1
|
Taher H, Mahyari E, Kreklywich C, Uebelhoer LS, McArdle MR, Moström MJ, Bhusari A, Nekorchuk M, E X, Whitmer T, Scheef EA, Sprehe LM, Roberts DL, Hughes CM, Jackson KA, Selseth AN, Ventura AB, Cleveland-Rubeor HC, Yue Y, Schmidt KA, Shao J, Edlefsen PT, Smedley J, Kowalik TF, Stanton RJ, Axthelm MK, Estes JD, Hansen SG, Kaur A, Barry PA, Bimber BN, Picker LJ, Streblow DN, Früh K, Malouli D. In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome. PLoS Pathog 2020; 16:e1008666. [PMID: 33232376 PMCID: PMC7723282 DOI: 10.1371/journal.ppat.1008666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/08/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68-1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68-1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68-1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68-1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68-1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.
Collapse
Affiliation(s)
- Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Eisa Mahyari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matthew R. McArdle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matilda J. Moström
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Travis Whitmer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Elizabeth A. Scheef
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Lesli M. Sprehe
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Dawn L. Roberts
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kerianne A. Jackson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hillary C. Cleveland-Rubeor
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Yujuan Yue
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Kimberli A. Schmidt
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Benjamin N. Bimber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
2
|
Li W, Liu Y, Wang Y, Li R, Trang P, Tang W, Yang Z, Wang Y, Sun X, Xing X, Lu S, Liu F. Engineered RNase P Ribozymes Effectively Inhibit the Infection of Murine Cytomegalovirus in Animals. Am J Cancer Res 2018; 8:5634-5644. [PMID: 30555569 PMCID: PMC6276291 DOI: 10.7150/thno.27776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023] Open
Abstract
Rationales: Gene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an in vitro selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals. Methods and Results: In this report, R388-AS, a new engineered ribozyme variant, was designed to target the mRNA of assemblin (AS) of murine cytomegalovirus (MCMV), which is essential for viral progeny production. Variant R338-AS cleaved AS mRNA sequence in vitro at least 200 times more efficiently than ribozyme M1-AS, which originated from the wild type RNase P catalytic RNA sequence. In cultured MCMV-infected cells, R338-AS exhibited better antiviral activity than M1-AS and decreased viral AS expression by 98-99% and virus production by 15,000 fold. In MCMV-infected mice, R388-AS was more active in inhibiting AS expression, blocking viral replication, and improving animal survival than M1-AS. Conclusions: Our results provide the first direct evidence that novel engineered RNase P ribozyme variants with more active catalytic activity in vitro are also more effective in inhibiting viral gene expression in animals. Moreover, our studies imply the potential of engineering novel RNase P ribozyme variants with unique mutations to improve ribozyme activity for therapeutic application.
Collapse
|
3
|
Li W, Sheng J, Xu M, Vu GP, Yang Z, Liu Y, Sun X, Trang P, Lu S, Liu F. Inhibition of Murine Cytomegalovirus Infection in Animals by RNase P-Associated External Guide Sequences. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:322-332. [PMID: 29246310 PMCID: PMC5684469 DOI: 10.1016/j.omtn.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022]
Abstract
External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin. In vitro, the EGS variant was 60 times more active in directing RNase P cleavage of the target mRNA than the EGS originating from a natural tRNA. In MCMV-infected cells, the variant reduced mCSP expression by 92% and inhibited viral growth by 8,000-fold. In MCMV-infected mice hydrodynamically transfected with EGS-expressing constructs, the EGS variant was more effective in reducing mCSP expression, decreasing viral production, and enhancing animal survival than the EGS originating from a natural tRNA. These results provide direct evidence that engineered EGS variants with higher targeting activity in vitro are also more effective in reducing gene expression in animals. Furthermore, our findings imply the possibility of engineering potent EGS variants for therapy of viral infections.
Collapse
Affiliation(s)
- Wei Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jingxue Sheng
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mengqiong Xu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhu Yang
- Jiangsu Affynigen Biotechnolgies, Inc., Taizhou, Jiangsu 225300, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, St. George's University, Grenada, West Indies; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Phong Trang
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Lacaze P, Forster T, Ross A, Kerr LE, Salvo-Chirnside E, Lisnic VJ, López-Campos GH, García-Ramírez JJ, Messerle M, Trgovcich J, Angulo A, Ghazal P. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes. J Virol 2011; 85:6065-76. [PMID: 21471238 PMCID: PMC3126304 DOI: 10.1128/jvi.02341-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/28/2011] [Indexed: 12/20/2022] Open
Abstract
The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.
