1
|
Biezus G, Grima de Cristo T, Bassi das Neves G, da Silva Casa M, Barros Brizola P, Silvestre Sombrio M, Miletti LC, Assis Casagrande R. Phylogenetic identification of feline leukemia virus A and B in cats with progressive infection developing into lymphoma and leukemia. Virus Res 2023; 329:199093. [PMID: 36924831 DOI: 10.1016/j.virusres.2023.199093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
To date, only a few studies have examined the impacts of feline leukemia virus (FeLV) subgroups on disease development in spontaneously infected cats. The present study identified FeLV-A and FeLV-B subgroups in cats with lymphoma and leukemia and explored the phylogenetic relationships of env sequences. Twenty-six cats with lymphoma (n=16) or leukemia (n=10) were selected. FeLV p27 antigen positivity was determined using ELISA, and proviral DNA in blood samples was detected using nested PCR. Positive animals in both tests were classified as cases of FeLV progressive infection and subjected to a second nested PCR for env amplification and subgroup determination. Six samples of FeLV-A and five samples of FeLV-B were sequenced using the Sanger method, and the results were used to build a phylogenetic tree and estimate evolutionary divergence. Among cats with lymphoma, 68.8% carried FeLV-AB and 31.2% FeLV-A. Among cats with leukemia, 70% carried FeLV-AB and 30% FeLV-A. Regarding cat characteristics, 50% were young, 30.8% young adults, and 19.2% adults; 88.5% were mixed-breed and 11.5% pure breed; and 42.3% were males and 57.7% were females. Among lymphomas, 62.5% were mediastinal, 31.3% multicentric, and 6.3% extranodal. Regarding histological classification, lymphoblastic and small non-cleaved-cell lymphomas were the most frequently detected. Among leukemia cases, 30% were acute lymphoid, 30% chronic myeloid, and 40% acute myeloid. Phylogenetic analysis showed that FeLV-A SC sequences were closely related to the Arena, Glasgow-1, and FeLV-FAIDS variants. Meanwhile, FeLV-B SC sequences were divergent from one another but similar to the endogenous FELV env gene (enFeLV). In conclusion, FeLV-AB is prevalent in cats with lymphoma and leukemia, highlighting the genetic diversity involved in the pathogenesis of these neoplasms in Brazil.
Collapse
Affiliation(s)
- Giovana Biezus
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Thierry Grima de Cristo
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Gabriela Bassi das Neves
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Mariana da Silva Casa
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Paula Barros Brizola
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Marina Silvestre Sombrio
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Luiz Claudio Miletti
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil
| | - Renata Assis Casagrande
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões 2090, Lages, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Helfer-Hungerbuehler AK, Widmer S, Kessler Y, Riond B, Boretti FS, Grest P, Lutz H, Hofmann-Lehmann R. Long-term follow up of feline leukemia virus infection and characterization of viral RNA loads using molecular methods in tissues of cats with different infection outcomes. Virus Res 2015; 197:137-50. [DOI: 10.1016/j.virusres.2014.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
3
|
The surface glycoprotein of feline leukemia virus isolate FeLV-945 is a determinant of altered pathogenesis in the presence or absence of the unique viral long terminal repeat. J Virol 2013; 87:10874-83. [PMID: 23903838 DOI: 10.1128/jvi.01130-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Feline leukemia virus (FeLV) is a naturally transmitted gammaretrovirus that infects domestic cats. FeLV-945, the predominant isolate associated with non-T-cell disease in a natural cohort, is a member of FeLV subgroup A but differs in sequence from the FeLV-A prototype, FeLV-A/61E, in the surface glycoprotein (SU) and long terminal repeat (LTR). Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in pathogenesis indistinguishable from that of FeLV-A/61E, namely, thymic lymphoma of T-cell origin. In contrast, substitution of both FeLV-945 LTR and SU into FeLV-A/61E resulted in multicentric lymphoma of non-T-cell origin. These results implicated the FeLV-945 SU as a determinant of pathogenic spectrum. The present study was undertaken to test the hypothesis that FeLV-945 SU can act in the absence of other unique sequence elements of FeLV-945 to determine the disease spectrum. Substitution of FeLV-A/61E SU with that of FeLV-945 altered the clinical presentation and resulted in tumors that demonstrated expression of CD45R in the presence or absence of CD3. Despite the evident expression of CD45R, a typical B-cell marker, T-cell receptor beta (TCRβ) gene rearrangement indicated a T-cell origin. Tumor cells were detectable in bone marrow and blood at earlier times during the disease process, and the predominant SU genes from proviruses integrated in tumor DNA carried markers of genetic recombination. The findings demonstrate that FeLV-945 SU alters pathogenesis, although incompletely, in the absence of FeLV-945 LTR. Evidence demonstrates that FeLV-945 SU and LTR are required together to fully recapitulate the distinctive non-T-cell disease outcome seen in the natural cohort.
