1
|
Del Corpo O, Goguen RP, Malard CMG, Daher A, Colby-Germinario S, Scarborough RJ, Gatignol A. A U1i RNA that Enhances HIV-1 RNA Splicing with an Elongated Recognition Domain Is an Optimal Candidate for Combination HIV-1 Gene Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:815-830. [PMID: 31734561 PMCID: PMC6861678 DOI: 10.1016/j.omtn.2019.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 11/30/2022]
Abstract
U1 interference (U1i) RNAs can be designed to correct splicing defects and target pathogenic RNA, such as HIV-1 RNA. In this study, we show that U1i RNAs that enhance HIV-1 RNA splicing are more effective at inhibiting HIV-1 production compared to top U1i RNAs that inhibit polyadenylation of HIV-1 RNA. A U1i RNA was also identified targeting a site upstream of the first splice acceptor site in the Gag coding region that was effective at inhibiting HIV-1 production. U1-T6, which enhanced HIV-1 RNA splicing, was superior to an antiviral short hairpin RNA (shRNA) currently in clinical trials. To increase specificity, the recognition domain of U1-T6 was elongated by 3–6 nt. The elongated molecules inhibited HIV-1 production from different HIV-1 strains, including one with a mismatch in the target site. These results suggest that lengthening the recognition domain can enhance the specificity of U1i RNAs for their intended target sites while at the same time allowing them to tolerate single mismatch mutations. Overall, our results demonstrate that U1-T6 with an elongated recognition domain inhibits HIV-1 production and has both the efficacy and specificity to be a promising candidate for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Olivier Del Corpo
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ryan P Goguen
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Camille M G Malard
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Aïcha Daher
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada
| | | | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada.
| |
Collapse
|
2
|
Hudson SW, McNally LM, McNally MT. Evidence that a threshold of serine/arginine-rich (SR) proteins recruits CFIm to promote rous sarcoma virus mRNA 3' end formation. Virology 2016; 498:181-191. [PMID: 27596537 DOI: 10.1016/j.virol.2016.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The weak polyadenylation site (PAS) of Rous sarcoma virus (RSV) is activated by the juxtaposition of SR protein binding sites within the spatially separate negative regulator of splicing (NRS) element and the env RNA splicing enhancer (Env enhancer), which are far upstream of the PAS. Juxtaposition occurs by formation of the NRS - 3' ss splicing regulatory complex and is thought to provide a threshold of SR proteins that facilitate long-range stimulation of the PAS. We provide evidence for the threshold model by showing that greater than three synthetic SR protein binding sites are needed to substitute for the Env enhancer, that either the NRS or Env enhancer alone promotes polyadenylation when the distance to the PAS is decreased, and that SR protein binding sites promote binding of the polyadenylation factor cleavage factor I (CFIm) to the weak PAS. These observations may be relevant for cellular PASs.
Collapse
Affiliation(s)
- Stephen W Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
3
|
Abstract
Cellular and viral preRNAs are extensively cotranscriptionally modified. These modifications include the processing of the 3' end. Most preRNAs are polyadenylated, which is required for nuclear export, RNA stability, and efficient translation. Integrated retroviral genomes are flanked by 3' and 5' long terminal repeats (LTRs). Both LTRs are identical on the nucleotide level, but 3' processing has to be limited to the 3'LTR. Otherwise, polyadenylation at the 5'LTR would result in prematurely terminated, noncoding viral RNAs. Retroviruses have developed a variety of different mechanisms to restrict polyadenylation to the 3'LTR, although the overall structure of the LTRs is similar among all retroviruses. In general, these mechanisms can be divided into three main groups: (1) activation of polyadenylation only at the 3' end by encoding the essential polyadenylation signal in the unique 3 region; (2) suppression of polyadenylation at the 5'LTR by downstream elements such as the major splice donor; and (3) the usage of weak polyadenylation sites, which results in some premature polyadenylated noncoding RNAs and in read-through transcripts at the 3'LTR. All these mechanisms exhibit intrinsic problems, and retroviruses have evolved additional regulatory elements to promote polyadenylation at the 3'LTR only. In this review, we describe the molecular regulation of retroviral polyadenylation and highlight the different mechanisms used for polyadenylation control.
Collapse
Affiliation(s)
- Eva-Maria Schrom
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | | | | | | |
Collapse
|
4
|
Turunen JJ, Verma B, Nyman TA, Frilander MJ. HnRNPH1/H2, U1 snRNP, and U11 snRNP cooperate to regulate the stability of the U11-48K pre-mRNA. RNA (NEW YORK, N.Y.) 2013; 19:380-9. [PMID: 23335637 PMCID: PMC3677248 DOI: 10.1261/rna.036715.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alternative splicing (AS) is a major contributor to proteome diversity, but it also regulates gene expression by introducing premature termination codons (PTCs) that destabilize transcripts, typically via the nonsense-mediated decay (NMD) pathway. Such AS events often take place within long, conserved sequence elements, particularly in genes encoding various RNA binding proteins. AS-NMD is often activated by the protein encoded by the same gene, leading to a self-regulating feedback loop that maintains constant protein levels. However, cross-regulation between different RNA binding proteins is also common, giving rise to finely tuned regulatory networks. Recently, we described a feedback mechanism regulating two protein components of the U12-dependent spliceosome (U11-48K and U11/U12-65K) through a highly conserved sequence element. These elements contain a U11 snRNP-binding splicing enhancer (USSE), which, through the U11 snRNP, activates an upstream U2-type 3'ss, resulting in the degradation of the U11-48K mRNA by AS-NMD. Through phylogenetic analysis, we now identify a G-rich sequence element that is conserved in fishes as well as mammals. We show that this element binds hnRNPF/H proteins in vitro. Knockdown of hnRNPH1/H2 or mutations in the G-run both lead to enhanced activation of the 3'ss in vivo, suggesting that hnRNPH1/H2 proteins counteract the 3'ss activation. Furthermore, we provide evidence that U1 binding immediately downstream from the G-run similarly counteracts the U11-mediated activation of the alternative 3'ss. Thus, our results elucidate the mechanism in which snRNPs from both spliceosomes together with hnRNPH1/H2 proteins regulate the recognition and activation of the highly conserved alternative splice sites within the U11-48K pre-mRNA.
