1
|
Takahashi H, Ikemoto Y, Ogawa A. Simultaneous Detection of Multiple Analytes at Ambient Temperature Using Eukaryotic Artificial Cells with Modular and Robust Synthetic Riboswitches. ACS Synth Biol 2025; 14:771-780. [PMID: 39729431 PMCID: PMC11934135 DOI: 10.1021/acssynbio.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures. We here encapsulated a eukaryotic cell-free system consisting of wheat germ extract (WGE) and a DNA template encoding an analyte-responsive regulatory RNA (called a riboswitch) into giant unilamellar vesicles (GUVs) to create eukaryotic artificial cell-based sensors that function well at ambient temperature. First, we improved our previously reported eukaryotic synthetic riboswitches and WGE for use in GUVs by chimerizing two internal ribosome entry sites and optimizing magnesium concentrations, respectively, both of which increased the expression efficiency in GUVs several fold. Then, a DNA template encoding one of these riboswitches followed by a reporter protein was encapsulated with the optimized GUV-friendly WGE. Importantly, our previously established versatile method allowed for the rational design of highly efficient eukaryotic riboswitches that are responsive to a user-defined analyte. In fact, we utilized this method to successfully create three types of artificial cells, each of which responded to a specific, membrane-permeable analyte with wide-range, analyte-dose dependency and high sensitivity at ambient temperature. Finally, due to their orthogonality and robustness, we were able to mix a cocktail of these artificial cells to achieve simultaneous detection of the three analytes without significant barriers.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yuri Ikemoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
2
|
Abaeva IS, Pestova TV, Hellen CUT. Genetic mechanisms underlying the structural elaboration and dissemination of viral internal ribosomal entry sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590008. [PMID: 38883778 PMCID: PMC11178006 DOI: 10.1101/2024.04.17.590008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Viral internal ribosomal entry sites (IRESs) form several classes that use distinct mechanisms to mediate end-independent initiation of translation. The origin of viral IRESs is a longstanding question. The simplest IRESs comprise tandem pseudoknots and occur in the intergenic region (IGR) of Dicistroviridae genomes (order Picornavirales ). Larger IGR IRESs contain additional elements that determine specific properties such as binding to the head of the ribosoma l 40S subunit. Metagenomic analyses reported here identified novel groups of structurally distinct IGR-like IRESs. The smallest of these (∼120nt long) comprise three pseudoknots and bind directly to the ribosomal P site. Others are up to 260nt long: insertions occurred at specific loci, possibly reflecting non-templated nucleotide insertion during replication. Various groups can be arranged in order, differing by the cumulative addition of single structural elements, suggesting an accretion mechanism for the structural elaboration of IRESs. Identification of chimeric IRESs implicates recombinational exchange of domains as a second mechanism for the diversification of IRES structure. Recombination likely also accounts for the presence of IGR-like IRESs at the 5'-end of some dicistrovirus-like genomes (e.g. Hangzhou dicistrovirus 3) and in the RNA genomes of Tombusviridae (order Tolivirales ), Marnaviridae (order Picornavirale s), and the 'Ripiresk' picorna-like clade (order Picornavirale s).
Collapse
|
3
|
Takahashi H, Fujikawa M, Ogawa A. Rational design of eukaryotic riboswitches that up-regulate IRES-mediated translation initiation with high switching efficiency through a kinetic trapping mechanism in vitro. RNA (NEW YORK, N.Y.) 2023; 29:1950-1959. [PMID: 37704221 PMCID: PMC10653380 DOI: 10.1261/rna.079778.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
In general, riboswitches functioning through a cotranscriptional kinetic trapping mechanism (kt-riboswitches) show higher switching efficiencies in response to practical concentrations of their ligand molecules than eq-riboswitches, which function by an equilibrium mechanism. However, the former have been much more difficult to design due to their more complex mechanism. We here successfully developed a rational strategy for constructing eukaryotic kt-riboswitches that ligand-dependently enhance translation initiation mediated by an internal ribosome entry site (IRES). This was achieved both by utilizing some predicted structural features of a highly efficient bacterial kt-riboswitch identified through screening and by completely decoupling an aptamer domain from the IRES. Three kt-riboswitches optimized through this strategy, each responding to a different ligand, exhibited three- to sevenfold higher induction ratios (up to ∼90) than previously optimized eq-riboswitches regulating the same IRES-mediated translation in wheat germ extract. Because the IRES used functions well in various eukaryotic expression systems, these types of kt-riboswitches are expected to serve as major eukaryotic gene regulators based on RNA. In addition, the present strategy could be applied to the rational construction of other types of kt-riboswitches, including those functioning in bacterial expression systems.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
4
|
Lidsky PV, Dmitriev SE, Andino R. Introduction of Dicistrovirus IRESs into UAS/SV40-polyA constructs results in premature polyadenylation and strong overexpression of the upstream ORF in Drosophila animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560905. [PMID: 37873388 PMCID: PMC10592961 DOI: 10.1101/2023.10.04.560905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To evaluate the properties of insect virus internal ribosomal entry sites (IRESs) for protein expression in Drosophila, we have introduced Cricket Paralysis virus (CrPV) and Drosophila C virus (DCV) IRESs into UAS/SV40-polyA vector. We found that introduction of IRESs induce premature polyadenylation, resulting in both truncation of the mRNA, and an increase in mRNA levels of approximately 40-fold. The increase in mRNA levels was accompanied by increased resistance to nonsense-mediated mRNA decay (NMD)-mediated degradation. Our results suggest that premature polyadenylation increases mRNA stability in the SV40 polyadenylation site-containing constructs, suggesting a novel method for robust overexpression of transgenes in Drosophila.
