7, TLR7/8, and TLR9) on antibody formation during muscle-directed gene therapy with adeno-associated virus (AAV) vectors. We examined whether activation of endosomal TLRs, by adenine analog CL264 (TLR7 agonist), imidazolquinolone compound R848 (TLR7/8 agonist), or class B CpG oligodeoxynucleotides ODN1826 (TLR9 agonist), could augment antibody formation upon intramuscular administration of AAV1 expressing human clotting factor IX (AAV1-hFIX) in mice. The TLR9 agonist robustly enhanced antibody formation by the 1st week, thus initially eliminating systemic hFIX expression. By contrast, the TLR7 and TLR7/8 agonists did not markedly promote antibody formation, or significantly reduce circulating hFIX. We concurrently investigated the effects of these TLR agonists during muscle gene transfer on mature B cells and dendritic cells (DCs) in the draining lymph nodes including conventional DCs (CD11b+ or CD8α+ cDCs), monocyte-derived dendritic cells (moDCs), and plasmacytoid dendritic cells (pDCs). Only TLR9 stimulation caused a striking increase in the frequency of moDCs within 24 h. The TLR7/8 and TLR9 agonists activated pDCs, both subsets of cDCs, and mature B cells, whereas the TLR7 agonist had only mild effects on these cells. Thus, these TLR ligands have distinct effects on DCs and mature B cells, yet only the TLR9 agonist enhanced the humoral immune response against AAV-expressed hFIX. These new findings indicate a unique ability of certain TLR9 agonists to stimulate B cell responses in muscle gene transfer through enrichment of moDCs.
Collapse
Affiliation(s)
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, Florida
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Jamie L. Shirley
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Sandeep R.P. Kumar
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, Indiana
| | - Alexandra Sherman
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, Indiana
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts
| | - Chen Ling
- Department of Pediatrics, University of Florida, Gainesville, Florida
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, Indiana
| |
Collapse
|
17
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. J Virol 2018; 92:JVI.02213-17. [PMID: 29343568 DOI: 10.1128/jvi.02213-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Determinants and mechanisms of cell attachment and entry steer adeno-associated virus (AAV) in its utility as a gene therapy vector. Thus far, a systematic assessment of how diverse AAV serotypes engage their proteinaceous receptor AAVR (KIAA0319L) to establish transduction has been lacking, despite potential implications for cell and tissue tropism. Here, a large set of human and simian AAVs as well as in silico-reconstructed ancestral AAV capsids were interrogated for AAVR usage. We identified a distinct AAV capsid lineage comprised of AAV4 and AAVrh32.33 that can bind and transduce cells in the absence of AAVR, independent of the multiplicity of infection. Virus overlay assays and rescue experiments in nonpermissive cells demonstrate that these AAVs are unable to bind to or use the AAVR protein for entry. Further evidence for a distinct entry pathway was observed in vivo, as AAVR knockout mice were equally as permissive to transduction by AAVrh32.33 as wild-type mice upon systemic injection. We interestingly observe that some AAV capsids undergo a low level of transduction in the absence of AAVR, both in vitro and in vivo, suggesting that some capsids may have a multimodal entry pathway. In aggregate, our results demonstrate that AAVR usage is conserved among all primate AAVs except for those of the AAV4 lineage, and a non-AAVR pathway may be available to other serotypes. This work furthers our understanding of the entry of AAV, a vector system of broad utility in gene therapy.IMPORTANCE Adeno-associated virus (AAV) is a nonpathogenic virus that is used as a vehicle for gene delivery. Here, we have identified several situations in which transduction is retained in both cell lines and a mouse model in the absence of a previously defined entry receptor, AAVR. Defining the molecular determinants of the infectious pathway of this highly relevant viral vector system can help refine future applications and therapies with this vector.
Collapse
|
19
|
Drebrin restricts rotavirus entry by inhibiting dynamin-mediated endocytosis. Proc Natl Acad Sci U S A 2017; 114:E3642-E3651. [PMID: 28416666 PMCID: PMC5422808 DOI: 10.1073/pnas.1619266114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite the wide administration of several effective vaccines, rotavirus (RV) remains the single most important etiological agent of severe diarrhea in infants and young children worldwide, with an annual mortality of over 200,000 people. RV attachment and internalization into target cells is mediated by its outer capsid protein VP4. To better understand the molecular details of RV entry, we performed tandem affinity purification coupled with high-resolution mass spectrometry to map the host proteins that interact with VP4. We identified an actin-binding protein, drebrin (DBN1), that coprecipitates and colocalizes with VP4 during RV infection. Importantly, blocking DBN1 function by siRNA silencing, CRISPR knockout (KO), or chemical inhibition significantly increased host cell susceptibility to RV infection. Dbn1 KO mice exhibited higher incidence of diarrhea and more viral antigen shedding in their stool samples compared with the wild-type littermates. In addition, we found that uptake of other dynamin-dependent cargos, including transferrin, cholera toxin, and multiple viruses, was also enhanced in DBN1-deficient cells. Inhibition of cortactin or dynamin-2 abrogated the increased virus entry observed in DBN1-deficient cells, suggesting that DBN1 suppresses dynamin-mediated endocytosis via interaction with cortactin. Our study unveiled an unexpected role of DBN1 in restricting the entry of RV and other viruses into host cells and more broadly to function as a crucial negative regulator of diverse dynamin-dependent endocytic pathways.