Collapse
|
5
|
Juxtaposition of two distant, serine-arginine-rich protein-binding elements is required for optimal polyadenylation in Rous sarcoma virus. J Virol 2011; 85:11351-60. [PMID: 21849435 DOI: 10.1128/jvi.00721-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rous sarcoma virus (RSV) polyadenylation site (PAS) is very poorly used in vitro due to suboptimal upstream and downstream elements, and yet ∼85% of viral transcripts are polyadenylated in vivo. The mechanisms that orchestrate polyadenylation at the weak PAS are not completely understood. It was previously shown that serine-arginine (SR)-rich proteins stimulate RSV PAS use in vitro and in vivo. It has been proposed that viral RNA polyadenylation is stimulated through a nonproductive splice complex that forms between a pseudo 5' splice site (5'ss) within the negative regulator of splicing (NRS) and a downstream 3'ss, which repositions NRS-bound SR proteins closer to the viral PAS. This repositioning is thought to be important for long-distance poly(A) stimulation by the NRS. We report here that a 308-nucleotide deletion downstream of the env 3'ss decreased polyadenylation efficiency, suggesting the presence of an additional element required for optimal RSV polyadenylation. Mapping studies localized the poly(A) stimulating element to a region coincident with the Env splicing enhancer, which binds SR proteins, and inactivation of the enhancer and SR protein binding decreased polyadenylation efficiency. The positive effect of the Env enhancer on polyadenylation could be uncoupled from its role in splicing. As with the NRS, the Env enhancer also stimulated use of the viral PAS in vitro. These results suggest that a critical threshold of SR proteins, achieved by juxtaposition of SR protein binding sites within the NRS and Env enhancer, is required for long-range polyadenylation stimulation.
Collapse
|
6
|
Bar A, Marchand V, Khoury G, Dreumont N, Mougin A, Robas N, Stévenin J, Visvikis A, Branlant C. Structural and functional analysis of the Rous Sarcoma virus negative regulator of splicing and demonstration of its activation by the 9G8 SR protein. Nucleic Acids Res 2010; 39:3388-403. [PMID: 21183462 PMCID: PMC3082916 DOI: 10.1093/nar/gkq1114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5′-part is considered as an ESE binding SR proteins. Its 3′-part contains a decoy 5′-splice site (ss), which inhibits splicing at the bona fide 5′-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity.
Collapse
Affiliation(s)
- Aileen Bar
- ARN, RNP, Structure-Fonction-maturation, Enzymologie Moléculaire et Structurale, Faculté des Sciences et Techniques, Nancy Université-UMR 7214 CNRS-UHP, BP 70239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A glycine-rich domain of hnRNP H/F promotes nucleocytoplasmic shuttling and nuclear import through an interaction with transportin 1. Mol Cell Biol 2010; 30:2552-62. [PMID: 20308327 DOI: 10.1128/mcb.00230-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) H and F are members of a closely related subfamily of hnRNP proteins that are implicated in many aspects of RNA processing. hnRNP H and F are alternative splicing factors for numerous U2- and U12-dependent introns. The proteins have three RNA binding domains and two glycine-rich domains and localize to both the nucleus and cytoplasm, but little is known about which domains govern subcellular localization or splicing activity. We show here that the central glycine-tyrosine-arginine-rich (GYR) domain is responsible for nuclear localization, and a nonclassical nuclear localization signal (NLS) was mapped to a short, highly conserved sequence whose activity was compromised by point mutations. Glutathione S-transferase (GST) pulldown assays demonstrated that the hnRNP H NLS interacts with the import receptor transportin 1. Finally, we show that hnRNP H/F are transcription-dependent shuttling proteins. Collectively, the results suggest that hnRNP H and F are GYR domain-dependent shuttling proteins whose posttranslational modifications may alter nuclear localization and hence function.
Collapse
|
8
|
Zychlinski D, Erkelenz S, Melhorn V, Baum C, Schaal H, Bohne J. Limited complementarity between U1 snRNA and a retroviral 5' splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res 2010; 37:7429-40. [PMID: 19854941 PMCID: PMC2794156 DOI: 10.1093/nar/gkp694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5′ splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem–loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem–loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5′ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5′ss sequence. The reduced 5′ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem–loop. The mechanism of 5′ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing.
Collapse
Affiliation(s)
- Daniela Zychlinski
- Institute for Virology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Maciolek NL, McNally MT. Characterization of Rous sarcoma virus polyadenylation site use in vitro. Virology 2008; 374:468-76. [PMID: 18272196 PMCID: PMC2413101 DOI: 10.1016/j.virol.2008.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/13/2007] [Accepted: 01/10/2008] [Indexed: 11/22/2022]
Abstract
Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.
Collapse
Affiliation(s)
- Nicole L. Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Mark T. McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
10
|
Abstract
Upon integration into the host chromosome, retroviral gene expression requires transcription by the host RNA polymerase II, and viral messages are subject RNA processing events including 5'-end capping, pre-mRNA splicing, and polyadenylation. At a minimum, RNA splicing is required to generate the env mRNA, but viral replication requires substantial amounts of unspliced RNA to serve as mRNA and for incorporation into progeny virions as genomic RNA. Therefore, splicing has to be controlled to preserve the large unspliced RNA pool. Considering the current view that splicing and polyadenylation are coupled, the question arises as to how genome-length viral RNA is efficiently polyadenylated in the absence of splicing. Polyadenylation of many retroviral mRNAs is inefficient; in avian retroviruses, approximately 15 percent of viral transcripts extend into and are polyadenylated at downstream host genes, which often has profound biological consequences. Retroviruses have served as important models to study RNA processing and this review summarizes a body of work using avian retroviruses that has led to the discovery of novel RNA splicing and polyadenylation control mechanisms.
Collapse
Affiliation(s)
- Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
11
|
Maciolek NL, McNally MT. Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. J Virol 2007; 81:11208-17. [PMID: 17670832 PMCID: PMC2045511 DOI: 10.1128/jvi.00919-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and U1/U11 snRNPs and functions as a pseudo-5' splice site that interacts with and sequesters 3' splice sites. We investigated a link between NRS-mediated splicing inhibition and efficient polyadenylation. In vitro, the NRS alone activated a model RSV polyadenylation substrate, and while the effect did not require the snRNP-binding sites or a downstream 3' splice site, SR proteins were sufficient to stimulate polyadenylation. Consistent with this, SELEX-binding sites for the SR proteins ASF/SF2, 9G8, and SRp20 were able to stimulate polyadenylation when placed upstream of the RSV poly(A) site. In vivo, however, the SELEX sites improved polyadenylation in proviral clones only when the NRS-3' splice site complex could form. Deletions that positioned the SR protein-binding sites closer to the poly(A) site eliminated the requirement for the NRS-3' splice site interaction. This indicates a novel role for SR proteins in promoting RSV polyadenylation in the context of the NRS-3' splice site complex, which is thought to bridge the long distance between the NRS and poly(A) site. The results further suggest a more general role for SR proteins in polyadenylation of cellular mRNAs.