Collapse
|
4
|
Stewart H, Adema KW, McMonagle EL, Hosie MJ, Willett BJ. Identification of novel subgroup A variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus. Retrovirology 2012; 9:48. [PMID: 22650160 PMCID: PMC3403869 DOI: 10.1186/1742-4690-9-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/31/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C. RESULTS Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C. CONCLUSIONS Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cats
- Cell Line
- Cloning, Molecular
- Fibroblasts/virology
- Glycoproteins/genetics
- Guinea Pigs
- HEK293 Cells
- Humans
- Leukemia Virus, Feline/classification
- Leukemia Virus, Feline/pathogenicity
- Leukemia Virus, Feline/physiology
- Leukemia Virus, Murine/genetics
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neutralization Tests
- Protein Binding
- RNA, Viral/genetics
- Receptors, Virus/metabolism
- Selection, Genetic
- Viral Envelope Proteins/genetics
- Virus Attachment
- Virus Internalization
- Virus Replication
Collapse
Affiliation(s)
- Hazel Stewart
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Karen W Adema
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Elizabeth L McMonagle
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Margaret J Hosie
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Brian J Willett
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| |
Collapse
|
5
|
Emerging viruses in the Felidae: shifting paradigms. Viruses 2012; 4:236-57. [PMID: 22470834 PMCID: PMC3315214 DOI: 10.3390/v4020236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.
Collapse
|
6
|
Helfer-Hungerbuehler AK, Cattori V, Boretti FS, Ossent P, Grest P, Reinacher M, Henrich M, Bauer E, Bauer-Pham K, Niederer E, Holznagel E, Lutz H, Hofmann-Lehmann R. Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma. Retrovirology 2010; 7:14. [PMID: 20167134 PMCID: PMC2837606 DOI: 10.1186/1742-4690-7-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/19/2010] [Indexed: 12/30/2022] Open
Abstract
Background In a cat that had ostensibly recovered from feline leukemia virus (FeLV) infection, we observed the reappearance of the virus and the development of fatal lymphoma 8.5 years after the initial experimental exposure to FeLV-A/Glasgow-1. The goals of the present study were to investigate this FeLV reoccurrence and molecularly characterize the progeny viruses. Results The FeLV reoccurrence was detected by the presence of FeLV antigen and RNA in the blood and saliva. The cat was feline immunodeficiency virus positive and showed CD4+ T-cell depletion, severe leukopenia, anemia and a multicentric monoclonal B-cell lymphoma. FeLV-A, but not -B or -C, was detectable. Sequencing of the envelope gene revealed three FeLV variants that were highly divergent from the virus that was originally inoculated (89-91% identity to FeLV-A/Glasgow-1). In the long terminal repeat 31 point mutations, some previously described in cats with lymphomas, were detected. The FeLV variant tissue provirus and viral RNA loads were significantly higher than the FeLV-A/Glasgow-1 loads. Moreover, the variant loads were significantly higher in lymphoma positive compared to lymphoma negative tissues. An increase in the variant provirus blood load was observed at the time of FeLV reoccurrence. Conclusions Our results demonstrate that ostensibly recovered FeLV provirus-positive cats may act as a source of infection following FeLV reactivation. The virus variants that had largely replaced the inoculation strain had unusually heavily mutated envelopes. The mutations may have led to increased viral fitness and/or changed the mutagenic characteristics of the virus.