Collapse
Affiliation(s)
- Peter V. Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, 94158, CA
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, 94158, CA
| |
Collapse
|
5
|
Abaeva IS, Young C, Warsaba R, Khan N, Tran L, Jan E, Pestova T, Hellen CT. The structure and mechanism of action of a distinct class of dicistrovirus intergenic region IRESs. Nucleic Acids Res 2023; 51:9294-9313. [PMID: 37427788 PMCID: PMC10516663 DOI: 10.1093/nar/gkad569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Internal ribosomal entry sites (IRESs) engage with the eukaryotic translation apparatus to promote end-independent initiation. We identified a conserved class of ∼150 nt long intergenic region (IGR) IRESs in dicistrovirus genomes derived from members of the phyla Arthropoda, Bryozoa, Cnidaria, Echinodermata, Entoprocta, Mollusca and Porifera. These IRESs, exemplified by Wenling picorna-like virus 2, resemble the canonical cricket paralysis virus (CrPV) IGR IRES in comprising two nested pseudoknots (PKII/PKIII) and a 3'-terminal pseudoknot (PKI) that mimics a tRNA anticodon stem-loop base-paired to mRNA. However, they are ∼50 nt shorter than CrPV-like IRESs, and PKIII is an H-type pseudoknot that lacks the SLIV and SLV stem-loops that are primarily responsible for the affinity of CrPV-like IRESs for the 40S ribosomal subunit and that restrict initial binding of PKI to its aminoacyl (A) site. Wenling-class IRESs bound strongly to 80S ribosomes but only weakly to 40S subunits. Whereas CrPV-like IRESs must be translocated from the A site to the peptidyl (P) site by elongation factor 2 for elongation to commence, Wenling-class IRESs bound directly to the P site of 80S ribosomes, and decoding begins without a prior translocation step. A chimeric CrPV clone containing a Wenling-class IRES was infectious, confirming that the IRES functioned in cells.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christina Young
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Reid Warsaba
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nadiyah Khan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lan Vy Tran
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
6
|
Cao X, Wang Z, Pang J, Sun L, Kondo H, Andika IB. Identification of a novel dicistro-like virus associated with the roots of tomato plants. Arch Virol 2023; 168:214. [PMID: 37523067 DOI: 10.1007/s00705-023-05843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Viruses belonging to the family Dicistroviridae have a monopartite positive-sense single-stranded RNA genome and infect a variety of arthropods. Using high-throughput sequencing, we detected a novel dicistro-like virus, tentatively named "tomato root-associated dicistro-like virus" (TRaDLV), in the roots of tomato plants showing yellow mosaic symptoms on the leaves. The diseased tomato plants were coinfected with multiple plant viruses, and TRaDLV was present in the roots but not in the leaves. The genome of TRaDLV is 8726 nucleotides in length, excluding the poly(A) tail, and contains two open reading frames (ORFs) separated by an intergenic region (IGR). The TRaDLV genome showed characteristics similar to those of dicistroviruses, including the presence of a 3C-like protease domain, repeated amino acid sequences representing multiple copies of viral genome-linked protein (VPg)-like sequences in the ORF1 polyprotein, and a series of stem-loop structures resembling an internal ribosome entry site in the IGR. Phylogenetic analysis revealed that TRaDLV clustered with unclassified dicistro-like viruses from invertebrates or identified in samples of plant-derived material. These findings indicate the existence of a novel dicistro-like virus that may associate with plant roots or a root-inhabiting organism.
Collapse
Affiliation(s)
- Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109, Qingdao, China
- Shandong Agricultural University, 271018, Tai'an, China
- Shouguang International vegetable Sci-tech Fair Management Service Center, 262700, Shouguang, China
| | - Ziqi Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109, Qingdao, China
| | - Jianguo Pang
- University Library, Northwest A&F University, 712100, Xianyang, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Xianyang, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, 710-0046, Kurashiki, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109, Qingdao, China.
| |
Collapse
|
7
|
Miścicka A, Lu K, Abaeva IS, Pestova TV, Hellen CUT. Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes. RNA (NEW YORK, N.Y.) 2023; 29:1051-1068. [PMID: 37041031 PMCID: PMC10275262 DOI: 10.1261/rna.079599.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Kristen Lu
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
8
|
Ogawa A, Inoue H, Itoh Y, Takahashi H. Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches. ACS Synth Biol 2023; 12:35-42. [PMID: 36566430 DOI: 10.1021/acssynbio.2c00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An RNA aptamer that induces suitable conformational changes upon binding to a user-defined ligand allows us to artificially construct a riboswitch, a ligand-dependent and cis-acting gene regulatory RNA. Although such an aptamer can be obtained through in vitro selection, it is still challenging to rationally expand the variety of orthogonal ligand/aptamer (ligand/riboswitch) pairs. To achieve this in a facile, selection-free way, we herein focused on a specific type of ligand, 6-nt nanosized DNA (nDNA) and its aptamer that was previously selected to construct a eukaryotic artificial riboswitch. Specifically, we merely mutated one or more possible Watson-Crick base pairs in the nDNA/aptamer (nDNA/riboswitch) interactions into another base pair or pairs. Using two sets that each had 16 comprehensive mutations, we obtained three groups of several orthogonal nDNA/riboswitch pairs. These pairs could be used to create complex gene circuits, including multiple simultaneous and/or multistep cascading regulations in synthetic biology.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Honami Inoue
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yu Itoh
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
9
|
Takahashi H, Okubo R, Ogawa A. Eukaryotic artificial ON-riboswitches that respond efficiently to mid-sized short peptides. Bioorg Med Chem Lett 2022; 71:128839. [PMID: 35654302 DOI: 10.1016/j.bmcl.2022.128839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
We chose two types of mid-sized Arg-rich peptides (Rev-pep and Tat-pep) as ligands and used their aptamers to construct efficient eukaryotic ON-riboswitches (ligand-dependently upregulating riboswitches). Due to the aptamers' high affinities, the best Rev-pep-responsive and Tat-pep-responsive riboswitches obtained showed much higher switching efficiencies at low ligand concentrations than small ligand-responsive ON-riboswitches in the same mechanism. In addition, despite the high sequence similarity of Rev-pep and Tat-pep, the two best riboswitches were almost insensitive to each other's peptide ligand. Considering the high responsiveness and specificity along with the versatility of the expression platform used and the applicability of Arg-rich peptides, this orthogonal pair of riboswitches would be widely useful eukaryotic gene regulators or biosensors.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Ryo Okubo
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
10
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
11
|
Genome sequence of a novel member of the order Picornavirales from the endoparasitoid wasp Diversinervus elegans. Arch Virol 2020; 166:295-297. [PMID: 33067649 DOI: 10.1007/s00705-020-04824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Here, we report a novel RNA virus from an encyrtid endoparasitoid wasp (Diversinervus elegans). This virus has a genome of 8845 nucleotides in length with a poly(A) tail. It contains one open reading frame (ORF) encoding a single polyprotein that shares the most significant similarity to the polyproteins of dicistroviruses. Phylogenetic analysis suggested that this virus belongs to the family Dicistroviridae from the order Picornavirales, but its genomic organization is distinct from that of the other known dicistroviruses, which have two ORFs. Consequently, we propose that this virus is a member of a new species in the order Picornavirales, and have named it "Diversinervus elegans virus" (DEV).