Collapse
Affiliation(s)
- Paul Lacaze
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Thorsten Forster
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Alan Ross
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Lorraine E. Kerr
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Eliane Salvo-Chirnside
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka University, Croatia
| | | | - José J. García-Ramírez
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla—La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Joanne Trgovcich
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Baluchova K, Kirby M, Ahasan MM, Sweet C. Preliminary characterization of murine cytomegaloviruses with insertional and deletional mutations in the M34 open reading frame. J Med Virol 2008; 80:1233-42. [PMID: 18461610 DOI: 10.1002/jmv.21211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A viable virus could not be recovered from a mutant murine cytomegalovirus (MCMV) BAC in which the M34 ORF had been deleted (BACDeltaM34). In contrast, an M34 mutant virus (RcM34), in which the M34 ORF was interrupted by transposon insertion at nt 44,827 of the Smith MCMV BAC, was attenuated in replication both in tissue culture and in SCID mice. Similarly, mutant virus Rc3'DeltaM34, in which the 3'-end was deleted from nt 44,724 to nt 45,647, produced similar replication kinetics in tissue culture to RcM34 while BAC5'DeltaM34, in which the 5'-end from nt 43,083 up to nt 44,896 was deleted, was non-viable like BACDeltaM34. A transcript analysis of wt and RcM34 virus-infected cells showed that a truncated transcript encoding a putative protein of 624 amino acids was produced by RcM34, of which the amino terminal 582 amino acids would be identical to the predicted wt 854 amino acids product. Recent, re-annotations of the MCMV genome have identified three putative M34 overlapping ORFs (m33.1, m34.1, and m34.2) that may be interrupted in the above mutants. All three were transcribed in RcM34 virus-infected cells confirming that the RcM34 virus phenotype was probably due to interruption of the M34 ORF. These results suggest that M34, like human CMV UL34, is an essential gene.
Collapse
Affiliation(s)
- Katarina Baluchova
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
6
|
Jurak I, Schumacher U, Simic H, Voigt S, Brune W. Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 2008; 82:4812-22. [PMID: 18321965 PMCID: PMC2346748 DOI: 10.1128/jvi.02570-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Igor Jurak
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
7
|
Pilgrim MJ, Kasman L, Grewal J, Bruorton ME, Werner P, London L, London SD. A focused salivary gland infection with attenuated MCMV: an animal model with prevention of pathology associated with systemic MCMV infection. Exp Mol Pathol 2007; 82:269-79. [PMID: 17320076 PMCID: PMC3506192 DOI: 10.1016/j.yexmp.2006.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/25/2022]
Abstract
While the salivary gland has been recognized as an important effector site of the common mucosal immune system, a useful model for studying anti-viral salivary gland immune responses in vivo and for exploring the role of the salivary gland within the common mucosal system has been lacking. Murine cytomegalovirus (MCMV) is a beta-herpesvirus that displays a strong tropism for the salivary gland and produces significant morbidity in susceptible mice when introduced by intraperitoneal (i.p.) inoculation. This study tested the hypothesis that MCMV morbidity and pathology could be reduced by injecting the virus directly the submandibular salivary gland (intraglandular (i.g.)), using either in vivo derived MCMV or the less virulent, tissue-culture-derived MCMV (tcMCMV). Peak salivary gland viral titers were completely unaffected by infection route (i.p vs. i.g.) after inoculation with either MCMV or tcMCMV. However, i.g. tcMCMV inoculation reduced viremia in all systemic tissues tested compared to i.p. inoculation. Furthermore, systemic organ pathology observed in the liver and spleen after i.p. inoculation with either MCMV or tcMCMV was completely eliminated by i.g. inoculation with tcMCMV. Cellular infiltrates in the salivary glands, after i.p. or i.g. inoculation were composed of both B and T cells, indicating the potential for a local immune response to occur in the salivary gland. These results demonstrate that a focused MCMV infection of the salivary gland without systemic organ pathology is possible using i.g. delivery of tcMCMV.