Collapse
|
7
|
Abstract
Feline leukemia virus (FeLV) occurs in nature not as a single genomic species but as a family of closely related viruses. The disease outcome of natural FeLV infection is variable and likely reflects genetic variation both in the virus and the naturally outbreeding host population. A series of studies have been undertaken with the objectives of examining natural FeLV genetic variation, the selective pressures operative in FeLV infection that lead to predominance of natural variants, and the consequences for infection and disease progression. Genetic variation among FeLV isolates was examined in a cohort of naturally infected cats with thymic lymphoma of T-cell origin, non-T-cell multicentric lymphoma, myeloproliferative disorder or anemia. The predominant isolate in the cohort, designated FeLV-945, was identified exclusively in disorders of non-T-cell origin. The FeLV-945 LTR was shown to contain a unique 21-bp repeat element, triplicated in tandem downstream of enhancer. The 21-bp triplication was shown to act as a transcriptional enhancer and to confer a replicative advantage through the assembly of a distinctive transcription factor complex. Oncogene utilization during tumor induction by FeLV-945 was studied using a recombinant Moloney murine leukemia virus containing the FeLV-945 LTR. This approach identified novel loci of common proviral integration in tumors, including the regulatory subunit of PI-3Kgamma. Mutational changes identified in FeLV-945 SU were shown not to alter receptor usage as measured by host range and superinfection interference, but to significantly increase the efficiency of receptor binding. To determine whether the unique sequence elements of FeLV-945 influence the course of infection and disease in vivo, recombinant viruses were constructed in which the FeLV-945 LTR alone, or the FeLV-945 SU gene and LTR were substituted into the prototype isolate FeLV-A/61E. Longitudinal studies of infected animals showed that substitution of the FeLV-945 LTR into FeLV-A/61E resulted in a significantly more rapid disease onset, but did not alter the tumorigenic spectrum. In contrast, substitution of both the FeLV-945 LTR and SU gene changed the disease outcome entirely. Together, these observations indicate that the distinctive LTR and SU gene of FeLV-945 mediate a rapid pathogenesis with distinctive clinical features and oncogenic mechanisms.
Collapse
Affiliation(s)
- Laura S Levy
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue SL-38, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Meister RK, Taglinger K, Haverson K, Strohminger N, Mathes LE. Progress in the discovery and definition of monoclonal antibodies for use in feline research. Vet Immunol Immunopathol 2007; 119:38-46. [PMID: 17675164 DOI: 10.1016/j.vetimm.2007.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The practice of veterinary medicine and research into both animal diseases and animal models of human disease are restricted by the scarcity of monoclonal antibodies (mAb) that react with animal proteins. One way to enlarge the repertoire of mAb to animal leukocyte differentiation antigens (LDA) is to test mAb specific to other species for cross-reactivity to the species of interest. We have tested a panel of 380 commercially available anti-human mAb for cross-reactivity to feline LDA. Twenty-six of these mAb cross-react with cat LDA and 19 others are of questionable cross-reactivity. Definition of mAb specificity in the cat is being investigated by multi-color flow cytometry (FCM) to compare test mAb specificity with that of mAb to known feline LDA. The addition of these cross-reactive mAb to the anti-feline mAb currently available will enhance studies in comparative medicine.