Collapse
|
12
|
Ogawa A, Itoh Y. In Vitro Selection of RNA Aptamers Binding to Nanosized DNA for Constructing Artificial Riboswitches. ACS Synth Biol 2020; 9:2648-2655. [PMID: 33017145 DOI: 10.1021/acssynbio.0c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We here designed an in vitro selection scheme for obtaining an aptamer with which to rationally construct an artificial riboswitch as its component part. In fact, a nanosized DNA-binding aptamer obtained through this scheme allowed us to easily and successfully create eukaryotic riboswitches that upregulate internal ribosome entry site-mediated translation in response to the ligand (nanosized DNA) in wheat germ extract, a eukaryotic cell-free expression system. The induction ratio of the best riboswitch ligand-dose-dependently increased to 21 at 300 μM ligand. This switching efficiency is much higher than that of the same type of riboswitch with a widely used theophylline-binding aptamer, which was in vitro selected without considering its utility for constructing riboswitches. The selection scheme described here would facilitate obtaining various ligand/aptamer pairs suitable for constructing artificial riboswitches, which could serve as elements of synthetic gene circuits in synthetic biology.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yu Itoh
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
13
|
Pernod K, Schaeffer L, Chicher J, Hok E, Rick C, Geslain R, Eriani G, Westhof E, Ryckelynck M, Martin F. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Res 2020; 48:6170-6183. [PMID: 32266934 PMCID: PMC7293025 DOI: 10.1093/nar/gkaa221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.
Collapse
Affiliation(s)
- Ketty Pernod
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Laure Schaeffer
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg - Esplanade, CNRS FRC1589, Université de Strasbourg, 2, allée Konrad Roentgen Descartes, F-67084 Strasbourg, France
| | - Eveline Hok
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Christian Rick
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Gilbert Eriani
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Eric Westhof
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Michael Ryckelynck
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
14
|
Gupta A, Bansal M. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Brief Bioinform 2020; 21:1151-1163. [PMID: 31204430 PMCID: PMC7109810 DOI: 10.1093/bib/bbz054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle, where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active role in translational regulation, their global conformational features and the bioinformatics/computational tools available for the identification and prediction of these structures.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Kamura T, Katsuda Y, Kitamura Y, Ihara T. G-quadruplexes in mRNA: A key structure for biological function. Biochem Biophys Res Commun 2020; 526:261-266. [PMID: 32209257 DOI: 10.1016/j.bbrc.2020.02.168] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
The last several years have seen exciting advances in the understanding of the structure and function of higher-order structures of RNA. Expression levels of some specific genes were shown to be directly regulated by environmentally-responsive formation of certain secondary structures such as stem-loops and pseudoknots. Even among these noncanonical structures, RNA G-quadruplexes, which form on the regions of guanine-rich sequences in mRNA, are highly stable structures that are involved in a variety of biological processes. However, many questions regarding the biological significance of RNA G-quadruplexes remain unsettled, mainly because it is difficult to locate the structures in mRNA. This review focuses on emerging methods that locate RNA G-quadruplexes in mRNA by computational and biochemical techniques. In addition, recent reports on the biological functions of RNA G-quadruplexes are also covered to highlight their various roles in cells, such as in regulating mRNA processing and translation.
Collapse
Affiliation(s)
- Takuto Kamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yousuke Katsuda
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
16
|
Mutation of the start codon to enhance Cripavirus internal ribosome entry site-mediated translation in a wheat germ extract. Bioorg Med Chem Lett 2019; 29:126729. [PMID: 31607608 DOI: 10.1016/j.bmcl.2019.126729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022]
Abstract
Wheat germ extract (WGE) is one of the most widely used eukaryotic cell-free translation systems for easy synthesis of a broad range of proteins merely by adding template mRNAs. Its productivity has thus far been improved by removing translational inhibitors from the extract and stabilizing the template with terminal protectors. Nonetheless, there remains room for increasing the yield by designing a terminally protected template with higher susceptibility to translation. Given the fact that a 5' terminal protector is a strong inhibitor of the canonical translation, we herein focused on Cripavirus internal ribosome entry sites (IRESes), which allow for a unique translation initiation from a non-AUG start codon without the help of any initiation factors. We mutated their start codons to enhance the IRES-mediated translation efficiency in WGE. One of the mutants showed considerably higher efficiency, 3-4-fold higher than that of its wild type, and also 3-4-fold higher than the canonical translation efficiency by an IRES-free mRNA having one of the most effective canonical-translation enhancers. Because this mutated IRES is compatible with different types of genes and terminal protectors, we expect it will be widely used to synthesize proteins in WGE.
Collapse
|
17
|
Lattimer J, Stewart H, Locker N, Tuplin A, Stonehouse NJ, Harris M. Structure-function analysis of the equine hepacivirus 5' untranslated region highlights the conservation of translational mechanisms across the hepaciviruses. J Gen Virol 2019; 100:1501-1514. [PMID: 31490115 PMCID: PMC7615701 DOI: 10.1099/jgv.0.001316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000 years. The 5' untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5'UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5'UTR. The secondary structure was determined using selective 2' hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem-loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5'UTR, allowing us to investigate the roles of the stem-loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences.
Collapse
Affiliation(s)
- Joseph Lattimer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
A tRNA-mimic Strategy to Explore the Role of G34 of tRNA Gly in Translation and Codon Frameshifting. Int J Mol Sci 2019; 20:ijms20163911. [PMID: 31405256 PMCID: PMC6720975 DOI: 10.3390/ijms20163911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.