Collapse
Affiliation(s)
- Mark J. Pilgrim
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Laura Kasman
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Jasvir Grewal
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Mary E. Bruorton
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Phil Werner
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
- College of Dental Medicine, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Lucille London
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Steven D. London
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
- College of Dental Medicine, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| |
Collapse
|
8
|
Visalli RJ, Nicolosi DM, Irven K, Khan T, Visalli MA. Characterization of the murine cytomegalovirus m136 gene. Virus Genes 2006; 34:117-26. [PMID: 17143724 DOI: 10.1007/s11262-006-0047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/10/2006] [Indexed: 11/25/2022]
Abstract
The 230-kbp murine cytomegalovirus (MCMV) genome is predicted to encode 182 open reading frames (orfs). One gene whose functional role is not known is encoded by the 762-bp m136 orf. Sequence analysis of rat cytomegalovirus (RCMV) strains Maastricht and English revealed homologous orfs, pr136, and ORF HJ4, respectively. Conservation of these orfs suggested that m136 and the RCMV homologs might play a role during virus replication. Expression of an epitope tagged form of m136 (m136-V5) yielded a polypeptide of 34 kDa that localized to the perinuclear region of transfected mouse 3T3 fibroblasts. Three independently generated MCMV m136 mutants were isolated and characterized. Mutations were introduced into the m136 orf by inserting either a beta-glucuronidase (m136-beta-gluc) or a guanosine phosphoribosyl transferase (m136-gpt) expression cassette into a unique BglII site, or by inserting a gpt cassette into a deleted region (Deltam136) of m136. No differences were observed in viral yield, plaque size, and plaque morphology between the parental strain and any of the m136 mutant viruses. In vivo analysis using a SCID mouse virulence model showed a consistently measurable attenuated phenotype for all three m136 mutants. The results showed that although the m136 gene was not essential for replication in vitro or in vivo, an intact m136 gene was necessary to yield wild type virulence during infection of the host.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biology, Indiana University Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 x 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological roles and relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.
Collapse
Affiliation(s)
- V S Goldmacher
- ImmunoGen, Inc., 128 Sidney St., Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Pignatelli S, Dal Monte P, Rossini G, Landini MP. Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 2005; 14:383-410. [PMID: 15386592 DOI: 10.1002/rmv.438] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human cytomegalovirus (HCMV) clinical isolates display genetic polymorphisms in multiple genes. Some authors have suggested that those polymorphisms may be implicated in HCMV-induced immunopathogenesis, as well as in strain-specific behaviours, such as tissue-tropism and ability to establish persistent or latent infections. This review summarises the features of the main clustered HCMV polymorphic open reading frames and also briefly cites other variable loci within the viral genome. The implications of gene polymorphisms are discussed in terms of potentially advantageous higher fitness obtained by the strain, but also taking into account that the published data are often speculative. The last section of this review summarises and critically analyses the main literature reports about the linkage of strain specific genotypes with clinical manifestations of HCMV disease in different patient populations affected by severe cytomegalovirus infections, namely immunocompromised subjects and congenitally infected newborns.
Collapse
Affiliation(s)
- Sara Pignatelli
- Department of Clinical and Experimental Medicine, Division of Microbiology-St Orsola General Hospital, University of Bologna, Italy.