Collapse
|
20
|
Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages. J Virol 2017; 91:JVI.01871-16. [PMID: 27847360 DOI: 10.1128/jvi.01871-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023] Open
Abstract
Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity.
Collapse
|
21
|
Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 2016; 21:54-60. [PMID: 27544821 DOI: 10.1016/j.coviro.2016.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are regarded as promising vehicles for therapeutic gene delivery. Continued development and new strategies are essential to improve the potency of AAV vectors and reduce the effective dose needed for clinical efficacy. In this regard, many studies have focused on understanding the cellular transduction mechanisms of rAAV, often with the goal of exploiting this knowledge to increase gene transfer efficiency. Here, we provide an overview of our evolving understanding of rAAV cellular trafficking pathways through the host cell, beginning with cellular entry and ending with transcription of the vector genome. Strategies to exploit this information for improving rAAV transduction are discussed.
Collapse
|
22
|
Carrig S, Bijjiga E, Wopat MJ, Martino AT. Insulin Therapy Improves Adeno-Associated Virus Transduction of Liver and Skeletal Muscle in Mice and Cultured Cells. Hum Gene Ther 2016; 27:892-905. [PMID: 27358030 DOI: 10.1089/hum.2016.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adeno-associated virus (AAV) gene transfer is a promising treatment for genetic abnormalities. Optimal AAV vectors are showing success in clinical trials. Gene transfer to skeletal muscle and liver is being explored as a potential therapy for some conditions, that is, α1-antitrypsin (AAT) disorder and hemophilia B. Exploring approaches that enhance transduction of liver and skeletal muscle, using these vectors, is beneficial for gene therapy. Regulating hormones as an approach to improve AAV transduction is largely unexplored. In this study we tested whether insulin therapy improves liver and skeletal muscle gene transfer. In vitro studies demonstrated that the temporary coadministration (2, 8, and 24 hr) of insulin significantly improves AAV2-CMV-LacZ transduction of cultured liver cells and differentiated myofibers, but not of lung cells. In addition, there was a dose response related to this improved transduction. Interestingly, when insulin was not coadministered with the virus but given 24 hr afterward, there was no increase in the transgene product. Insulin receptor gene (INSR) expression levels were increased 5- to 13-fold in cultured liver cells and differentiated myofibers when compared with lung cells. Similar INSR gene expression profiles occurred in mouse tissues. Insulin therapy was performed in mice, using a subcutaneously implanted insulin pellet or a high-carbohydrate diet. Insulin treatment began just before intramuscular delivery of AAV1-CMV-schFIX or liver-directed delivery of AAV8-CMV-schFIX and continued for 28 days. Both insulin augmentation therapies improved skeletal muscle- and liver-directed gene transduction in mice as seen by a 3.0- to 4.5-fold increase in human factor IX (hFIX) levels. The improvement was observed even after the insulin therapy ended. Monitoring insulin showed that insulin levels increased during the brief period of rAAV delivery and during the entire insulin augmentation period (28 days). This study demonstrates that AAV transduction of liver or skeletal muscle can be improved by insulin therapy.