Collapse
Affiliation(s)
- Nicole L Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
12
|
Akker SA, Misra S, Aslam S, Morgan EL, Smith PJ, Khoo B, Chew SL. Pre-spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppression of a growth hormone receptor pseudoexon. Mol Endocrinol 2007; 21:2529-40. [PMID: 17622584 DOI: 10.1210/me.2007-0038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pseudoexons occur frequently in the human genome. This paper characterizes a pseudoexon in the GH receptor gene. Inappropriate activation of this pseudoexon causes Laron syndrome. Using in vitro splicing assays, pseudoexon silencing was shown to require a combination of a weak 5' pseudosplice-site and splicing silencing elements within the pseudoexon. Immunoprecipitation experiments showed that specific binding of heterogenous nuclear ribonucleoprotein E1 (hnRNP E1) and U1 small nuclear ribonucleoprotein (snRNP) in the pre-spliceosomal complex was associated with silencing of pseudoexon splicing. The possible role of hnRNP E1 was further supported by RNA interference experiments in cultured cells. Immunoprecipitation experiments with three other pseudoexons suggested that pre-spliceosomal binding of U1 snRNP is a potential general mechanism of suppression of pseudoexons.
Collapse
Affiliation(s)
- Scott A Akker
- Department of Endocrinology, 5th Floor, King George V Block, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
13
|
Buratti E, Stuani C, De Prato G, Baralle FE. SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer. Nucleic Acids Res 2007; 35:4359-68. [PMID: 17576688 PMCID: PMC1935002 DOI: 10.1093/nar/gkm444] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intronic splicing silencer (ISS) of CFTR exon 9 promotes exclusion of this exon from the mature mRNA. This negative influence has important consequences with regards to human pathologic events, as lack of exon 9 correlates well with the occurrence of monosymptomatic and full forms of CF disease. We have previously shown that the ISS element interacts with members of the SR protein family. In this work, we now provide the identification of SF2/ASF and SRp40 as the specific SR proteins binding to this element and map their precise binding sites in IVS9. We have also performed a functional analysis of the ISS element using a variety of unrelated SR-binding sequences and different splicing systems. Our results suggest that SR proteins mediate CFTR exon 9 exclusion by providing a ‘decoy’ sequence in the vicinity of its suboptimal donor site. The results of this study give an insight on intron ‘exonization’ mechanisms and provide useful indications for the development of novel therapeutic strategies aimed at the recovery of exon inclusion.
Collapse
|
14
|
Qi J, Su S, Mattox W. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer. Mol Cell Biol 2007; 27:699-708. [PMID: 17101798 PMCID: PMC1800821 DOI: 10.1128/mcb.01572-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/03/2006] [Accepted: 10/27/2006] [Indexed: 11/20/2022] Open
Abstract
The activation of sex-specific alternative splice sites in the Drosophila melanogaster doublesex and fruitless pre-mRNAs has been well studied and depends on the serine-arginine-rich (SR) splicing factors Tra, Tra2, and Rbp1. Little is known, however, about how SR factors negatively regulate splice sites in other RNAs. Here we examine how Tra2 blocks splicing of the M1 intron from its own transcript. We identify an intronic splicing silencer (ISS) adjacent to the M1 branch point that is sufficient to confer Tra2-dependent repression on another RNA. The ISS was found to function independently of its position within the intron, arguing against the idea that bound repressors function by simply interfering with branch point accessibility to general splicing factors. Conserved subelements of the silencer include five short repeated sequences that are required for Tra2 binding but differ from repeated binding sites found in Tra2-dependent splicing enhancers. The ISS also contains a consensus binding site for Rbp1, and this protein was found to facilitate repression of M1 splicing both in vitro and in Drosophila larvae. In contrast to the cooperative binding of SR proteins observed on the doublesex splicing enhancer, we found that Rbp1 and Tra2 bind to the ISS independently through distinct sequences. Our results suggest that functionally synergistic interactions of these SR factors can cause either splicing activation or repression.
Collapse
Affiliation(s)
- Junlin Qi
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
15
|
Saulière J, Sureau A, Expert-Bezançon A, Marie J. The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the beta-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit. Mol Cell Biol 2006; 26:8755-69. [PMID: 16982681 PMCID: PMC1636812 DOI: 10.1128/mcb.00893-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/27/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022] Open
Abstract
Splicing of exon 6B from the beta-tropomyosin pre-mRNA is repressed in nonmuscle cells and myoblasts by a complex array of intronic elements surrounding the exon. In this study, we analyzed the proteins that mediate splicing repression of exon 6B through binding to the upstream element. We identified the polypyrimidine tract binding protein (PTB) as a component of complexes isolated from myoblasts that assemble onto the branch point region and the pyrimidine tract. In vitro splicing assays and PTB knockdown experiments by RNA interference demonstrated that PTB acts as a repressor of splicing of exon 6B. Using psoralen experiments, we showed that PTB acts at an early stage of spliceosome assembly by preventing the binding of U2 snRNA on the branch point. Using UV cross-linking and immunoprecipitation experiments with site-specific labeled RNA in PTB-depleted nuclear extracts, we found that the decrease in PTB was correlated with an increase in U2AF65. In addition, competition experiments showed that PTB is able to displace the binding of U2AF65 on the polypyrimidine tract. Our results strongly support a model whereby PTB competes with U2AF65 for binding to the polypyrimidine tract.
Collapse
Affiliation(s)
- Jérôme Saulière
- Centre de Génétique Moléculaire, UPR2167, CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
16
|
Wilusz JE, Beemon KL. The negative regulator of splicing element of Rous sarcoma virus promotes polyadenylation. J Virol 2006; 80:9634-40. [PMID: 16973567 PMCID: PMC1617230 DOI: 10.1128/jvi.00845-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Rous sarcoma virus gag gene contains a cis-acting negative regulator of splicing (NRS) element that is implicated in viral polyadenylation regulation. To study the mechanism of polyadenylation promotion at the viral poly(A) site located over 8 kb downstream, we performed in vitro polyadenylation analysis. RNA containing only the poly(A) site and flanking sequences in the 3' long terminal repeat (LTR) was not polyadenylated detectably in vitro; however, if the transcript contained the NRS upstream of the LTR, polyadenylation was observed. Insertion of the viral env 3' splice site sequence between the NRS and the LTR did not alter the level of polyadenylation appreciably. We conclude that the NRS promotes polyadenylation in vitro and can do so without formation of a splicing complex with a 3' splice site. We then explored the roles of several cellular factors in NRS-mediated polyadenylation. Mutation of the binding sites of U1 and U11 snRNPs to the NRS did not affect polyadenylation, whereas hnRNP H strongly inhibited polyadenylation. We propose a model in which hnRNP H and SR proteins compete for binding to the NRS. Bound SR proteins may bridge between the NRS and the 3' LTR and aid in the recruitment of the 3'-end processing machinery.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
17
|
Cochrane AW, McNally MT, Mouland AJ. The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 2006; 3:18. [PMID: 16545126 PMCID: PMC1475878 DOI: 10.1186/1742-4690-3-18] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional events in the life of an RNA including RNA processing, transport, translation and metabolism are characterized by the regulated assembly of multiple ribonucleoprotein (RNP) complexes. At each of these steps, there is the engagement and disengagement of RNA-binding proteins until the RNA reaches its final destination. For retroviral genomic RNA, the final destination is the capsid. Numerous studies have provided crucial information about these processes and serve as the basis for studies on the intracellular fate of retroviral RNA. Retroviral RNAs are like cellular mRNAs but their processing is more tightly regulated by multiple cis-acting sequences and the activities of many trans-acting proteins. This review describes the viral and cellular partners that retroviral RNA encounters during its maturation that begins in the nucleus, focusing on important events including splicing, 3' end-processing, RNA trafficking from the nucleus to the cytoplasm and finally, mechanisms that lead to its compartmentalization into progeny virions.