Collapse
Affiliation(s)
- Richard K Meister
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
9
|
Bolinger C, Yilmaz A, Hartman TR, Kovacic MB, Fernandez S, Ye J, Forget M, Green PL, Boris-Lawrie K. RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res 2007; 35:2629-42. [PMID: 17426138 PMCID: PMC1885656 DOI: 10.1093/nar/gkm124] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The 5′ untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5′ UTR are internal ribosome entry site (IRES) and 5′ proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5′ UTR of spleen necrosis virus (SNV), reticuloendotheliosis virus A (REV-A) and human T-cell leukemia virus type 1 (HTLV-1) exhibit PCE activity, but not IRES activity. Assessment of SNV translation initiation in the natural context of the provirus determined that SNV is reliant on a cap-dependent initiation mechanism. Experiments with siRNAs identified that REV-A and HTLV-1 PCE modulate post-transcriptional gene expression through interaction with host RNA helicase A (RHA). Analysis of hybrid SNV/HTLV-1 proviruses determined SNV PCE facilitates Rex/Rex responsive element-independent Gag production and interaction with RHA is necessary. Ribosomal profile analyses determined that RHA is necessary for polysome association of HTLV-1 gag and provide direct evidence that RHA is necessary for efficient HTLV-1 replication. We conclude that PCE/RHA is an important translation regulatory axis of multiple lymphotropic retroviruses. We speculate divergent retroviruses have evolved a convergent RNA–protein interaction to modulate translation of their highly structured mRNA.
Collapse
Affiliation(s)
- Cheryl Bolinger
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Alper Yilmaz
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Tiffiney Roberts Hartman
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Melinda Butsch Kovacic
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Soledad Fernandez
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Jianxin Ye
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Mary Forget
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Patrick L. Green
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
- *To whom correspondence should be addressed +1-614-292-1392+1-614-292-6473
| |
Collapse
|
10
|
Tejerizo G, Domenech A, Illera JC, Collado VM, Gomez-Lucia E. Effect of 17beta-estradiol and progesterone on the expression of FeLV in chronically infected cells. Vet Microbiol 2005; 109:191-9. [PMID: 16023797 DOI: 10.1016/j.vetmic.2005.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/18/2005] [Accepted: 06/02/2005] [Indexed: 11/28/2022]
Abstract
In a previous study, it was found that even though more male cats were infected by feline leukaemia virus (FeLV), females seemed to progress easier to overt disease. To study the effect of female hormones, 17beta-estradiol and progesterone were added in different concentrations (10(-3) M to 10(-12) M) to a culture of persistently FeLV-infected cells. The effect of both hormones was very similar. After 24 h the cell viability was very low at 10(-3) M and 10(-4) M but similar to controls at the remaining concentrations. Liberation of viral particles was estimated by the reverse transcriptase activity (RT), which was the lowest also at 10(-3) M and 10(-4) M. However, low viability could not account for this low RT, as when cells were lysed with lysis buffer RT was high. Thus, cells were dying without freeing viral particles, suggestive of apoptosis. This possibility was confirmed by staining hormone-treated cells with annexin V and propidium iodide. The FeLV antigen p27 measured in the cultures had a maximum at 10(-3) M and 10(-4) M, higher than controls and lysed cells, so the presence of p27 in the supernatant was not only due to cell lysis but a consequence of hormone effect. In conclusion, 17beta-estradiol and progesterone induce death of FeLV-infected cells at high concentrations, probably through a process of apoptosis, which might limit the spread of the infection, as infective viral particles would be hampered from budding.