Collapse
Affiliation(s)
- Sean Carrig
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| | - Enoch Bijjiga
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| | - Mitchell J Wopat
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| |
Collapse
|
23
|
Chiorini JA. And one to bind them all. Oral Dis 2016; 22:716-718. [PMID: 27109444 DOI: 10.1111/odi.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John A Chiorini
- AAV Biology Section Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Huang Y, Wang W, Ren Q. Two host microRNAs influence WSSV replication via STAT gene regulation. Sci Rep 2016; 6:23643. [PMID: 27029712 PMCID: PMC4814834 DOI: 10.1038/srep23643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in post-transcriptional regulation of gene expression. During viral infection, viruses utilize hosts to enhance their replication by altering cellular miRNAs. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays crucial roles in the antiviral responses. In this study, two miRNAs (miR-9041 and miR-9850) from Macrobrachium rosenbergii were found to promote white spot syndrome virus (WSSV) replication. The up-regulation of miR-9041 or miR-9850 suppresses STAT expression in the gills of M. rosenbergii, which subsequently down-regulates the expression of its downstream dynamin (Dnm) genes: Dnm1, Dnm2, and Dnm3. Knockdown of miR-9041 and miR-9850 restricts WSSV replication by up-regulating STAT and Dnm gene expression. The silencing of STAT, Dnm1, Dnm2, or Dnm3 led to an increase of the number of WSSV copies in shrimp. The injection of recombinant Dnm1, Dnm2, or Dnm3 proteins could inhibit WSSV replication in vivo. Overall, our research indicates the roles of host miRNAs in the enhancement of WSSV replication by regulating the host JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
25
|
Díaz-Lezama N, Wu Z, Adán-Castro E, Arnold E, Vázquez-Membrillo M, Arredondo-Zamarripa D, Ledesma-Colunga MG, Moreno-Carranza B, Martinez de la Escalera G, Colosi P, Clapp C. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. J Transl Med 2016; 96:283-95. [PMID: 26568297 DOI: 10.1038/labinvest.2015.135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvβ5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated cell entry. AAV2 vectors encoding vasoinhibin and sFlt-1 may be desirable gene therapeutics to target diabetic retinopathy and macular edema.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, NIH, Bethesda, MD, USA
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
26
|
Hölscher C, Sonntag F, Henrich K, Chen Q, Beneke J, Matula P, Rohr K, Kaderali L, Beil N, Erfle H, Kleinschmidt JA, Müller M. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. PLoS Pathog 2015; 11:e1005281. [PMID: 26625259 PMCID: PMC4666624 DOI: 10.1371/journal.ppat.1005281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Qingxin Chen
- German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Beneke
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Petr Matula
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute for Bioinformatics, Greifswald, Germany
| | - Nina Beil
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Holger Erfle
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | | | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
27
|
Salganik M, Hirsch ML, Samulski RJ. Adeno-associated Virus as a Mammalian DNA Vector. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MDNA3-0052-2014. [PMID: 26350320 PMCID: PMC4677393 DOI: 10.1128/microbiolspec.mdna3-0052-2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 12/20/2022] Open
Abstract
In the nearly five decades since its accidental discovery, adeno-associated virus (AAV) has emerged as a highly versatile vector system for both research and clinical applications. A broad range of natural serotypes, as well as an increasing number of capsid variants, has combined to produce a repertoire of vectors with different tissue tropisms, immunogenic profiles and transduction efficiencies. The story of AAV is one of continued progress and surprising discoveries in a viral system that, at first glance, is deceptively simple. This apparent simplicity has enabled the advancement of AAV into the clinic, where despite some challenges it has provided hope for patients and a promising new tool for physicians. Although a great deal of work remains to be done, both in studying the basic biology of AAV and in optimizing its clinical application, AAV vectors are currently the safest and most efficient platform for gene transfer in mammalian cells.
Collapse
Affiliation(s)
- Max Salganik
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Matthew L Hirsch
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Richard Jude Samulski
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
28
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J Virol 2014; 89:1673-87. [PMID: 25410859 DOI: 10.1128/jvi.02520-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Intracellular transport of recombinant adeno-associated virus (AAV) is still incompletely understood. In particular, the trafficking steps preceding the release of incoming AAV particles from the endosomal system into the cytoplasm, allowing subsequent nuclear import and the initiation of gene expression, remain to be elucidated fully. Others and we previously showed that a significant proportion of viral particles are transported to the Golgi apparatus and that Golgi apparatus disruption caused by the drug brefeldin A efficiently blocks AAV serotype 2 (AAV2) transduction. However, because brefeldin A is known to exert pleiotropic effects on the entire endosomal system, the functional relevance of transport to the Golgi apparatus for AAV transduction remains to be established definitively. Here, we show that AAV2 trafficking toward the trans-Golgi network (TGN) and the Golgi apparatus correlates with transduction efficiency and relies on a nonclassical retrograde transport pathway that is independent of the retromer complex, late endosomes, and recycling endosomes. AAV2 transduction is unaffected by the knockdown of syntaxins 6 and 16, which are two major effectors in the retrograde transport of both exogenous and endogenous cargo. On the other hand, inhibition of syntaxin 5 function by small interfering RNA silencing or treatment with cyclized Retro-2 strongly decreases AAV2 transduction and transport to the Golgi apparatus. This inhibition of transduction is observed with several AAV serotypes and a number of primary and immortalized cells. Together, our data strongly suggest that syntaxin 5-mediated retrograde transport to the Golgi apparatus is a broadly conserved feature of AAV trafficking that appears to be independent of the identity of the receptors used for viral attachment. IMPORTANCE Gene therapy constitutes a promising approach for the treatment of life-threatening conditions refractory to any other form of remedy. Adeno-associated virus (AAV) vectors are currently being evaluated for the treatment of diseases such as Duchenne muscular dystrophy, hemophilia, heart failure, Parkinson's disease, and others. Despite their promise as gene delivery vehicles, a better understanding of the biology of AAV-based vectors is necessary to improve further their efficacy. AAV vectors must reach the nucleus in order to deliver their genome, and their intracellular transport is not fully understood. Here, we dissect an important step of the intracellular journey of AAV by showing that retrograde transport of capsids to the trans-Golgi network is necessary for gene delivery. We show that the AAV trafficking route differs from that of known Golgi apparatus-targeted cargos, and we raise the possibility that this nonclassical pathway is shared by most AAV variants, regardless of their attachment receptors.