Collapse
|
19
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
20
|
Kamoshita N, Tominaga SI. UGA stop codon readthrough to translate intergenic region of Plautia stali intestine virus does not require RNA structures forming internal ribosomal entry site. RNA (NEW YORK, N.Y.) 2019; 25:90-104. [PMID: 30337458 PMCID: PMC6298568 DOI: 10.1261/rna.065466.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
The translation of capsid proteins of Plautia stali intestine virus (PSIV), encoded in its second open reading frame (ORF2), is directed by an internal ribosomal entry site (IRES) located in the intergenic region (IGR). Owing to the specific properties of PSIV IGR in terms of nucleotide length and frame organization, capsid proteins are also translated via stop codon readthrough in mammalian cultured cells as an extension of translation from the first ORF (ORF1) and IGR. To delineate stop codon readthrough in PSIV, we determined requirements of cis-acting elements through a molecular genetics approach applied in both cell-free translation systems and cultured cells. Mutants with deletions from the 3' end of IGR revealed that almost none of the sequence of IGR is necessary for readthrough, apart from the 5'-terminal codon CUA. Nucleotide replacement of this CUA trinucleotide or change of the termination codon from UGA severely impaired readthrough. Chemical mapping of the IGR region of the most active 3' deletion mutant indicated that this defined minimal element UGACUA, together with its downstream sequence, adopts a single-stranded conformation. Stimulatory activities of downstream RNA structures identified to date in gammaretrovirus, coltivirus, and alphavirus were not detected in the context of PSIV IGR, despite the presence of structures for IRES. To our knowledge, PSIV IGR is the first example of stop codon readthrough that is solely defined by the local hexamer sequence, even though the sequence is adjacent to an established region of RNA secondary/tertiary structures.
Collapse
Affiliation(s)
- Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Shin-Ichi Tominaga
- Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| |
Collapse
|
21
|
Proteogenomic Identification of a Novel Protein-Encoding Gene in Bovine Herpesvirus 1 That Is Expressed during Productive Infection. Viruses 2018; 10:v10090499. [PMID: 30223481 PMCID: PMC6164122 DOI: 10.3390/v10090499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is one of several microbes that contributes to the development of the bovine respiratory disease (BRD) and can also induce abortions in cattle. As other alpha-herpesvirinae subfamily members, BoHV-1 efficiently replicates in many cell types and subsequently establishes a life-long latent infection in sensory neurons. BoHV-1 encodes more than 70 proteins that are expressed in a well-defined manner during productive infection. However, in silico open reading frame (ORF) prediction of the BoHV-1 genome suggests that the virus may encode more than one hundred proteins. In this study we used mass spectrometry followed by proteogenomic mapping to reveal the existence of 92 peptides that map to previously un-annotated regions of the viral genome. Twenty-one of the newly termed “intergenic peptides” were predicted to have a viable ORF around them. Twelve of these produced an mRNA transcript as demonstrated by strand-specific RT-PCR. We further characterized the 5′ and 3′ termini of one mRNA transcript, ORF-A, and detected a 55 kDa protein produced during active infection using a custom-synthesized antibody. We conclude that the coding potential of BoHV-1 is underestimated.
Collapse
|
22
|
Ogawa A, Murashige Y, Takahashi H. Canonical translation-modulating OFF-riboswitches with a single aptamer binding to a small molecule that function in a higher eukaryotic cell-free expression system. Bioorg Med Chem Lett 2018; 28:2353-2357. [PMID: 29941191 DOI: 10.1016/j.bmcl.2018.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
Abstract
We have found that OFF-riboswitches that ligand-dependently downregulate the canonical translation in a higher eukaryotic expression system (wheat germ extract) can be easily created by inserting a single aptamer into the 5' untranslated region (UTR) of mRNA, even if its ligand is as small as theophylline. The key is the position of the inserted aptamer: the 5' end (+0 position) is much better than other positions for inhibiting canonical translation with the aptamer-ligand complex. The data showed that ribosome loading is suppressed by a rigid structure in the 5' end, and this suppression is dependent on the structure's stability but not on its size. Although this preference of aptamer insertion point contradicts the results in a lower eukaryote, it accords with the fact that the 5'-end structural hindrance is more effective for blocking the ribosome in higher eukaryotes. Therefore, the present type of OFF-riboswitch would function in various higher eukaryotic expression systems.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Yuta Murashige
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
23
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Au HHT, Elspass VM, Jan E. Functional Insights into the Adjacent Stem-Loop in Honey Bee Dicistroviruses That Promotes Internal Ribosome Entry Site-Mediated Translation and Viral Infection. J Virol 2018; 92:e01725-17. [PMID: 29093099 PMCID: PMC5752952 DOI: 10.1128/jvi.01725-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
All viruses must successfully harness the host translational apparatus and divert it towards viral protein synthesis. Dicistroviruses use an unusual internal ribosome entry site (IRES) mechanism whereby the IRES adopts a three-pseudoknot structure that accesses the ribosome tRNA binding sites to directly recruit the ribosome and initiate translation from a non-AUG start site. A subset of dicistroviruses, including the honey bee Israeli acute paralysis virus (IAPV), encode an extra stem-loop (SLVI) 5' -adjacent to the IGR IRES. Previously, the function of this additional stem-loop is unknown. Here, we provide mechanistic and functional insights into the role of SLVI in IGR IRES translation and in virus infection. Biochemical analyses of a series of mutant IRESs demonstrated that SLVI does not function in ribosome recruitment but is required for proper ribosome positioning on the IRES to direct translation. Using a chimeric infectious clone derived from the related Cricket paralysis virus, we showed that the integrity of SLVI is important for optimal viral translation and viral yield. Based on structural models of ribosome-IGR IRES complexes, the SLVI is predicted to be in the vicinity of the ribosome E site. We propose that SLVI of IAPV IGR IRES functionally mimics interactions of an E-site tRNA with the ribosome to direct positioning of the tRNA-like domain of the IRES in the A site.IMPORTANCEViral internal ribosome entry sites are RNA elements and structures that allow some positive-sense monopartite RNA viruses to hijack the host ribosome to start viral protein synthesis. We demonstrate that a unique stem-loop structure is essential for optimal viral protein synthesis and for virus infection. Biochemical evidence shows that this viral stem-loop RNA structure impacts a fundamental property of the ribosome to start protein synthesis.