Collapse
Affiliation(s)
- Alan W Cochrane
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital and McGill University, 3755 Côte-Ste-Catherine Road, H3T 1E2, Canada
| |
Collapse
|
18
|
McNally LM, Yee L, McNally MT. Heterogeneous nuclear ribonucleoprotein H is required for optimal U11 small nuclear ribonucleoprotein binding to a retroviral RNA-processing control element: implications for U12-dependent RNA splicing. J Biol Chem 2005; 281:2478-88. [PMID: 16308319 DOI: 10.1074/jbc.m511215200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An RNA-processing element from Rous sarcoma virus, the negative regulator of splicing (NRS), represses splicing to generate unspliced RNA that serves as mRNA and as genomic RNA for progeny virions and also promotes polyadenylation of the unspliced RNA. Integral to NRS function is the binding of U1 small nuclear ribonucleoprotein (snRNP), but its binding is controlled by U11 snRNP that binds to an overlapping site. U11 snRNP, the U1 counterpart for splicing of U12-dependent introns, binds the NRS remarkably well and requires G-rich elements just downstream of the consensus U11 binding site. We present evidence that heterogeneous nuclear ribonucleoprotein (hnRNP) H binds to the NRS G-rich elements and that hnRNP H is required for optimal U11 binding in vitro. It is further shown that hnRNP H (but not hnRNP F) can promote U11 binding and splicing from the NRS in vivo when tethered to the RNA as an MS2 fusion protein. Interestingly, 17% of the naturally occurring U12-dependent introns have at least two potential hnRNP H binding sites positioned similarly to the NRS. For two such introns from the SCN4A and P120 genes, we show that hnRNP H binds to each in a G-tract-dependent manner, that G-tract mutations strongly reduce splicing of minigene RNA, and that tethered hnRNP H restores splicing to mutant RNA. In support of a role for hnRNP H in both splicing pathways, hnRNP H antibodies co-precipitate U1 and U11 small nuclear ribonucleoproteins. These results indicate that hnRNP H is an auxiliary factor for U11 binding to the NRS and that, more generally, hnRNP H is a splicing factor for a subset of U12-dependent introns that harbor G-rich elements.
Collapse
Affiliation(s)
- Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | |
Collapse
|
19
|
Giles KE, Beemon KL. Retroviral splicing suppressor sequesters a 3' splice site in a 50S aberrant splicing complex. Mol Cell Biol 2005; 25:4397-405. [PMID: 15899846 PMCID: PMC1140646 DOI: 10.1128/mcb.25.11.4397-4405.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retroviral replication requires both spliced and unspliced mRNAs. Splicing suppression of avian retroviral RNA depends in part upon a cis-acting element within the gag gene called the negative regulator of splicing (NRS). The NRS, linked to a downstream intron and exon (NRS-Ad3'), was not capable of splicing in vitro. However, a double-point mutation in the NRS pseudo-5' splice site sequence converted it into a functional 5' splice site. The wild-type (WT) NRS-Ad3' transcript assembled an approximately 50S spliceosome-like complex in vitro; its sedimentation rate was similar to that of a functional spliceosome formed on the mutant NRS-Ad3' RNA. The five major spliceosomal snRNPs were observed in both complexes by affinity selection. In addition, U11 snRNP was present only in the WT NRS-Ad3' complex. Addition of heparin to these complexes destabilized the WT NRS-Ad3' complex; it was incapable of forming a B complex on a native gel. Furthermore, the U5 snRNP protein, hPrp8, did not cross-link to the NRS pseudo-5' splice site, suggesting that the tri-snRNP complex was not properly associated with it. We propose that this aberrant, stalled spliceosome, containing U1, U2, and U11 snRNPs and a loosely associated tri-snRNP, sequesters the 3' splice site and prevents its interaction with the authentic 5' splice site upstream of the NRS.
Collapse
Affiliation(s)
- Keith E Giles
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
20
|
Cabello-Villegas J, Giles KE, Soto AM, Yu P, Mougin A, Beemon KL, Wang YX. Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor. RNA (NEW YORK, N.Y.) 2004; 10:1388-1398. [PMID: 15317975 PMCID: PMC1370626 DOI: 10.1261/rna.7020804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 06/09/2004] [Indexed: 05/24/2023]
Abstract
Control of Rous sarcoma virus RNA splicing depends in part on the interaction of U1 and U11 snRNPs with an intronic RNA element called the negative regulator of splicing (NRS). A 23mer RNA hairpin (NRS23) of the NRS directly binds U1 and U11 snRNPs. Mutations that disrupt base-pairing between the loop of NRS23 and U1 snRNA abolish its negative control of splicing. We have determined the solution structure of NRS23 using NOEs, torsion angles, and residual dipolar couplings that were extracted from multidimensional heteronuclear NMR spectra. Our structure showed that the 6-bp stem of NRS23 adopts a nearly A-form duplex conformation. The loop, which consists of 11 residues according to secondary structure probing, was in a closed conformation. U913, the first residue in the loop, was bulged out or dynamic, and loop residues G914-C923, G915-U922, and U916-A921 were base-paired. The remaining UUGU tetraloop sequence did not adopt a stable structure and appears flexible in solution. This tetraloop differs from the well-known classes of tetraloops (GNRA, CUYG, UNCG) in terms of its stability, structure, and function. Deletion of the bulged U913, which is not complementary to U1 snRNA, increased the melting temperature of the RNA hairpin. This hyperstable hairpin exhibited a significant decrease in binding to U1 snRNP. Thus, the structure of the NRS RNA, as well as its sequence, is important for interaction with U1 snRNP and for splicing suppression.