Collapse
|
30
|
Weinberg MS, Nicolson S, Bhatt AP, McLendon M, Li C, Samulski RJ. Recombinant adeno-associated virus utilizes cell-specific infectious entry mechanisms. J Virol 2014; 88:12472-84. [PMID: 25142580 PMCID: PMC4248914 DOI: 10.1128/jvi.01971-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Understanding the entry and trafficking mechanism(s) of recombinant adeno-associated virus (rAAV) into host cells can lead to evolution in capsid and vector design and delivery methods, resulting in enhanced transduction and therapeutic gene expression. Variability of findings regarding the early entry pathway of rAAV supports the possibility that rAAV, like other viruses, can utilize more than one infectious entry pathway. We tested whether inhibition of macropinocytosis impacted rAAV transduction of HeLa cells compared to hepatocellular carcinoma cell lines. We found that macropinocytosis inhibitor cytochalasin D blocked rAAV transduction of HeLa cells (>2-fold) but enhanced (10-fold) transduction in HepG2 and Huh7 lines. Similar results were obtained with another macropinocytosis inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA). The augmented transduction was due to neither viral binding nor promoter activity, affected multiple rAAV serotypes (rAAV2, rAAV2-R585E, and rAAV8), and influenced single-stranded and self-complementary virions to comparable extents. Follow-up studies using CDC42 inhibitor ML141 and p21-activated kinase 1 (PAK1) siRNA knockdown also resulted in enhanced HepG2 transduction. Microscopy revealed that macropinocytosis inhibition correlated with expedited nuclear entry of the rAAV virions into HepG2 cells. Enhancement of hepatocellular rAAV transduction extended to the mouse liver in vivo (4-fold enhancement) but inversely blocked heart tissue transduction (13-fold). This evidence of host cell-specific rAAV entry pathways confers a potent means for controlling and enhancing vector delivery and could help unify the divergent accounts of rAAV cellular entry mechanisms. IMPORTANCE There is a recognized need for improved rAAV vector targeting strategies that result in delivery of fewer total particles, averting untoward toxicity and/or an immune response against the vector. A critical step in rAAV transduction is entry and early trafficking through the host cellular machinery, the mechanisms of which are under continued study. However, should the early entry and trafficking mechanisms of rAAV differ across virus serotype or be dependent on host cell environment, this could expand our ability to target particular cells and tissue for selective transduction. Thus, the observation that inhibiting macropinocytosis leads to cell-specific enhancement or inhibition of rAAV transduction that extends to the organismic level exposes a new means of modulating vector targeting.
Collapse
Affiliation(s)
- Marc S Weinberg
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sarah Nicolson
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aadra P Bhatt
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael McLendon
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Bilkova E, Forstova J, Abrahamyan L. Coat as a dagger: the use of capsid proteins to perforate membranes during non-enveloped DNA viruses trafficking. Viruses 2014; 6:2899-937. [PMID: 25055856 PMCID: PMC4113798 DOI: 10.3390/v6072899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023] Open
Abstract
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection.
Collapse
Affiliation(s)
- Eva Bilkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Levon Abrahamyan
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| |
Collapse
|
32
|
Sen D, Balakrishnan B, Jayandharan GR. Cellular unfolded protein response against viruses used in gene therapy. Front Microbiol 2014; 5:250. [PMID: 24904562 PMCID: PMC4033601 DOI: 10.3389/fmicb.2014.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/07/2014] [Indexed: 01/21/2023] Open
Abstract
Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually "gutted" and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR) is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER) stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer.
Collapse
Affiliation(s)
- Dwaipayan Sen
- Department of Hematology, Christian Medical College Vellore, India
| | | | - Giridhara R Jayandharan
- Department of Hematology, Christian Medical College Vellore, India ; Centre for Stem Cell Research, Christian Medical College Vellore, India
| |
Collapse
|
33
|
Liu Y, Kim YJ, Ji M, Fang J, Siriwon N, Zhang LI, Wang P. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:12. [PMID: 26015948 PMCID: PMC4365833 DOI: 10.1038/mtm.2013.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/08/2013] [Indexed: 12/21/2022]
Abstract
Adeno-associated virus type 2 (AAV2) is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs). We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.