| | | | | | | |
Collapse
|
11
|
Adair R, Liebisch GW, Su Y, Colberg-Poley AM. Alteration of cellular RNA splicing and polyadenylation machineries during productive human cytomegalovirus infection. J Gen Virol 2004; 85:3541-3553. [PMID: 15557227 DOI: 10.1099/vir.0.80450-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative processing of human cytomegalovirus (HCMV) UL37 pre-mRNA predominantly produces the unspliced UL37 exon 1 (UL37x1) RNA and multiple, lower abundance, alternatively spliced UL37 RNAs. The relative abundance of UL37x1 unspliced RNA is surprising because it requires the favoured use of a polyadenylation signal within UL37 intron 1, just upstream of the UL37 exon 2 (UL37x2) acceptor. Here, it was shown that a downstream element (DSE) in UL37x2 strongly enhanced processing at the UL37x1 polyadenylation site, but did not influence UL37x1-x2 splicing. There was a potential binding site (UCUU) for polypyrimidine tract-binding protein (PTB) at the UL37x1 polyadenylation/cleavage site and its mutation to UGGG reduced both polyadenylation and splicing of UL37x1-x2 minigene pre-mRNA, suggesting a role in both RNA processing events. To determine whether lytic HCMV infection altered the balance of RNA processing factors, which bind to UL37 pre-mRNA cis elements, these were investigated in permissively infected primary and immortalized human diploid fibroblasts (HFFs) and epithelial cells. Induction of polyadenylation factors in HCMV-infected, serum-starved (G(0)) HFFs was also investigated. Permissive HCMV infection consistently increased, albeit with different kinetics, the abundance of cleavage stimulation factor 64 (CstF-64) and PTB, and altered hypo-phosphorylated SF2 in different cell types. Moreover, the preponderance of UL37x1 RNA increased during infection and correlated with CstF-64 induction, whereas the complexity of the lower abundance UL37 spliced RNAs transiently increased following reduction of hypo-phosphorylated SF2. Collectively, multiple UL37 RNA polyadenylation cis elements and induced cellular factors in HCMV-infected cells strongly favoured the production of UL37x1 unspliced RNA.
Collapse
Affiliation(s)
- Richard Adair
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Gregory W Liebisch
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Yan Su
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
12
|
Goldmacher VS. Cell death suppressors encoded by cytomegalovirus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:1-18. [PMID: 15171604 DOI: 10.1007/978-3-540-74264-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Mavinakere MS, Colberg-Poley AM. Internal cleavage of the human cytomegalovirus UL37 immediate-early glycoprotein and divergent trafficking of its proteolytic fragments. J Gen Virol 2004; 85:1989-1994. [PMID: 15218184 DOI: 10.1099/vir.0.80094-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus UL37 gene encodes at least three isoforms, which share N-terminal UL37 exon 1 (UL37x1) sequences. UL37 proteins traffic dually into the endoplasmic reticulum (ER) and to mitochondria. Trafficking of the UL37 glycoprotein (gpUL37) in relation to its post-translational processing was investigated. gpUL37 is internally cleaved in the ER and its products traffic differentially. Its C-terminal fragment (UL37(COOH)) is ER-localized and N-glycosylated. Unlike conventional ER signal sequences, its N-terminal fragment is stable and traffics to mitochondria. Inhibition of N-glycosylation did not block pUL37 cleavage and dramatically decreased the levels of but not of UL37(COOH). pUL37(M), which differs from gpUL37 by the lack of residues 178-262 and hence the UL37x3 consensus signal peptidase cleavage site, traffics into the ER and mitochondria, but is neither cleaved nor N-glycosylated. This finding of a relationship between ER processing and mitochondrial importation of UL37 proteins is unique for herpesvirus proteins.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
14
|
Mavinakere MS, Colberg-Poley AM. Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 2004; 85:323-329. [PMID: 14769889 DOI: 10.1099/vir.0.19589-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 immediate-early (IE) gene minimally encodes three protein isoforms that share NH(2)-terminal sequences. The predominant UL37 isoform detected during HCMV infection was the UL37 exon 1 protein (pUL37x1), which was produced from IE and, more abundantly, through late times of infection. pUL37x1 was localized in both the endoplasmic reticulum (ER) and mitochondria in infected cells. To determine which UL37x1 NH(2)-terminal residues serve as ER and mitochondrial targeting signals, we examined the subcellular localization of two deletion mutants. pUL37x1Delta2-23, which lacks the hydrophobic leader, is neither translocated into the ER nor imported mitochondrially; conversely, pUL37x1Delta23-34, lacking the juxtaposed basic residues, was translocated into the ER but only imported weakly into mitochondria. These studies show for the first time the temporal production and localization of pUL37x1 during HCMV infection. The trafficking patterns of mutants suggest that the pUL37x1 targeting signal to ER and mitochondria is bipartite.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
15
|
McCormick AL, Skaletskaya A, Barry PA, Mocarski ES, Goldmacher VS. Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 2004; 316:221-33. [PMID: 14644605 DOI: 10.1016/j.virol.2003.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cytomegalovirus (CMV) genes UL36 and UL37 encode viral inhibitor of caspase-8-induced apoptosis (vICA) and viral mitochondria inhibitor of apoptosis (vMIA), respectively. Rhesus macaque CMV homologues, denoted Rh-vICA and Rh-vMIA, were identified and found to suppress apoptosis. One of these functions was conserved in MCMV, encoded by the M36 gene and denoted M-vICA. Conserved regions were compared to domains important to vICA- and vMIA-mediated cell death suppression. The conserved sequences of primate CMV vMIA homologues overlapped with the two known functional domains, providing further evidence supporting a crucial role of vMIA in cell death suppression. RNA blot analyses revealed that expression of murine and rhesus macaque CMV UL36 and UL37 homologues started early and continued through late times of infection. Murine CMV homologues were expressed with alpha (immediate early) kinetics, like human CMV UL36 and UL37, whereas rhesus macaque CMV homologues exhibited beta (delayed early) kinetics. Despite differences in organization and transcriptional regulation, this region appears to carry out a conserved role in cell death suppression. When viewed in light of sequence conservation, a functional vMIA homologue appears to be encoded by every primate CMV, whereas a functional vICA homologue appears to be encoded by all cytomegaloviruses for which sequence data are available.