Collapse
Affiliation(s)
- Javier Cabello-Villegas
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, CCR, National Cancer Institute-Frederick, National Institutes of Health, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
McNally LM, Yee L, McNally MT. Two regions promote U11 small nuclear ribonucleoprotein particle binding to a retroviral splicing inhibitor element (negative regulator of splicing). J Biol Chem 2004; 279:38201-8. [PMID: 15252020 DOI: 10.1074/jbc.m407073200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rous sarcoma virus (RSV) negative regulator of splicing (NRS) is an RNA element that represses splicing and promotes polyadenylation of viral RNA. The NRS acts as a pseudo 5' splice site (ss), and serine-arginine (SR) proteins, U1snRNP, and U6 small nuclear ribonucleoproteins (snRNPs) are implicated in its function. The NRS also efficiently binds U11 snRNP of the U12-dependent splicing pathway, which is interesting, because U11 binds only poorly to authentic substrates that lack a U12-type 3' splice site. It is of considerable interest to understand how the low abundance U11 snRNP binds the NRS so well. Here we show that U11 can bind the NRS as a mono-snRNP in vitro and that a G-rich element located downstream of the U11 site is required for efficient binding. Mutational analyses indicated that two of four G tracts in this region were important for optimal U11 binding and that the G-rich region did not function indirectly by promoting U1 snRNP binding to an overlapping site. Surprisingly, inactivation of U2 snRNP also decreased U11 binding to the NRS. The NRS harbors a branch point-like/pyrimidine tract sequence (BP/Py) just upstream of the U1/U11 site that is characteristic of 3' splice sites. Deletion of this region decreased U2 and U11 binding, and deletion of the G-rich region also reduced U2 binding. The G element, but not the BP/Py sequence, was also required for U11 binding to the NRS in vivo as assessed by minor class splicing from the NRS to a minor class 3'ss from the P120 gene. These results indicate that efficient U11 binding to the isolated NRS involves at least two elements in addition to the U11 consensus sequence and may have implications for U11 binding to authentic splicing substrates.
Collapse
Affiliation(s)
- Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
22
|
Giles KE, Caputi M, Beemon KL. Packaging and reverse transcription of snRNAs by retroviruses may generate pseudogenes. RNA (NEW YORK, N.Y.) 2004; 10:299-307. [PMID: 14730028 PMCID: PMC1370541 DOI: 10.1261/rna.2150604] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Retroviruses specifically package two copies of their RNA genome in each viral particle, along with some small cellular RNAs, including tRNAs and 7S L RNA. We show here that Rous sarcoma virus (RSV) also packages U6 snRNA at approximately one copy per virion. In addition, trace amounts of U1 and U2 snRNAs were detected in purified virus by Northern blotting. U6 snRNA comigrated with the RSV 70S genomic RNA dimer on sucrose gradients. We observed reverse transcription of U6 snRNA in an endogenous reaction in which RSV particles were the source of both reverse transcriptase and RNA substrates. This finding led us to examine mammalian genomic sequences for the presence of snRNA pseudogenes. A survey of the human, mouse, and rat genomes revealed a high number of spliceosomal snRNA pseudogenes. U6 pseudogenes were the most abundant, with approximately 200 copies in each genome. In the human genome, 67% of U6 snRNA pseudogenes, and a significant number of the other snRNA pseudogenes, were associated with LINE, SINE, or retroviral LTR repeat sequences. We propose that the packaging of snRNAs in retroviral particles leads to their reverse transcription in an infected cell and the integration of snRNA/viral recombinants into the host genome.
Collapse
Affiliation(s)
- Keith E Giles
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
23
|
Abstract
Alternative pre-mRNA splicing is a central mode of genetic regulation in higher eukaryotes. Variability in splicing patterns is a major source of protein diversity from the genome. In this review, I describe what is currently known of the molecular mechanisms that control changes in splice site choice. I start with the best-characterized systems from the Drosophila sex determination pathway, and then describe the regulators of other systems about whose mechanisms there is some data. How these regulators are combined into complex systems of tissue-specific splicing is discussed. In conclusion, very recent studies are presented that point to new directions for understanding alternative splicing and its mechanisms.
Collapse
Affiliation(s)
- Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA.
| |
Collapse
|
24
|
Wang Y, McNally MT. Position dependence of the Rous sarcoma virus negative regulator of splicing element reflects proximity to a 5' splice site. Virology 2003; 313:629-37. [PMID: 12954228 DOI: 10.1016/s0042-6822(03)00378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rous sarcoma virus (RSV) requires incomplete splicing of its viral transcripts to maintain efficient replication. A splicing inhibitor element, the negative regulator of splicing (NRS), is located near the 5' end of the RNA but the significance of this positioning is not known. In a heterologous intron the NRS functions optimally when positioned close to the authentic 5' splice site. This observation led us to investigate the basis of the position dependence. Four explanations were put forth and stressed the role of three major elements involved in splicing, the 3' splice site, the 5' splice site, and the 5' end cap structure. NRS function was unrelated to its position relative to the 3' splice site or the cap structure and appeared to depend on its position relative to the authentic 5' splice site. We conclude that position dependence may reflect distance constraints necessary for competition of the NRS with the authentic 5' splice site for pairing with the 3' splice sites.
Collapse
Affiliation(s)
- Yuedi Wang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
25
|
Polony TS, Bowers SJ, Neiman PE, Beemon KL. Silent point mutation in an avian retrovirus RNA processing element promotes c-myb-associated short-latency lymphomas. J Virol 2003; 77:9378-87. [PMID: 12915553 PMCID: PMC187396 DOI: 10.1128/jvi.77.17.9378-9387.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The avian leukosis virus DeltaLR-9 causes a high frequency of B-cell lymphomas within weeks after injection into 10-day-old chicken embryos. These lymphomas result from proviral integrations into the oncogene c-myb. In contrast, LR-9, which lacks the 42-nucleotide gag gene deletion of DeltaLR-9, does not cause a high frequency of c-myb-associated short-latency lymphomas. Although viral replication rates and spliced env mRNA levels were found to be similar for both viruses, DeltaLR-9 exhibited an increase in readthrough transcription compared to LR-9. The DeltaLR-9 deletion is located in the region of the gag gene corresponding to the matrix (MA) protein as well as in the negative regulator of splicing (NRS) element. To test whether disruption of the NRS or of the MA protein was responsible for inducing short-latency lymphomas, we generated viruses with NRS point mutations that maintained the wild-type Gag amino acid sequence. One of the mutant viruses induced an even higher incidence than DeltaLR-9 of short-latency lymphomas with viral integrations into c-myb. Thus, we propose that disruption of the NRS sequence promotes readthrough transcription and splicing to the downstream myb gene, causing overexpression of a slightly truncated Myb protein, which induces short-latency tumors.