Collapse
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Young Joo Kim
- Department of Physiology and Biophysics, University of Southern California , Los Angeles, California, USA
| | - Man Ji
- Department of Biochemistry and Molecular Biology, University of Southern California , Los Angeles, California, USA
| | - Jinxu Fang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Natnaree Siriwon
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA
| | - Li I Zhang
- Department of Physiology and Biophysics, University of Southern California , Los Angeles, California, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California, USA ; Department of Biomedical Engineering, University of Southern California , Los Angeles, California, USA ; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California, USA
| |
Collapse
|
34
|
Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 2014; 88:4132-44. [PMID: 24478436 DOI: 10.1128/jvi.02660-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential. IMPORTANCE Use of recombinant adeno-associated viral (rAAV) vectors for gene therapy applications is limited by relatively low transduction efficiency, in part due to cellular barriers that hinder successful subcellular trafficking to the nucleus, where uncoating and subsequent gene expression occur. Nuclear translocation of rAAV has been regarded as a limiting step for successful transduction but it remains ill-defined. We explored potential nuclear entry mechanisms for rAAV2 and found that rAAV2 can utilize the classical nuclear import pathway, involving the nuclear pore complex, the small GTPase Ran, and cellular karyopherins. These results could lend insight into the rational design of novel rAAV vectors that can more efficiently translocate to the nucleus, which may lead to more efficient transduction.
Collapse
|
35
|
Raissadati A, Jokinen JJ, Syrjälä SO, Keränen MAI, Krebs R, Tuuminen R, Arnaudova R, Rouvinen E, Anisimov A, Soronen J, Pajusola K, Alitalo K, Nykänen AI, Lemström K. Ex vivo intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants. Transpl Int 2013; 26:1126-37. [PMID: 24102821 DOI: 10.1111/tri.12182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/02/2012] [Accepted: 08/19/2013] [Indexed: 11/30/2022]
Abstract
Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients. Serial in vivo bioluminescent imaging of syngraft and allograft recipients was performed for 6 months and 4 weeks, respectively. Grafts were removed for PCR-, RT-PCR, and luminometer analysis. In vivo bioluminescent imaging of recipients showed that AAV9 induced a prominent and stable luciferase activity in the abdomen, when compared with AAV2 and AAV8. However, ex vivo analyses revealed that intracoronary perfusion with AAV2 resulted in the highest heart transplant transduction levels in syngrafts and allografts. Ex vivo intracoronary delivery of AAV2 resulted in efficient transgene expression in heart transplants, whereas intracoronary AAV9 escapes into adjacent tissues. In terms of cardiac transduction, these results suggest AAV2 as a potential vector for gene therapy in preclinical heart transplants studies, and highlight the importance of delivery route in gene transfer studies.
Collapse
Affiliation(s)
- Alireza Raissadati
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway. Mol Ther 2013; 21:2205-16. [PMID: 23939025 DOI: 10.1038/mt.2013.184] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/27/2013] [Indexed: 12/25/2022] Open
Abstract
A drawback of gene therapy using adeno-associated virus (AAV) is the DNA packaging restriction of the viral capsid (<4.7 kb). Recent observations demonstrate oversized AAV genome transduction through an unknown mechanism. Herein, AAV production using an oversized reporter (6.2 kb) resulted in chloroform and DNase-resistant particles harboring distinct "fragment" AAV (fAAV) genomes (5.0, 2.4, and 1.6 kb). Fractionation experiments determined that only the larger "fragments" mediated transduction in vitro, and relatively efficient transduction was also demonstrated in the muscle, the eye, and the liver. In contrast with concatemerization-dependent large-gene delivery by split AAV, fAAV transduction is independent of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in vitro and in vivo while disproportionately reliant on the DNA strand-annealing protein Rad51C. Importantly, fAAV's unique dependence on DNA repair proteins, compared with intact AAV, strongly suggests that the majority of oversized AAV transduction is mediated by fragmented genomes. Although fAAV transduction is less efficient than intact AAV, it is enhanced fourfold in muscle and sevenfold in the retina compared with split AAV transduction. Furthermore, fAAV carrying codon-optimized therapeutic dysferlin cDNA in a 7.5 kb expression cassette restored dysferlin levels in a dystrophic model. Collectively, oversized AAV genome transduction requires unique DNA repair pathways and offers an alternative, more efficient strategy for large-gene therapy.
Collapse
|
37
|
Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials 2013; 34:7158-67. [PMID: 23796578 DOI: 10.1016/j.biomaterials.2013.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE.