Collapse
Affiliation(s)
- Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valentina M Elspass
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Ogawa A, Masuoka H, Ota T. Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System. ACS Synth Biol 2017; 6:1656-1662. [PMID: 28613837 DOI: 10.1021/acssynbio.7b00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We constructed novel artificial riboswitches that function in a eukaryotic translation system (wheat germ extract), by rationally implanting an in vitro-selected aptamer into the intergenic internal ribosome entry site (IRES) of Plautia stali intestine virus. These eukaryotic OFF-riboswitches (OFF-eRSs) ligand-dose-dependently downregulate IRES-mediated translation without hybridization switches, which typical riboswitches utilize for gene regulation. The hybridization-switch-free mechanism not only allows for easy design but also requires less energy for regulation, resulting in a higher switching efficiency than hybridization-switch-based OFF-eRSs provide. In addition, even a small ligand such as theophylline can induce satisfactory repression, in contrast to other types of OFF-eRSs that modulate the 5' cap-dependent canonical translation. Because our proposed hybridization-switch-free OFF-eRSs are based on a versatile IRES that functions well in many types of eukaryotic translation systems, they would be widely usable elements for synthetic gene circuits in both cell-free and cell-based synthetic biology.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3
Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroki Masuoka
- Proteo-Science Center, Ehime University, 3
Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tsubasa Ota
- Proteo-Science Center, Ehime University, 3
Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
26
|
Carvajal F, Vallejos M, Walters B, Contreras N, Hertz MI, Olivares E, Cáceres CJ, Pino K, Letelier A, Thompson SR, López-Lastra M. Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation. FEBS J 2016; 283:2508-27. [PMID: 27191820 DOI: 10.1111/febs.13756] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/28/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
The 5' leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work, we examine the internal ribosome entry site (IRES) located in the 5' leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25). Additionally, a mechanistic and mutational analysis revealed that the HIV-1 IRES is modular in nature and that once the 40S ribosomal subunit is recruited to the IRES, translation initiates without the need of ribosome scanning. These findings elucidate a mechanism of initiation by the HIV-1 IRES whereby a number of highly structured sites present within the HIV-1 5' leader leads to the recruitment of the 40S subunit directly at the site of initiation of protein synthesis.
Collapse
Affiliation(s)
- Felipe Carvajal
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maricarmen Vallejos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beth Walters
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marla I Hertz
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Eduardo Olivares
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos J Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Letelier
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 2016; 5. [PMID: 27159451 PMCID: PMC4861600 DOI: 10.7554/elife.13567] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI:http://dx.doi.org/10.7554/eLife.13567.001
Collapse
Affiliation(s)
- Jason Murray
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | | | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
28
|
Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 2016; 5. [PMID: 27159452 PMCID: PMC4896748 DOI: 10.7554/elife.14874] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/08/2016] [Indexed: 12/17/2022] Open
Abstract
Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.
Collapse
Affiliation(s)
| | - Cha San Koh
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
29
|
Petrov A, Grosely R, Chen J, O'Leary SE, Puglisi JD. Multiple Parallel Pathways of Translation Initiation on the CrPV IRES. Mol Cell 2016; 62:92-103. [PMID: 27058789 PMCID: PMC4826567 DOI: 10.1016/j.molcel.2016.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/28/2015] [Accepted: 03/17/2016] [Indexed: 02/05/2023]
Abstract
The complexity of eukaryotic translation allows fine-tuned regulation of protein synthesis. Viruses use internal ribosome entry sites (IRESs) to minimize or, like the CrPV IRES, eliminate the need for initiation factors. Here, by exploiting the CrPV IRES, we observed the entire process of initiation and transition to elongation in real time. We directly tracked the CrPV IRES, 40S and 60S ribosomal subunits, and tRNA using single-molecule fluorescence spectroscopy and identified multiple parallel initiation pathways within the system. Our results distinguished two pathways of 80S:CrPV IRES complex assembly that produce elongation-competent complexes. Following 80S assembly, the requisite eEF2-mediated translocation results in an unstable intermediate that is captured by binding of the elongator tRNA. Whereas initiation can occur in the 0 and +1 frames, the arrival of the first tRNA defines the reading frame and strongly favors 0 frame initiation. Overall, even in the simplest system, an intricate reaction network regulates translation initiation.
Collapse
Affiliation(s)
- Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Jin Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
| | - Seán E O'Leary
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| |
Collapse
|
30
|
Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection. Proc Natl Acad Sci U S A 2015; 112:E6446-55. [PMID: 26554019 DOI: 10.1073/pnas.1512088112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame.