Collapse
Affiliation(s)
- German Tejerizo
- Department of Animal Health, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Chandhasin C, Coan PN, Pandrea I, Grant CK, Lobelle-Rich PA, Puetter A, Levy LS. Unique long terminal repeat and surface glycoprotein gene sequences of feline leukemia virus as determinants of disease outcome. J Virol 2005; 79:5278-87. [PMID: 15827142 PMCID: PMC1082761 DOI: 10.1128/jvi.79.9.5278-5287.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The outcome of feline leukemia virus (FeLV) infection in nature is variable, including malignant, proliferative, and degenerative disorders. The determinants of disease outcome are not well understood but are thought to include viral, host, and environmental factors. In particular, genetic variations in the FeLV long terminal repeat (LTR) and SU gene have been linked to disease outcome. FeLV-945 was previously identified as a natural isolate predominant in non-T-cell neoplastic and nonneoplastic diseases in a geographic cohort. The FeLV-945 LTR was shown to contain unique repeat elements, including a 21-bp triplication downstream of the enhancer. The FeLV-945 SU gene was shown to encode mutational changes in functional domains of the protein. The present study details the outcomes of infection with recombinant FeLVs in which the LTR and envelope (env) gene of FeLV-945, or the LTR only, was substituted for homologous sequences in a horizontally transmissible prototype isolate, FeLV-A/61E. The results showed that the FeLV-945 LTR determined the kinetics of disease. Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in a significantly more rapid disease onset but did not alter the tumorigenic spectrum. In contrast, substitution of both the FeLV-945 LTR and env gene changed the disease outcome entirely. Further, the impact of FeLV-945 env on the disease outcome was dependent on the route of inoculation. Since the TM genes of FeLV-945 and FeLV-A/61E are nearly identical but the SU genes differ significantly, FeLV-945 SU is implicated in the outcome. These findings identify the FeLV-945 LTR and SU gene as determinants of disease.
Collapse
Affiliation(s)
- Chandtip Chandhasin
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave. SL-38, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Anderson MM, Lauring AS, Robertson S, Dirks C, Overbaugh J. Feline Pit2 functions as a receptor for subgroup B feline leukemia viruses. J Virol 2001; 75:10563-72. [PMID: 11602698 PMCID: PMC114638 DOI: 10.1128/jvi.75.22.10563-10572.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different subgroups of feline leukemia virus (FeLV) use different host cell receptors for entry. Subgroup A FeLV (FeLV-A) is the virus that is transmitted from cat to cat, suggesting that cells expressing the FeLV-A receptor are important targets at the earliest stages of infection. FeLV-B evolves from FeLV-A in the infected cat through acquisition of cellular sequences that are related to the FeLV envelope gene. FeLV-Bs have been shown to infect cells using the Pit1 receptor, and some variants can infect cells at a lower efficiency using Pit2. Because these observations were made using receptor proteins of human or rodent origin, the role that Pit1 and Pit2 may play in FeLV-B replication in the cat is unclear. In this study, the feline Pit receptors were cloned and tested for their ability to act as receptors for different FeLV-Bs. Some FeLV-Bs infected cells expressing feline Pit2 and feline Pit1 with equal high efficiency. Variable region A (VRA) in the putative receptor-binding domain (RBD) was a critical determinant for both feline Pit1 and feline Pit2 binding, although other domains in the RBD appear to influence how efficiently the FeLV-B surface unit can bind to feline Pit2 and promote entry via this receptor. An arginine residue at position 73 in VRA was found to be important for envelope binding to feline Pit2 but not feline Pit1. Interestingly, this arginine is not found in endogenous FeLV sequences or in recombinant viruses recovered from feline cells infected with FeLV-A. Thus, while FeLV-Bs that are able to use feline Pit2 can evolve by recombination with endogenous sequences, a subsequent point mutation during reverse transcription may be needed to generate a virus that can efficiently enter the cells using the feline Pit2 as its receptor. These studies suggest that cells expressing the feline Pit2 protein are likely to be targets for FeLV-B infection in the cat.