Collapse
Affiliation(s)
- Adarsha Koirala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
38
|
Liu Y, Fang Y, Zhou Y, Zandi E, Lee CL, Joo KI, Wang P. Site-specific modification of adeno-associated viruses via a genetically engineered aldehyde tag. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:421-9. [PMID: 23038676 DOI: 10.1002/smll.201201661] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 05/26/2023]
Abstract
As a consequence of their well-defined nanostructure and intrinsic bioactive functionality, virus-based nanoparticles have shown promise for mediating gene delivery. Adeno-associated virus (AAV) nanoparticles, which possess an excellent safety profile and therapeutic potential, hold potential for use in human gene therapy. However, because of their native tropisms, the applicability of AAV nanoparticles is often limited to restricted ranges of cells or tissues. Thus, retargeting AAV particles to the desired cell populations has continued to be a major research focus in many gene therapy applications. In this study, a general strategy is reported for nanoparticle targeting. This involves the site-specific modification of AAV type 2 (AAV2) by genetically incorporating a short peptide, in this case an aldehyde tag, in the viral capsid. Such a tag can be exploited for site-specific attachment of targeting molecules and allows for further introduction of targeting antibodies or ligands. It is shown that this modification neither affects the level of infectious viral titer nor intracellular trafficking properties. Furthermore, the site-specific conjugation of targeting antibodies could significantly enhance viral transduction to those target cells that have otherwise exhibited very low permissiveness to AAV2 infection. This method also allows the functional incorporation of RGD peptides onto AAV2 for enhanced delivery with implications for cancer gene therapy.
Collapse
Affiliation(s)
- Yarong Liu
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Li C, He Y, Nicolson S, Hirsch M, Weinberg MS, Zhang P, Kafri T, Samulski RJ. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape. J Clin Invest 2013; 123:1390-401. [PMID: 23454772 DOI: 10.1172/jci66611] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/05/2012] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials.
Collapse
Affiliation(s)
- Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Balakrishnan B, Sen D, Hareendran S, Roshini V, David S, Srivastava A, Jayandharan GR. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors. PLoS One 2013; 8:e53845. [PMID: 23320106 PMCID: PMC3540029 DOI: 10.1371/journal.pone.0053845] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022] Open
Abstract
The unfolded protein response (UPR) is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER). In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α), activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold) and PERK (up to 8 fold) genes 12–48 hours after infection with self-complementary (sc)AAV2 but less prominent with single-stranded (ss)AAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold) while AAV6 vectors induced a significant increase on all the three major UPR pathways [6–16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5–2 fold) in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively). However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin) during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Dwaipayan Sen
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sangeetha Hareendran
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vaani Roshini
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sachin David
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| | - Giridhara R. Jayandharan
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
41
|
Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res 2013; 32:22-47. [DOI: 10.1016/j.preteyeres.2012.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 02/08/2023]
|
42
|
Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL. Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther 2012; 12:139-51. [PMID: 22533379 DOI: 10.2174/156652312800840603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies collectively represent a major health challenge, as few significant treatment options currently exist for any of these disorders. Recent years have witnessed a proliferation of novel approaches to therapy, spanning increased testing of existing and new pharmaceuticals, DNA delivery (both anti-sense oligonucleotides and plasmid DNA), gene therapies and stem cell technologies. While none of these has reached the point of being used in clinical practice, all show promise for being able to impact different types of muscular dystrophies. Our group has focused on developing direct gene replacement strategies to treat recessively inherited forms of muscular dystrophy, particularly Duchenne and Becker muscular dystrophy (DMD/BMD). Both forms of dystrophy are caused by mutations in the dystrophin gene and all cases can in theory be treated by gene replacement using synthetic forms of the dystrophin gene. The major challenges for success of this approach are the development of a suitable gene delivery shuttle, generating a suitable gene expression cassette able to be carried by such a shuttle, and achieving safe and effective delivery without elicitation of a destructive immune response. This review summarizes the current state of the art in terms of using adeno-associated viral vectors to deliver synthetic dystrophin genes for the purpose of developing gene therapy for DMD.
Collapse
Affiliation(s)
- Jane T Seto
- Department of Neurology, University of Washington, Seattle, WA 98195-7720, USA.