Collapse
MESH Headings
- Animals
- Avian Leukosis/etiology
- Avian Leukosis/genetics
- Avian Leukosis/virology
- Avian Leukosis Virus/genetics
- Avian Leukosis Virus/pathogenicity
- Avian Leukosis Virus/physiology
- Base Sequence
- Chick Embryo
- DNA, Viral/genetics
- Genes, env
- Genes, myb
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/virology
- Oncogene Proteins v-myb/genetics
- Oncogene Proteins v-myb/physiology
- Point Mutation
- RNA Processing, Post-Transcriptional/genetics
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/physiology
- Virus Integration/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Tatjana S Polony
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
26
|
Zhu H, Hasman RA, Young KM, Kedersha NL, Lou H. U1 snRNP-dependent function of TIAR in the regulation of alternative RNA processing of the human calcitonin/CGRP pre-mRNA. Mol Cell Biol 2003; 23:5959-71. [PMID: 12917321 PMCID: PMC180986 DOI: 10.1128/mcb.23.17.5959-5971.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 03/06/2003] [Accepted: 06/10/2003] [Indexed: 12/24/2022] Open
Abstract
Alternative RNA processing of human calcitonin/CGRP pre-mRNA is regulated by an intronic enhancer element. Previous studies have demonstrated that multiple sequence motifs within the enhancer and a number of trans-acting factors play critical roles in the regulation. Here, we report the identification of TIAR as a novel player in the regulation of human calcitonin/CGRP alternative RNA processing. TIAR binds to the U tract sequence motif downstream of a pseudo 5' splice site within the previously characterized intron enhancer element. Binding of TIAR promotes inclusion of the alternative 3'-terminal exon located more than 200 nucleotides upstream from the U tract. In cells that preferentially include this exon, overexpression of a mutant TIAR that lacks the RNA binding domains suppressed inclusion of this exon. In this report, we also demonstrate an unusual novel interaction between U6 snRNA and the pseudo 5' splice site, which was shown previously to bind U1 snRNA. Interestingly, TIAR binding to the U tract sequence depends on the interaction of not only U1 but also U6 snRNA with the pseudo 5' splice site. Conversely, TIAR binding promotes U6 snRNA binding to its target. The synergistic relationship between TIAR and U6 snRNA strongly suggests a novel role of U6 snRNP in regulated alternative RNA processing.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Genetics, School of Medicine, Case Western Reserve University, Ireland Cancer Center, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
27
|
O'Sullivan CT, Polony TS, Paca RE, Beemon KL. Rous sarcoma virus negative regulator of splicing selectively suppresses SRC mRNA splicing and promotes polyadenylation. Virology 2002; 302:405-12. [PMID: 12441084 DOI: 10.1006/viro.2002.1616] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses require a balance of spliced and unspliced RNA for efficient replication. Here, we examined the effect of mutations in a splicing suppressor sequence called the negative regulator of splicing (NRS), located within the gag gene of Rous sarcoma virus. While the NRS mutant viruses showed only small changes in the levels of spliced env mRNAs, they had significant increases in src mRNA levels and transformed cells more efficiently than wild-type virus. None of these mutations prevented viral replication; however, some of the mutant viruses replicated more slowly than wild-type virus. In addition, increased transcriptional readthrough of the poly(A) site in the 3' LTR was observed with the NRS mutant viruses, suggesting that the wild-type NRS sequence promotes polyadenylation.
Collapse
|
28
|
Pagani F, Buratti E, Stuani C, Bendix R, Dörk T, Baralle FE. A new type of mutation causes a splicing defect in ATM. Nat Genet 2002; 30:426-9. [PMID: 11889466 DOI: 10.1038/ng858] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disease-causing splicing mutations described in the literature primarily produce changes in splice sites and, to a lesser extent, variations in exon-regulatory sequences such as the enhancer elements. The gene ATM is mutated in individuals with ataxia-telangiectasia; we have identified the aberrant inclusion of a cryptic exon of 65 bp in one affected individual with a deletion of four nucleotides (GTAA) in intron 20. The deletion is located 12 bp downstream and 53 bp upstream from the 5' and 3' ends of the cryptic exon, respectively. Through analysis of the splicing defect using a hybrid minigene system, we identified a new intron-splicing processing element (ISPE) complementary to U1 snRNA, the RNA component of the U1 small nuclear ribonucleoprotein (snRNP). This element mediates accurate intron processing and interacts specifically with U1 snRNP particles. The 4-nt deletion completely abolished this interaction, causing activation of the cryptic exon. On the basis of this analysis, we describe a new type of U1 snRNP binding site in an intron that is essential for accurate intron removal. Deletion of this sequence is directly involved in the splicing processing defect.
Collapse
Affiliation(s)
- Franco Pagani
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Fogel BL, McNally LM, McNally MT. Efficient polyadenylation of Rous sarcoma virus RNA requires the negative regulator of splicing element. Nucleic Acids Res 2002; 30:810-7. [PMID: 11809895 PMCID: PMC100303 DOI: 10.1093/nar/30.3.810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rous sarcoma virus pre-mRNA contains an element known as the negative regulator of splicing (NRS) that acts to inhibit viral RNA splicing. The NRS binds serine/arginine-rich (SR) proteins, hnRNP H and the U1/U11 snRNPs, and appears to inhibit splicing by acting as a decoy 5' splice site. Deletions within the gag gene that encompass the NRS also lead to increased read-through past the viral polyadenylation site, suggesting a role for the NRS in promoting polyadenylation. Using NRS-specific deletions and mutations, we show here that a polyadenylation stimulatory activity maps directly to the NRS and is most likely dependent upon SR proteins and U1 and/or U11 snRNP. hnRNP H does not appear to mediate splicing control or stimulate RSV polyadenylation, since viral RNAs containing hnRNP H-specific mutations were spliced and polyadenylated normally. However, the ability of hnRNP H mutations to suppress the read-through caused by an SR protein mutation suggests the potential for hnRNP H to antagonize polyadenylation. Interestingly, disruption of splicing control closely correlated with increased read-through, indicating that a functional NRS is necessary for efficient RSV polyadenylation rather than binding of an individual factor. We propose a model in which the NRS serves to enhance polyadenylation of RSV unspliced RNA in a process analogous to the stimulation of cellular pre-mRNA polyadenylation by splicing complexes.
Collapse
Affiliation(s)
- Brent L Fogel
- Medical College of Wisconsin, Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
30
|
Paca RE, Hibbert CS, O'Sullivan CT, Beemon KL. Retroviral splicing suppressor requires three nonconsensus uridines in a 5' splice site-like sequence. J Virol 2001; 75:7763-8. [PMID: 11462052 PMCID: PMC115015 DOI: 10.1128/jvi.75.16.7763-7768.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rous sarcoma virus RNA contains a negative regulator of splicing (NRS) element that aids in maintenance of unspliced RNA. The NRS binds U1 snRNA at a sequence that deviates from the 5' splice site consensus by substitution of U's for A's at three positions: -2, +3, and +4. All three of these U's are important for NRS-mediated splicing suppression. Substitution of a single nonconsensus C or G at any of these sites diminished NRS activity, whereas substitution of a single A generated a preferred 5' splice site within the NRS.