Collapse
|
31
|
Ruehle MD, Zhang H, Sheridan RM, Mitra S, Chen Y, Gonzalez RL, Cooperman BS, Kieft JS. A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation. eLife 2015; 4. [PMID: 26523395 PMCID: PMC4709265 DOI: 10.7554/elife.08146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/01/2015] [Indexed: 01/06/2023] Open
Abstract
Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elongation cycle. These IRESs require an RNA pseudoknot that mimics a codon-anticodon interaction and contains a conformationally dynamic loop. We explored the role of this loop and found that both the length and sequence are essential for translation in different types of IGR IRESs and from diverse viruses. We found that loop 3 affects two discrete elongation factor-dependent steps in the IRES initiation mechanism. Our results show how the IRES directs multiple steps after 80S ribosome placement and highlights the often underappreciated significance of discrete conformationally dynamic elements within the context of structured RNAs. DOI:http://dx.doi.org/10.7554/eLife.08146.001 Many viruses store their genetic information in the form of strands of ribonucleic acid (RNA), which contain building blocks called nucleotides. Once inside an infected cell, the virus hijacks the cellular structures that build proteins (called ribosomes), which forces the cell to start making viral proteins. Many RNA viruses manipulate the cell’s ribosomes using RNA elements called Internal Ribosome Entry Sites, or IRESs. In a family of viruses called Dicistroviridae, which infect a number of insects, a section of the IRES RNA binds directly to the ribosome. Proteins called elongation factors then trigger a series of events that lead to the cell starting to make the viral proteins. By mutating the RNA of many different Dicistroviridae viruses that infect a variety of invertebrates, Ruehle et al. have now investigated how a particular loop in the structure of the IRES helps to make cells build the viral proteins. This loop is flexible, and interacts with the ribosome to enable the IRES to move through the ribosome. Mutations that shorten the loop or alter the sequence of nucleotides in the loop prevent the occurrence of two of the steps that need to occur for the cell to make viral proteins. Both of these steps depend on elongation factors. Determining how the entire IRES might change shape as it moves through the ribosome is an important next step, since the ribosome is exquisitely sensitive to the shape and motions of its binding partners. DOI:http://dx.doi.org/10.7554/eLife.08146.002
Collapse
Affiliation(s)
- Marisa D Ruehle
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Somdeb Mitra
- Department of Chemistry, Columbia University, New York, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
32
|
Identification of Rhopalosiphum Padi Virus 5' Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry. Int J Mol Sci 2015; 16:16053-66. [PMID: 26184188 PMCID: PMC4519938 DOI: 10.3390/ijms160716053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/15/2015] [Accepted: 07/02/2015] [Indexed: 11/18/2022] Open
Abstract
The 579-nucleotide 5′ untranslated region (5′UTR) of the Rhopalosiphum padi virus (RhPV) possesses a cross-kingdom internal ribosome entry site (IRES) activity that functions in insect, mammalian, and plant-derived in vitro translation systems, and six TAAG motifs within the DNA fragment encoding the RhPV 5′UTR were previously found to confer the RhPV 5′UTR with late promoter activity in baculovirus. In the present study, various truncated RhPV 5′UTR sequences were produced, and among them, a fragment of 110 bp ranging from nucleotides 309 to 418 was identified to be the shortest fragment responsible for the late promoter activity in baculovirus infected Sf21 cells. This 110 bp fragment contains a TAAG tandem repeat that retains more than 60% of the late promoter activity of the full length RhPV 5′UTR sequence. Further, IRES activity remained unchanged in all truncated RhPV 5′UTR constructs. Taken together, this novel 110 bp fragment having late promoter activity in baculovirus as well as IRES activity in mammalian cell, renders it a useful tool for the development of a “shuttle” bi-cistronic baculovirus gene expression and/or delivery vector.
Collapse
|
33
|
Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 2015; 519:110-3. [PMID: 25652826 PMCID: PMC4352134 DOI: 10.1038/nature14219] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
Abstract
The central dogma of gene expression (DNA→RNA→protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive1,2. However, the core structures and conformational dynamics of ribosomes that are responsible for the steps of translation following initiation are ancient and conserved across the domains of life3,4. We asked whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here, we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by tRNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence as an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.
Collapse
|
34
|
Abstract
Riboswitches are composed of two regions: one for binding to the ligand (the aptamer domain) and the other for regulating the expression of the gene (the expression platform). In most riboswitches (both natural and artificial), a part of the aptamer domain required for ligand binding is directly involved in the regulation of expression, so that it is difficult to design other ligand-responsive riboswitches based on these riboswitches even by using artificial aptamers obtained through in vitro selection. This chapter describes a method for rationally constructing a foundational ON-riboswitch, which is easily available for the design of other ligand-dependent riboswitches, by introducing a new region (a modulator sequence: MS) in addition to the two basic regions. A facile method for preparing arbitrary molecule-dependent riboswitches based on the foundational riboswitch is also presented.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
35
|
Reuter G, Pankovics P, Gyöngyi Z, Delwart E, Boros A. Novel dicistrovirus from bat guano. Arch Virol 2014; 159:3453-6. [PMID: 25168044 DOI: 10.1007/s00705-014-2212-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/24/2014] [Indexed: 11/28/2022]
Abstract
A novel dicistrovirus (strain NB-1/2011/HUN, KJ802403) genome was detected from guano collected from an insectivorous bat (species Pipistrellus pipistrellus) in Hungary, using viral metagenomics. The complete genome of NB-1 is 9136 nt in length, excluding the poly(A) tail. NB-1 has a genome organization typical of a dicistrovirus with multiple 3B(VPg) and a cripavirus-like intergenic region (IGR)-IRES. NB-1 shares only 41 % average amino acid sequence identity with capsid proteins of Himetobi P virus, indicating a potential novel species in the genus Cripavirus, family Dicistroviridae.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Szabadság út 7., 7623, Pécs, Hungary,
| | | | | | | | | |
Collapse
|
36
|
Wang QS, Jan E. Switch from cap- to factorless IRES-dependent 0 and +1 frame translation during cellular stress and dicistrovirus infection. PLoS One 2014; 9:e103601. [PMID: 25089704 PMCID: PMC4121135 DOI: 10.1371/journal.pone.0103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.
Collapse
Affiliation(s)
- Qing S. Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
37
|
Hodgman CE, Jewett MC. Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis. N Biotechnol 2014; 31:499-505. [PMID: 25017988 DOI: 10.1016/j.nbt.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/02/2014] [Accepted: 07/02/2014] [Indexed: 12/27/2022]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) systems are limited, in part, by inefficient translation initiation. Here, we report three internal ribosome entry site (IRES) sequences from the Dicistroviridae family that are highly active in yeast CFPS. These include the intergenic region (IGR) IRES from cricket paralysis virus (CrPV), plautia stali intestine virus (PSIV) and Solenopsis invicta virus 1 (SINV1). Optimization of combined transcription and translation (Tx/Tl) CFPS reactions primed with linear DNA containing the CrPV IGR IRES resulted in batch synthesis yields of 0.92 ± 0.17 μg/mL luciferase. Further template engineering, such as including the first 12 nt of native CrPV gene, increased yields to 2.33 ± 0.11 μg/mL. We next observed that the inclusion of a 50 nt poly(A) to the 3' end of the IGR IRES-mediated message increased yields an additional 81% to 4.33 ± 0.37 μg/mL, without any effect on mRNA stability or copy number. This was surprising because the CrPV IGR IRES requires no known translation initiation factors. Lastly, we investigated a method to inhibit background expression through competitive inhibition by supplying the reaction with 5' cap structure analog. This study highlights the crucial role translation initiation plays in yeast CFPS and offers a simple platform to study IRES sequences.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute, E136, Evanston, IL 60208-3120, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute, E136, Evanston, IL 60208-3120, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA; Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North St Clair Street, Suite 1200, Chicago, IL 60611-3068, USA; Institute for BioNanotechnology in Medicine, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611-2875, USA.