Collapse
Affiliation(s)
- A Louise McCormick
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
16
|
Su Y, Adair R, Davis CN, DiFronzo NL, Colberg-Poley AM. Convergence of RNA cis elements and cellular polyadenylation factors in the regulation of human cytomegalovirus UL37 exon 1 unspliced RNA production. J Virol 2004; 77:12729-41. [PMID: 14610195 PMCID: PMC262569 DOI: 10.1128/jvi.77.23.12729-12741.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL36-38 immediate early (IE) locus encodes proteins required for its growth. The UL37 promoter drives production of an unspliced and several alternatively spliced RNAs. The UL37 exon 1 (UL37x1) unspliced RNA is abundant from IE to late times of HCMV infection, whereas the UL37 spliced RNAs are markedly less abundant. Production of the UL37x1 unspliced RNA requires polyadenylation (PA) at nucleotide 50998, which lies within intron 1, upstream of the UL37 exon 2 (UL37x2) acceptor. The physical proximity of its cis elements suggests steric hindrance between PA and splicing machineries for UL37 pre-mRNA. To test this possibility, we generated site-specific mutants in Target 1 PA and RNA splicing cis elements and compared the PA and splicing efficiencies of mutant RNAs with those of wild-type RNA. The mutually exclusive processing events of UL37x1 PA and UL37x1-UL37x2 splicing have been accurately recapitulated in transfected permissive human fibroblasts (HFFs) expressing a Target 1 minigene RNA, which contains the required splicing and PA cis elements. Two mutants in the invariant PA signal dramatically decreased UL37x1 PA as expected and, concomitantly, increased the efficiency of UL37x1-UL37x2 RNA splicing. Consistent with these results, changes to consensus UL37x1 donor and UL37x2 acceptor sites increased the efficiency of UL37x1-UL37x2 RNA splicing but decreased the efficiency of UL37x1 PA. Moreover, HCMV infection of HFFs increased the abundance of the PA cleavage stimulatory factor CstF-64, the potent splicing suppressor PTB, and the hypophosphorylated form of the splicing factor SF2 at 4 h postinfection. Induction of these factors further favors production of the UL37x1 unspliced RNA over that of the spliced RNAs. Taken together, these results suggest that there is a convergence in UL37 RNA regulation by cis elements and cellular proteins which favors production of the UL37x1 unspliced RNA during HCMV infection at the posttranscriptional level.
Collapse
Affiliation(s)
- Yan Su
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, USA
| | | | | | | | | |
Collapse
|
17
|
Zhu J, Chen J, Hai R, Tong T, Xiao J, Zhan X, Lu S, Liu F. In vitro and in vivo characterization of a murine cytomegalovirus with a mutation at open reading frame m166. J Virol 2003; 77:2882-91. [PMID: 12584312 PMCID: PMC149767 DOI: 10.1128/jvi.77.5.2882-2891.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the mutants, Rvm166, which contained the transposon sequence at open reading frame m166, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. The viral mutant replicated as well as the wild-type Smith strain in vitro in NIH 3T3 cells, whereas the transposon insertion precluded the expression of >65% of the m166 open reading frame. Compared to the wild-type strain and a rescued virus that restored the m166 region, the viral mutant was significantly attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. At 21 days postinfection, the titers of the viral mutant in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice were lower than the titers of the Smith strain and the rescued virus by about 30000-, 10000-, 1000-, 300-, and 800-fold, respectively. Moreover, the virulence of the mutant virus appears to be severely attenuated because no death was found in SCID mice infected with the viral mutant up to 90 days postinfection, whereas all of the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results suggest that m166 probably encodes a virulence factor and is required for MCMV virulence in killing SCID mice and for optimal viral growth in vivo.