| | | | | | | | | |
Collapse
|
43
|
Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J Virol 2012; 86:10462-73. [PMID: 22811523 DOI: 10.1128/jvi.00935-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding adeno-associated virus (AAV) trafficking is critical to advance our knowledge of AAV biology and exploit novel aspects of vector development. Similar to the case for most DNA viruses, after receptor binding and entry, AAV traverses the cytoplasm and deposits the viral genome in the cell nucleus. In this study, we examined the role of the microtubule (MT) network in productive AAV infection. Using pharmacological reagents (e.g., nocodazole), live-cell imaging, and flow cytometry analysis, we demonstrated that AAV type 2 (AAV2) transduction was reduced by at least 2-fold in the absence of the MT network. Cell surface attachment and viral internalization were not dependent on an intact MT network. In treated cells at 2 h postinfection, quantitative three-dimensional (3D) microscopy determined a reproducible difference in number of intracellular particles associated with the nuclear membrane or the nucleus compared to that for controls (6 to 7% versus 26 to 30%, respectively). Confocal microscopy analysis demonstrated a direct association of virions with MTs, further supporting a critical role in AAV infection. To investigate the underling mechanisms, we employed single-particle tracking (SPT) to monitor the viral movement in real time. Surprisingly, unlike other DNA viruses (e.g., adenovirus [Ad] and herpes simplex virus [HSV]) that display bidirectional motion on MTs, AAV2 displays only unidirectional movement on MTs toward the nuclei, with peak instantaneous velocities at 1.5 to 3.5 μm/s. This rapid and unidirectional motion on MTs lasts for about 5 to 10 s and results in AAV particles migrating more than 10 μm in the cytoplasm reaching the nucleus very efficiently. Furthermore, electron microscopy analysis determined that, unlike Ad and HSV, AAV2 particles were transported on MTs within membranous compartments, and surprisingly, the acidification of AAV2-containing endosomes was delayed by the disruption of MTs. These findings together suggest an as-yet-undescribed model in which after internalization, AAV2 exploits MTs for rapid cytoplasmic trafficking in endosomal compartments unidirectionally toward the perinuclear region, where most acidification events for viral escape take place.
Collapse
|
44
|
Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry. J Virol 2012; 86:9163-74. [PMID: 22696661 DOI: 10.1128/jvi.00282-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) has gained much interest as a gene delivery vector. A hallmark of AAV2-mediated gene transfer is an intracellular conformational change of the virus capsid, leading to the exposure of infection-relevant protein domains. These protein domains, which are located on the N-terminal portion of the structural proteins VP1 and VP2, include a catalytic phospholipase A(2) domain and three clusters of basic amino acids. We have identified additional protein sequence motifs located on the VP1/2 N terminus that also proved to be obligatory for virus infectivity. These motifs include signals that are known to be involved in protein interaction, endosomal sorting and signal transduction in eukaryotic cells. Among different AAV serotypes they are highly conserved and mutation of critical amino acids of the respective motifs led to a severe infection-deficient phenotype. In particular, mutation of a YXXQ-sequence motif significantly reduced accumulation of virus capsids around the nucleus in comparison to wild-type AAV2. Interestingly, intracellular trafficking of AAV2 was shown to be independent of PLA(2) activity. Moreover, mutation of three PDZ-binding motifs, which are located consecutively at the very tip of the VP1 N terminus, revealed a nuclear transport-defective phenotype, suggesting a role in nuclear uptake of the virus through an as-yet-unknown mechanism.
Collapse
|
45
|
Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012; 19:649-58. [PMID: 22357511 PMCID: PMC4465241 DOI: 10.1038/gt.2012.6] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/16/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) have been widely used for gene delivery in animal models, and are currently evaluated for human gene therapy after successful clinical trials in the treatment of inherited, degenerative or acquired diseases, such as Leber congenital amaurosis, Parkinson disease or heart failure. However, limitations in vector tropism, such as limited tissue specificity and insufficient transduction efficiencies of particular tissues and cell types, still preclude therapeutic applications in certain tissues. Wild-type adeno-associated viruses (AAVs) are defective viruses that require the presence of a helper virus to complete their life cycle. On the one hand, this unique property makes AAV vectors one of the safest available viral vectors for gene delivery. On the other, it also represents a potential obstacle because rAAV vectors have to overcome several biological barriers in the absence of a helper virus to transduce successfully a cell. Consequently, a better understanding of the cellular roadblocks that limit rAAV gene delivery is crucial and, during the last 15 years, numerous studies resulted in an expanding body of knowledge of the intracellular trafficking pathways of rAAV vectors. This review describes our current understanding of the mechanisms involved in rAAV attachment to target cells, endocytosis, intracellular trafficking, capsid processing, nuclear import and genome release with an emphasis on the most recent discoveries in the field and the emerging strategies used to improve the efficiency of AAV-derived vectors.
Collapse
Affiliation(s)
- M Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
46
|
Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2012; 10:563-76. [PMID: 22177561 DOI: 10.1016/j.chom.2011.10.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are nonpathogenic, nonenveloped, single-stranded DNA viruses in development as gene therapy vectors. AAV internalization was postulated to proceed via a dynamin-dependent endocytic mechanism. Revisiting this, we find that infectious endocytosis of the prototypical AAV, AAV2, is independent of clathrin, caveolin, and dynamin. AAV2 infection is sensitive to EIPA, a fluid-phase uptake inhibitor, but is unaffected by Rac1 mutants or other macropinocytosis inhibitors. In contrast, AAV2 infection requires actin cytoskeleton remodeling and membrane cholesterol and is sensitive to inhibition of Cdc42, Arf1, and GRAF1, factors known to be involved in the formation of clathrin-independent carriers (CLIC). AAV2 virions are internalized in the detergent-resistant GPI-anchored-protein-enriched endosomal compartment (GEEC) and translocated to the Golgi apparatus, similarly to the CLIC/GEEC marker cholera toxin B. Our results indicate that-unlike the viral entry mechanisms described so far-AAV2 uses the pleiomorphic CLIC/GEEC pathway as its major endocytic infection route.