| |
Collapse
|
38
|
Au HHT, Jan E. Novel viral translation strategies. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:779-801. [PMID: 25045163 PMCID: PMC7169809 DOI: 10.1002/wrna.1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/06/2023]
Abstract
Viral genomes are compact and encode a limited number of proteins. Because they do not encode components of the translational machinery, viruses exhibit an absolute dependence on the host ribosome and factors for viral messenger RNA (mRNA) translation. In order to recruit the host ribosome, viruses have evolved unique strategies to either outcompete cellular transcripts that are efficiently translated by the canonical translation pathway or to reroute translation factors and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral responses and escape immune surveillance. This review focuses on some recent major findings that have revealed unconventional strategies that viruses utilize, which include usurping the host translational machinery, modulating canonical translation initiation factors to specifically enhance or repress overall translation for the purpose of viral production, and increasing viral coding capacity. The discovery of these diverse viral strategies has provided insights into additional translational control mechanisms and into the viral host interactions that ensure viral protein synthesis and replication. WIREs RNA 2014, 5:779–801. doi: 10.1002/wrna.1246 This article is categorized under:
Translation > Translation Mechanisms Translation > Translation Regulation
Collapse
Affiliation(s)
- Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
39
|
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14:21705-26. [PMID: 24189219 PMCID: PMC3856030 DOI: 10.3390/ijms141121705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Reddy KE, Noh JH, Choe SE, Kweon CH, Yoo MS, Doan HTT, Ramya M, Yoon BS, Nguyen LTK, Nguyen TTD, Van Quyen D, Jung SC, Chang KY, Kang SW. Analysis of the complete genome sequence and capsid region of black queen cell viruses from infected honeybees (Apis mellifera) in Korea. Virus Genes 2013; 47:126-32. [DOI: 10.1007/s11262-013-0902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
41
|
Au HHT, Jan E. Insights into factorless translational initiation by the tRNA-like pseudoknot domain of a viral IRES. PLoS One 2012; 7:e51477. [PMID: 23236506 PMCID: PMC3517527 DOI: 10.1371/journal.pone.0051477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
The intergenic region internal ribosome entry site (IGR IRES) of the Dicistroviridae family adopts an overlapping triple pseudoknot structure to directly recruit the 80S ribosome in the absence of initiation factors. The pseudoknot I (PKI) domain of the IRES mimics a tRNA-like codon:anticodon interaction in the ribosomal P site to direct translation initiation from a non-AUG initiation codon in the A site. In this study, we have performed a comprehensive mutational analysis of this region to delineate the molecular parameters that drive IRES translation. We demonstrate that IRES-mediated translation can initiate at an alternate adjacent and overlapping start site, provided that basepairing interactions within PKI remain intact. Consistent with this, IGR IRES translation tolerates increases in the variable loop region that connects the anticodon- and codon-like elements within the PKI domain, as IRES activity remains relatively robust up to a 4-nucleotide insertion in this region. Finally, elements from an authentic tRNA anticodon stem-loop can functionally supplant corresponding regions within PKI. These results verify the importance of the codon:anticodon interaction of the PKI domain and further define the specific elements within the tRNA-like domain that contribute to optimal initiator Met-tRNAi-independent IRES translation.
Collapse
Affiliation(s)
- Hilda H. T. Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
42
|
A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc Natl Acad Sci U S A 2012; 110:324-9. [PMID: 23169626 DOI: 10.1073/pnas.1216454109] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Initiation is the primary target of translational control for all organisms. Regulation of eukaryotic translation is traditionally thought to occur through initiation factors and RNA structures. Here, we characterize a transcript-specific translation initiation mechanism that is mediated by the ribosome. By studying vesicular stomatitis virus (VSV), we identify the large ribosomal subunit protein rpL40 as requisite for VSV cap-dependent translation but not bulk cellular or internal ribosome entry site-driven translation. This requirement is conserved among members of the order Mononegavirales, including measles virus and rabies virus. Polysome analyses and in vitro reconstitution of initiation demonstrate that rpL40 is required for 80S formation on VSV mRNAs through a cis-regulatory element. Using deep sequencing, we further uncover a subset of cellular transcripts that are selectively sensitive to rpL40 depletion, suggesting VSV may have usurped an endogenous translation pathway. Together, these findings demonstrate that the ribosome acts as a translational regulator outside of its catalytic role during protein synthesis.
Collapse
|
43
|
Guo ZX, He JG, Xu HD, Weng SP. Pathogenicity and complete genome sequence analysis of the mud crab dicistrovirus-1. Virus Res 2012; 171:8-14. [PMID: 23073178 DOI: 10.1016/j.virusres.2012.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
A virus with a particle diameter of approximately 30 nm and no envelope was purified from diseased mud crab, Scylla paramamosain and it was demonstrated to be pathogenic to mud crab. The complete nucleotide sequence analysis indicated that its genome was a single molecule of linear positive-sense ssRNA with a length of 10,415 nucleotides, excluding the 3'poly (A) tail. It consisted of two open reading frames (ORF) separated by an intergenic region (IGR) and flanked by a 5'untranslated region (5'-UTR) and a 3'untranslated region (3'-UTR). The 5'-ORF encode five putative non-structural proteins, including BIR (Baculovirus Inhibitor of Apoptosis Protein Repeat), helicase, VPg (the genome-linked viral protein), 3C-like protease and RdRP (RNA-dependent RNA polymerase), while the 3'-ORF encode the structural protein precursors. This genome organization was consistent with the typical organization of dicistrovirus and the virus was designated as mud crab dicistrovirus-1 (MCDV-1). The results of the phylogenetic analysis of the putative structural protein precursor suggest that MCDV-1 has a closer genetic relationship with Taura syndrome virus (TSV) than do other dicistroviruses and that MCDV-1 is a new member of the family Dicistroviridae and assigned into the genus Aparavirus.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- MOE Key Laboratory of Aquatic Product Safety/State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | | | | | | |
Collapse
|
44
|
Wang QS, Au HHT, Jan E. Methods for studying IRES-mediated translation of positive-strand RNA viruses. Methods 2012; 59:167-79. [PMID: 23009811 DOI: 10.1016/j.ymeth.2012.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/25/2012] [Accepted: 09/13/2012] [Indexed: 02/05/2023] Open
Abstract
Internal ribosome entry sites are RNA elements that mediate translation in a cap-independent manner. A subset of positive strand RNA viruses utilize an IRES mechanism as a viral strategy to ensure efficient viral protein synthesis. IRES elements vary in sequence, structure, and factor requirements between virus families. Here, we describe methods to determine IRES activity and approaches to study the regulation and function of IRES-mediated translation both in vitro and in vivo. Finally, we describe a new IRES-directed reporter system which exploits the 2A 'self-cleavage' or 'stop-go' peptide for optimal detection of IRES activity.