Collapse
Affiliation(s)
- R E Paca
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
31
|
Hastings ML, Wilson CM, Munroe SH. A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA. RNA (NEW YORK, N.Y.) 2001; 7:859-74. [PMID: 11421362 PMCID: PMC1370135 DOI: 10.1017/s1355838201002084] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mammalian thyroid hormone receptor gene c-erbAalpha gives rise to two mRNAs that code for distinct isoforms, TRalpha1 and TRalpha2, with antagonistic functions. Alternative processing of these mRNAs involves the mutually exclusive use of a TRalpha1-specific polyadenylation site or TRalpha2-specific 5' splice site. A previous investigation of TRalpha minigene expression defined a critical role for the TRalpha2 5' splice site in directing alternative processing. Mutational analysis reported here shows that purine residues within a highly conserved intronic element, SEa2, enhance splicing of TRalpha2 in vitro as well as in vivo. Although SEalpha2 is located within the intron of TRalpha2 mRNA, it activates splicing of a heterologous dsx pre-mRNA when located in the downstream exon. Competition with wild-type and mutant RNAs indicates that SEalpha2 functions by binding trans-acting factors in HeLa nuclear extract. Protein-RNA crosslinking identifies several proteins, including SF2/ASF and hnRNP H, that bind specifically to SEalpha2. SEalpha2 also includes an element resembling a 5' splice site consensus sequence that is critical for splicing enhancer activity. Mutations within this pseudo-5' splice site sequence have a dramatic effect on splicing and protein binding. Thus SEa2 and its associated factors are required for splicing of TRalpha2 pre-mRNA.
Collapse
Affiliation(s)
- M L Hastings
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
32
|
Côté J, Dupuis S, Wu JY. Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion. J Biol Chem 2001; 276:8535-43. [PMID: 11116151 PMCID: PMC2140227 DOI: 10.1074/jbc.m008924200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have been using the caspase-2 pre-mRNA as a model system to study the importance of alternative splicing in the regulation of programmed cell death. Inclusion or skipping of a cassette-type exon in the 3' portion of this pre-mRNA leads to the production of isoforms with antagonistic activity in apoptosis. We previously identified a negative regulatory element (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element harbors a decoy 3' acceptor site that engages in nonproductive commitment complex interactions with the 5' splice site of exon 9. This in turn confers a competitive advantage to the exon-skipping splicing pattern. Further characterization of the In100 element reveals a second, functionally distinct, domain located downstream from the decoy 3' acceptor site. This downstream domain harbors several polypyrimidine track-binding protein (PTB)-binding sites. We show that PTB binding to these sites correlates with the negative effect on exon 9 inclusion. Finally, we show that both domains of the In100 element can function independently to repress exon 9 inclusion, although PTB binding in the vicinity of the decoy 3' splice site can modulate its activity. Our results thus reveal a complex composite element that regulates caspase-2 exon 9 alternative splicing through a novel mechanism.
Collapse
Affiliation(s)
- J Côté
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Caspase-2 pre-mRNA alternative splicing: Identification of an intronic element containing a decoy 3' acceptor site. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11158574 PMCID: PMC14688 DOI: 10.1073/pnas.031564098] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have established a model system using the caspase-2 pre-mRNA and initiated a study on the role of alternative splicing in regulation of programmed cell death. A caspase-2 minigene construct has been made that can be alternatively spliced in transfected cells and in nuclear extracts. Using this system, we have identified a 100-nt region in downstream intron 9 that inhibits the inclusion of the 61-bp alternative exon. This element (In100) can facilitate exon skipping in the context of competing 3' or 5' splice sites, but not in single-intron splicing units. The In100 element is also active in certain heterologous pre-mRNAs, although in a highly context-dependent manner. Interestingly, we found that In100 contains a sequence that highly resembles a bona fide 3' splice site. We provide evidence that this sequence acts as a "decoy" acceptor site that engages in U2 snRNP-dependent but nonproductive splicing complexes with the 5' splice site of exon 9, hence conferring competitive advantage to the exon-skipping splicing event (E8-E10). These results reveal a mechanism of action for a negative intronic regulatory element and uncover a role for U2 snRNP in the regulation of alternative splicing.
Collapse
|
34
|
Coté J, Dupuis S, Jiang Z, Wu JY. Caspase-2 pre-mRNA alternative splicing: Identification of an intronic element containing a decoy 3' acceptor site. Proc Natl Acad Sci U S A 2001; 98:938-43. [PMID: 11158574 PMCID: PMC14688 DOI: 10.1073/pnas.98.3.938] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 11/28/2000] [Indexed: 11/18/2022] Open
Abstract
We have established a model system using the caspase-2 pre-mRNA and initiated a study on the role of alternative splicing in regulation of programmed cell death. A caspase-2 minigene construct has been made that can be alternatively spliced in transfected cells and in nuclear extracts. Using this system, we have identified a 100-nt region in downstream intron 9 that inhibits the inclusion of the 61-bp alternative exon. This element (In100) can facilitate exon skipping in the context of competing 3' or 5' splice sites, but not in single-intron splicing units. The In100 element is also active in certain heterologous pre-mRNAs, although in a highly context-dependent manner. Interestingly, we found that In100 contains a sequence that highly resembles a bona fide 3' splice site. We provide evidence that this sequence acts as a "decoy" acceptor site that engages in U2 snRNP-dependent but nonproductive splicing complexes with the 5' splice site of exon 9, hence conferring competitive advantage to the exon-skipping splicing event (E8-E10). These results reveal a mechanism of action for a negative intronic regulatory element and uncover a role for U2 snRNP in the regulation of alternative splicing.