Collapse
Affiliation(s)
- Jiaming Zhu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Su Y, Testaverde JR, Davis CN, Hayajneh WA, Adair R, Colberg-Poley AM. Human cytomegalovirus UL37 immediate early target minigene RNAs are accurately spliced and polyadenylated. J Gen Virol 2003; 84:29-39. [PMID: 12533698 DOI: 10.1099/vir.0.18700-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL36-38 immediate early (IE) locus encodes proteins required for virus growth. The UL37 IE promoter drives production of differentially spliced and unspliced RNAs. To study their post-transcriptional processing, we generated target minigenes encoding each UL37 RNA splicing substrate. Target 1 RNA, spanning UL37 exon 1 (x1) donor and 2 (x2) acceptor as well as adjacent intronic sequences, but not the UL38 gene, accurately reproduced UL37 x1/x2 RNA splicing in transfected permissive cells. Surprisingly, deletion of distal intronic sequences nt -82 to -143 from the UL37x2 acceptor resulted in aberrant splicing to an upstream non-consensus exonic donor. Target 1 RNAs carry the UL37x1 polyadenylation (PA) signal and site as well as a downstream SV40 early PA signal. Both the UL37x1 and SV40 PA signals are used in wild-type target 1 RNAs but inhibited in UL37x1 PA signal mutants. Alternative RNA splicing of UL37 exons 2 to 3 or 3A as well as exons 3 to 4, observed in HCMV mature UL37 and UL36 spliced RNAs, is accurately reproduced with target minigene RNAs carrying the corresponding UL37 exonic and intronic sequences. Moreover, alternative splicing using two novel UL37 exon 3 consensus splice donors (di and dii) was found in target and in HCMV-infected cell RNA. These results demonstrate that: (i) target minigene RNAs accurately recapitulate the processing of UL37 IE RNAs in the HCMV-infected cell; (ii) precise UL37x1 donor selection is modulated by 3'-distal UL37 intronic sequences; and (iii) UL37 exon 3 contains multiple alternative consensus splice donors.
Collapse
Affiliation(s)
- Yan Su
- Center for Cancer and Immunology Research, Room 5720, Children's Research Institute, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - James R Testaverde
- Center for Cancer and Immunology Research, Room 5720, Children's Research Institute, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Candice N Davis
- Center for Cancer and Immunology Research, Room 5720, Children's Research Institute, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Wail A Hayajneh
- Department of Infectious Diseases, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Room 5720, Children's Research Institute, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Richard Adair
- Center for Cancer and Immunology Research, Room 5720, Children's Research Institute, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Room 5720, Children's Research Institute, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|
19
|
Lee M, Abenes G, Zhan X, Dunn W, Haghjoo E, Tong T, Tam A, Chan K, Liu F. Genetic analyses of gene function and pathogenesis of murine cytomegalovirus by transposon-mediated mutagenesis. J Clin Virol 2002; 25 Suppl 2:S111-22. [PMID: 12361762 DOI: 10.1016/s1386-6532(02)00096-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Murine cytomegalovirus (MCMV) has a linear genome of 230 kb and encodes more than 170 genes, many of which have not been extensively studied for their functions in pathogenesis in vivo. A Tn3-based transposon was constructed and used to generate MCMV mutants by disrupting viral gene targets. The functions of the mutated genes were investigated by studying the viral mutants in cultured cells and in immunocompetent Balb/c and immunodeficient SCID mice. A pool of MCMV mutants that contained the transposon sequence randomly inserted at the viral genome was generated. Studies of several mutants (e.g. a viral mutant with the transposon inserted at open reading frame m09) in cultured cells and in mice indicate that the presence of the transposon sequence per se in the viral genome does not significantly affect viral growth in vitro and in vivo. Moreover, the genome structures of the viral mutants, including the transposon insertion regions, were stable during replication in cultured cells and in animals. Several viral mutants (e.g. a viral mutant with the transposon at M27) that are attenuated in growth and virulence in animals were identified. These results suggest that the genes mutated in these viral mutants may be important for viral virulence and pathogenesis. The Tn3-based system may be a useful tool for the systematic construction of CMV mutants and for studies of CMV gene functions in viral replication in vitro and in pathogenesis in vivo.