Collapse
Affiliation(s)
- Mathieu Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
47
|
Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells. Gene Ther 2012; 20:308-17. [PMID: 22622241 DOI: 10.1038/gt.2012.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the transduction of HEK293T cells permissive to adeno-associated virus serotype 8 (AAV8) to understand the mechanisms underlying its endocytic processing. Results showed that AAV8 enters cells through clathrin-mediated endocytosis followed by trafficking through various endosomal compartments. Interestingly, compared to the relatively well-characterized AAV2, a distinct involvement of late endosomes was observed for AAV8 trafficking within the target cell. AAV8 particles were also shown to exploit the cytoskeleton network to facilitate their transport within cells. Moreover, the cellular factors involved during endosomal escape were examined by an in vitro membrane permeabilization assay. Our data demonstrated that an acidic endosomal environment was required for AAV2 penetration through endosomal membranes and that the cellular endoprotease furin could promote AAV2 escape from the early endosomes. In contrast, these factors were not sufficient for AAV8 penetration through endosomal membranes. We further found that the ubiquitin-proteasome system is likely involved in the intracellular transport of AAV8 to nucleus. Taken together, our data have shed some light on the intracellular trafficking pathways of AAV8, which, in turn, could provide insight for potentializing AAV-mediated gene delivery.
Collapse
|
48
|
Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release 2012; 161:377-88. [PMID: 22516095 DOI: 10.1016/j.jconrel.2012.04.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 01/21/2023]
Abstract
After over 20 years from the first application of gene transfer in humans, gene therapy is now a mature discipline, which has progressively overcome several of the hurdles that prevented clinical success in the early stages of application. So far, the vast majority of gene therapy clinical trials have exploited viral vectors as very efficient nucleic acid delivery vehicles both in vivo and ex vivo. Here we summarize the current status of viral gene transfer for clinical applications, with special emphasis on the molecular properties of the major classes of viral vectors and the information so far obtained from gene therapy clinical trials.
Collapse
Affiliation(s)
- Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | |
Collapse
|
49
|
Abstract
Parvoviruses package a ssDNA genome. Both nonpathogenic and pathogenic members exist, including those that cause fetal infections, encompassing the entire spectrum of virus phenotypes. Their small genomes and simple coding strategy has enabled functional annotation of many steps in the infectious life cycle. They assemble a multifunctional capsid responsible for cell recognition and the transport of the packaged genome to the nucleus for replication and progeny virus production. It is also the target of the host immune response. Understanding how the capsid structure relates to the function of parvoviruses provides a platform for recombinant engineering of viral gene delivery vectors for the treatment of clinical diseases, and is fundamental for dissecting the viral determinants of pathogenicity. This review focuses on our current understanding of parvovirus capsid structure and function with respect to the infectious life cycle.
Collapse
Affiliation(s)
- Sujata Halder
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
Abstract
The Adeno-associated viruses (AAVs) are not associated with any diseases, and their ability to package non-genomic DNA and to transduce different cell/tissue populations has generated significant interest in understanding their basic biology in efforts to improve their utilization for corrective gene delivery. This includes their capsid structure, cellular tropism and interactions for entry, uncoating, replication, DNA packaging, capsid assembly, and antibody neutralization. The human and nonhuman primate AAVs are clustered into serologically distinct genetic clade and serotype groups, which have distinct cellular/tissue tropisms and transduction efficiencies. These properties are highly dependent upon the AAV capsid amino acid sequence, their capsid structure, and their interactions with host cell factors, including cell surface receptors, co-receptors, signaling molecules, proteins involved in host DNA replication, and host-derived antibodies. This chapter reviews the current structural information on AAV capsids and the capsid viral protein regions playing a role in the cellular interactions conferring an infective phenotype, which are then used to annotate the functional regions of the capsid. Based on the current data, the indication is that the AAVs, like other members of the Parvoviridae and other ssDNA viruses that form a T = 1 capsid, have evolved a multifunctional capsid with conserved core regions as is required for efficient capsid trafficking, capsid assembly, and genome packaging. Disparate surface loop structures confer differential receptor recognition and are involved in antibody recognition. The role of structural regions in capsid uncoating remains to be elucidated.
Collapse
Affiliation(s)
- Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|