Collapse
Affiliation(s)
- J Coté
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
35
|
McCullough AJ, Berget SM. An intronic splicing enhancer binds U1 snRNPs to enhance splicing and select 5' splice sites. Mol Cell Biol 2000; 20:9225-35. [PMID: 11094074 PMCID: PMC102180 DOI: 10.1128/mcb.20.24.9225-9235.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intronic G triplets are frequently located adjacent to 5' splice sites in vertebrate pre-mRNAs and have been correlated with splicing efficiency and specificity via a mechanism that activates upstream 5' splice sites in exons containing duplicated sites (26). Using an intron dependent upon G triplets for maximal activity and 5' splice site specificity, we determined that these elements bind U1 snRNPs via base pairing with U1 RNA. This interaction is novel in that it uses nucleotides 8 to 10 of U1 RNA and is independent of nucleotides 1 to 7. In vivo functionality of base pairing was documented by restoring activity and specificity to mutated G triplets through compensating U1 RNA mutations. We suggest that the G-rich region near vertebrate 5' splice sites promotes accurate splice site recognition by recruiting the U1 snRNP.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
36
|
Fogel BL, McNally MT. A cellular protein, hnRNP H, binds to the negative regulator of splicing element from Rous sarcoma virus. J Biol Chem 2000; 275:32371-8. [PMID: 10934202 DOI: 10.1074/jbc.m005000200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incomplete RNA splicing is a key feature of the retroviral life cycle. This is in contrast to the processing of most cellular pre-mRNAs, which are usually spliced to completion. In Rous sarcoma virus, splicing control is achieved in part through a cis-acting RNA element termed the negative regulator of splicing (NRS). The NRS is functionally divided into two parts termed NRS5' and NRS3', which bind a number of splicing factors. The U1 and U11 small nuclear ribonucleoproteins interact with sequences in NRS3', whereas NRS5' binds several proteins including members of the SR [corrected] family of proteins. Among the proteins that specifically bind NRS5' is a previously unidentified 55-kDa protein (p55). In this report we describe the isolation and identification of p55. The p55 binding site was localized by UV cross-linking to a 31-nucleotide segment, and a protein that binds specifically to it was isolated by RNA affinity selection and identified by mass spectrometry as hnRNP H. Antibodies against hnRNP H immunoprecipitated cross-linked p55 and induced a supershift of a p55-containing complex formed in HeLa nuclear extract. Furthermore, UV cross-linking and electrophoretic mobility shift assays indicated that recombinant hnRNP H specifically interacts with the p55 binding site, confirming that hnRNP H is p55. The possible roles of hnRNP H in NRS function are discussed.
Collapse
Affiliation(s)
- B L Fogel
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
37
|
Pagani F, Buratti E, Stuani C, Romano M, Zuccato E, Niksic M, Giglio L, Faraguna D, Baralle FE. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J Biol Chem 2000; 275:21041-7. [PMID: 10766763 DOI: 10.1074/jbc.m910165199] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In monosymptomatic forms of cystic fibrosis such as congenital bilateral absence of vas deferens, variations in the TG(m) and T(n) polymorphic repeats at the 3' end of intron 8 of the cystic fibrosis transmembrane regulator (CFTR) gene are associated with the alternative splicing of exon 9, which results in a nonfunctional CFTR protein. Using a minigene model system, we have previously shown a direct relationship between the TG(m)T(n) polymorphism and exon 9 splicing. We have now evaluated the role of splicing factors in the regulation of the alternative splicing of this exon. Serine-arginine-rich proteins and the heterogeneous nuclear ribonucleoprotein A1 induced exon skipping in the human gene but not in its mouse counterpart. The effect of these proteins on exon 9 exclusion was strictly dependent on the composition of the TG(m) and T(n) polymorphic repeats. The comparative and functional analysis of the human and mouse CFTR genes showed that a region of about 150 nucleotides, present only in the human intron 9, mediates the exon 9 splicing inhibition in association with exonic regulatory elements. This region, defined as the CFTR exon 9 intronic splicing silencer, is a target for serine-arginine-rich protein interactions. Thus, the nonevolutionary conserved CFTR exon 9 alternative splicing is modulated by the TG(m) and T(n) polymorphism at the 3' splice region, enhancer and silencer exonic elements, and the intronic splicing silencer in the proximal 5' intronic region. Tissue levels and individual variability of splicing factors would determine the penetrance of the TG(m)T(n) locus in monosymptomatic forms of cystic fibrosis.
Collapse
Affiliation(s)
- F Pagani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99 and IRCCS, Burlo Garofolo, via dell'Istria 65/1, Trieste, TS 34012 Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Laverdière M, Beaudoin J, Lavigueur A. Species-specific regulation of alternative splicing in the C-terminal region of the p53 tumor suppressor gene. Nucleic Acids Res 2000; 28:1489-97. [PMID: 10684946 PMCID: PMC111041 DOI: 10.1093/nar/28.6.1489] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing occurs in the C-terminal region of the p53 tumor suppressor gene between two alternative 3' splice sites in intron 10. This alternative splicing event has been detected in murine cells, but not in rat or human tissues. In this paper, we have characterized the pattern of p53 alternative splicing in cell lines from five different species. Our results confirm that p53 alternative splicing is species-specific, being detected only in cell lines of rodent origin. Using transient transfection assays, we have established that the rat p53 gene undergoes efficient alternative splicing in both mouse and rat cell lines, thus demonstrating that it has all the necessary cis -acting sequences to be alternatively spliced. In contrast, we were unable to detect any usage of the human alternative 3' splice site under the same experimental conditions. Thus, the low levels or absence of alternatively spliced p53 mRNA in rat and human cell lines seems to be the result of different mechanisms. Our results support the hypothesis that there are species-specific mechanisms implicated in the regulation of p53 activity.
Collapse
Affiliation(s)
- M Laverdière
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
39
|
Cook CR, McNally MT. Interaction between the negative regulator of splicing element and a 3' splice site: requirement for U1 small nuclear ribonucleoprotein and the 3' splice site branch point/pyrimidine tract. J Virol 1999; 73:2394-400. [PMID: 9971823 PMCID: PMC104485 DOI: 10.1128/jvi.73.3.2394-2400.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The negative regulator of splicing (NRS) from Rous sarcoma virus suppresses viral RNA splicing and is one of several cis elements that account for the accumulation of large amounts of unspliced RNA for use as gag-pol mRNA and progeny virion genomic RNA. The NRS can also inhibit splicing of heterologous introns in vivo and in vitro. Previous data showed that the splicing factors SF2/ASF and U1, U2, and U11 small nuclear ribonucleoproteins (snRNPs) bind the NRS, and a correlation was established between SF2/ASF and U11 binding and activity, suggesting that these factors are important for function. These observations, and the finding that a large spliceosome-like complex (NRS-C) assembles on NRS RNA in nuclear extract, led to the proposal that the NRS is recognized as a minor-class 5' splice site. One model to explain NRS splicing inhibition holds that the NRS interacts nonproductively with and sequesters U2-dependent 3' splice sites. In this study, we provide evidence that the NRS interacts with an adenovirus 3' splice site. The interaction was dependent on the integrity of the branch point and pyrimidine tract of the 3' splice site, and it was sensitive to a mutation that was previously shown to abolish U11 snRNP binding and NRS function. However, further mutational analyses of NRS sequences have identified a U1 binding site that overlaps the U11 site, and the interaction with the 3' splice site correlated with U1, not U11, binding. These results show that the NRS can interact with a 3' splice site and suggest that U1 is of primary importance for NRS splicing inhibition.
Collapse
Affiliation(s)
- C R Cook
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|