Collapse
Affiliation(s)
- M M Anderson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, 98109-1024, USA
| | | | | | | | | |
Collapse
|
13
|
Chang Z, Pan J, Logg C, Kasahara N, Roy-Burman P. A replication-competent feline leukemia virus, subgroup A (FeLV-A), tagged with green fluorescent protein reporter exhibits in vitro biological properties similar to those of the parental FeLV-A. J Virol 2001; 75:8837-41. [PMID: 11507228 PMCID: PMC115128 DOI: 10.1128/jvi.75.18.8837-8841.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously established that lymphoid tumors could be induced in cats by intradermal injection of ecotropic feline leukemia virus (FeLV), subgroup A, plasmid DNA. In preparation for in vivo experiments to study the cell-to-cell pathway for the spread of the virus from the site of inoculation, the green fluorescent protein (GFP) transgene fused to an internal ribosome entry site (IRES) was inserted after the last nucleotide of the env gene in the ecotropic FeLV-A Rickard (FRA) provirus. The engineered plasmid was transfected into feline fibroblast cells for production of viruses and determination of GFP expression. The virions produced were highly infectious, and the infected cells could continue to mediate strong expression of GFP after long-term propagation in culture. Similar to parental virus, the transgene-containing ecotropic virus demonstrated recombinogenic activity with endogenous FeLV sequences in feline cells to produce polytropic recombinant FeLV subgroup B-like viruses which also contained the IRES-GFP transgene in the majority of recombinants. To date, the engineered virus has been propagated in cell culture for up to 8 months without diminished GFP expression. This is the first report of a replication-competent FeLV vector with high-level and stable expression of a transgene.
Collapse
Affiliation(s)
- Z Chang
- Department of Pathology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
14
|
Phipps AJ, Hayes KA, Al-dubaib M, Roy-Burman P, Mathes LE. Inhibition of feline leukemia virus subgroup A infection by coinoculation with subgroup B. Virology 2000; 277:40-7. [PMID: 11062034 DOI: 10.1006/viro.2000.0606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feline leukemia virus (FeLV) subgroup B arises de novo through recombination between the env genes of exogenous FeLV subgroup A and endogenous FeLV-like sequences. FeLV-B, which by itself is poorly infectious, will increase to high titer in the presence of FeLV-A, and is associated with FeLV-related neoplastic disease. Although the participation of FeLV-B in disease progression has not been definitively proven, circumstantial evidence supports the hypothesis that the generation of FeLV-B is linked to disease progression. The present study was designed to evaluate whether increasing the levels of FeLV-B early in FeLV-A infection could result in reduction of the incubation period for development of neoplastic disease. For this study, an isolate of FeLV-B, designated FeLV-1B3, was biologically cloned, partially sequenced, and subgroup typed. In in vivo studies, none of the neonatal cats inoculated with FeLV-1B3 alone converted to viremia positive, and all remained healthy throughout the observation period. All of the kittens inoculated with FeLV-A alone became chronically viremic, and those held for long-term observation all developed either neoplastic disease or anemia. However, kittens inoculated with the combination of FeLV-1B3 and FeLV-A showed attenuated infections whereby the majority of cats failed to develop chronic viremia. The apparent interference of FeLV-A infection by FeLV-B was time and titer dependent. This unexpected result suggests that FeLV-B may act as an attenuated virus, causing inhibition of FeLV-A possibly through an immune-mediated mechanism. Partial support for this view was provided by postmortem examination of cats inoculated with FeLV-1B3 alone. Even though none of these cats became viremic, FeLV antigen was detected as focal infections in select tissues, especially salivary gland epithelium, where enough antigen may be expressed to provide an immunizing dose against gag and pol cross-reacting antigens. This work may also provide another approach to vaccine development based on endogenous retrovirus vector systems.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Antibody Formation
- Antigens, Viral/analysis
- Cats
- Cloning, Molecular
- Disease Progression
- Genes, env
- Leukemia Virus, Feline/classification
- Leukemia Virus, Feline/genetics
- Leukemia Virus, Feline/pathogenicity
- Leukemia, Feline/immunology
- Leukemia, Feline/pathology
- Leukemia, Feline/physiopathology
- Leukemia, Feline/virology
- Molecular Sequence Data
- Polymerase Chain Reaction
- Recombination, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Terminal Repeat Sequences
Collapse
Affiliation(s)
- A J Phipps
- Department of Veterinary Biosciences, The Center for Retrovirus Research, Comprehensive Cancer Center, The Ohio State University, 1925 Coffey Road, Columbus, Ohio, 43210, USA
| | | | | | | | | |
Collapse
|