Collapse
Affiliation(s)
- Qing S Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
45
|
Thompson SR. Tricks an IRES uses to enslave ribosomes. Trends Microbiol 2012; 20:558-66. [PMID: 22944245 DOI: 10.1016/j.tim.2012.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023]
Abstract
In eukaryotes, mRNAs are primarily translated through a cap-dependent mechanism whereby initiation factors recruit the 40S ribosomal subunit to a cap structure at the 5' end of the mRNA. However, some viral and cellular messages initiate protein synthesis without a cap. They use a structured RNA element termed an internal ribosome entry site (IRES) to recruit the 40S ribosomal subunit. IRESs were discovered over 20 years ago, but only recently have studies using a model IRES from dicistroviruses expanded our understanding of how a 3D RNA structure can capture and manipulate the ribosome to initiate translation.
Collapse
Affiliation(s)
- Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Choe SE, Nguyen LTK, Noh JH, Kweon CH, Reddy KE, Koh HB, Chang KY, Kang SW. Analysis of the complete genome sequence of two Korean sacbrood viruses in the Honey bee, Apis mellifera. Virology 2012; 432:155-61. [PMID: 22749880 DOI: 10.1016/j.virol.2012.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
The complete genomic RNAs of two Korean sacbrood virus (SBV) strains, which infect the honey bee, Apis mellifera, were sequenced. The two sequences (AmSBV-Kor19, AmSBV-Kor21) were distinguished by the presence or absence of a PstI restriction site. These strains comprised of 8784 bp and 8835 bp; contained a single large ORF (179-8707 and 179-8758) encoding 2843 and 2860 amino acids, respectively. Deduced amino acid sequences comparison with some insect viruses showed that regions of helicase, protease and RdRp domains; structural genes were located at the 5' end and non-structural genes at the 3' end. Multiple sequence alignment showed that AmSBV-Kor19 was missing a section between nucleotides 2311 and 2361 (present in SBV-UK and CSBV) but was similar to that of the Korean SBV strain that infects A. cerana (AcSBV-Kor). The differences in the AmSBV-Kor19 strain may be the result of the virus adapting to a different host.
Collapse
Affiliation(s)
- Se E Choe
- Parasitology and Insect Disease Research Laboratory, Animal, Plant and Fisheries Quarantine and Inspection Agency, 480 Anyang 6 dong, Anyang city 420-480, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Plank TDM, Kieft JS. The structures of nonprotein-coding RNAs that drive internal ribosome entry site function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2012; 3:195-212. [PMID: 22215521 PMCID: PMC3973487 DOI: 10.1002/wrna.1105] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Internal ribosome entry sites (IRESs) are RNA sequences that can recruit the translation machinery independent of the 5' end of the messenger RNA. IRESs are found in both viral and cellular RNAs and are important for regulating gene expression. There is great diversity in the mechanisms used by IRESs to recruit the ribosome and this is reflected in a variety of RNA sequences that function as IRESs. The ability of an RNA sequence to function as an IRES is conferred by structures operating at multiple levels from primary sequence through higher-order three-dimensional structures within dynamic ribonucleoproteins (RNPs). When these diverse structures are compared, some trends are apparent, but overall it is not possible to find universal rules to describe IRES structure and mechanism. Clearly, many different sequences and structures have evolved to perform the function of recruiting, positioning, and activating a ribosome without using the canonical cap-dependent mechanism. However, as our understanding of the specific sequences, structures, and mechanisms behind IRES function improves, more common features may emerge to link these diverse RNAs.
Collapse
Affiliation(s)
- Terra-Dawn M. Plank
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Jeffrey S. Kieft
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
48
|
Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs. Comp Funct Genomics 2012; 2012:391546. [PMID: 22536116 PMCID: PMC3321441 DOI: 10.1155/2012/391546] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m(7)G(5')ppp(5')N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5'UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms.
Collapse
|
49
|
Ogawa A. Rational construction of eukaryotic OFF-riboswitches that downregulate internal ribosome entry site-mediated translation in response to their ligands. Bioorg Med Chem Lett 2012; 22:1639-42. [DOI: 10.1016/j.bmcl.2011.12.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/26/2011] [Accepted: 12/26/2011] [Indexed: 11/16/2022]
|
50
|
Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site. Proc Natl Acad Sci U S A 2012; 109:E630-9. [PMID: 22247292 DOI: 10.1073/pnas.1111303109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IRES) utilizes a unique mechanism, involving P-site tRNA mimicry, to directly assemble 80S ribosomes and initiate translation at a specific non-AUG codon in the ribosomal A site. A subgroup of dicistrovirus genomes contains an additional stem-loop 5'-adjacent to the IRES and a short open reading frame (ORFx) that overlaps the viral structural polyprotein ORF (ORF2) in the +1 reading frame. Using mass spectrometry and extensive mutagenesis, we show that, besides directing ORF2 translation, the Israeli acute paralysis dicistrovirus IRES also directs ORFx translation. The latter is mediated by a UG base pair adjacent to the P-site tRNA-mimicking domain. An ORFx peptide was detected in virus-infected honey bees by multiple reaction monitoring mass spectrometry. Finally, the 5' stem-loop increases IRES activity and may couple translation of the two major ORFs of the virus. This study reveals a novel viral strategy in which a tRNA-like IRES directs precise, initiator Met-tRNA-independent translation of two overlapping ORFs.
Collapse
|