Collapse
Affiliation(s)
- Manfred Lee
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Visalli RJ, Fairhurst J, Kothandaraman S, Buklan A. Characterization of the murine cytomegalovirus 38 kDa m137 gene product. Virus Res 2002; 84:181-9. [PMID: 11900850 DOI: 10.1016/s0168-1702(02)00024-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Murine cytomegalovirus (MCMV) m137 null mutants, Deltam137A and Deltam137B, were generated by inserting a gpt cassette into a deleted region of the open reading frame. A polyclonal antiserum produced to an Escherichia coli expressed gst-m137 fusion protein was used to show that a 38 kDa polypeptide corresponding to the predicted m137 gene product was present in NIH 3T3 fibroblasts infected with wild-type MCMV but was not detected in Deltam137 infected cells. The protein did not fractionate with infected cell membranes and was not detectable in purified wild-type virions. Plaque size, plaque morphology, and viral yield did not differ significantly between Deltam137 and wild-type MCMV infected 3T3 fibroblasts. The results showed that deletion of the 38 kDa protein did not negatively effect viral growth in 3T3 fibroblasts indicating that the m137 gene product is not essential for replication in these cells. In vivo analysis revealed that two independently isolated m137 mutants showed a significant delay in time until death but ultimately killed 100% of the mice in a SCID mouse model of virulence.
Collapse
Affiliation(s)
- Robert J Visalli
- Infectious Diseases Section, Department of Molecular Biology/Virology, Wyeth-Ayerst Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Human cytomegalovirus encodes a powerful cell death suppressor vMIA (viral mitochondria-localized inhibitor of apoptosis), also known as pUL37x1. vMIA, a product of the immediate early gene UL37 exon 1, is predominantly localized in mitochondria, where it appears to form a complex with adenine nucleotide translocator, believed to be a component of the mitochondrial transition pore complex. vMIA suppresses apoptosis by blocking permeabilization of the mitochondrial outer membrane. Expression of vMIA protects cells against apoptosis triggered by diverse stimuli, including ligation of death receptors, exposure to certain cytotoxic drugs, and infection with an adenovirus mutant deficient in E1B19K. Deletion mutagenesis of vMIA revealed two domains that are necessary and, together, sufficient for its anti-apoptotic activity. The first domain contains a mitochondrial targeting signal. The function of the second domain is still unknown. vMIA does not share any significant amino acid sequence homology with Bcl-2, and, unlike Bcl-2 or Bcl-x(L), it does not bind BAX or VDAC. These structural and functional differences between vMIA and Bcl-2 suggest that vMIA represents a separate class of cell death suppressors. Experiments with vMIA-deficient CMV (human cytomegalovirus) mutants provide strong evidence that the anti-apoptotic function of vMIA is required to prevent CMV-induced apoptosis, and is necessary for viral replication. In addition to vMIA, UL37 encodes two longer splice-variant proteins, gpUL37 and GP37(M). Biological functions of these proteins have not yet been identified, and may be unrelated to their anti-apoptotic activity. The identification of vMIA and the finding that its anti-apoptotic function is required for CMV replication provides a rationale for the development of anti-CMV pharmaceuticals that would inactivate vMIA and thus restore apoptosis in cells infected with CMV.
Collapse
|
22
|
Hayajneh WA, Contopoulos-Ioannidis DG, Lesperance MM, Venegas AM, Colberg-Poley AM. The carboxyl terminus of the human cytomegalovirus UL37 immediate-early glycoprotein is conserved in primary strains and is important for transactivation. J Gen Virol 2001; 82:1569-1579. [PMID: 11413367 DOI: 10.1099/0022-1317-82-7-1569] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 exon 3 (UL37x3) open reading frame (ORF) encodes the carboxyl termini of two immediate-early glycoproteins (gpUL37 and gpUL37(M)). UL37x3 homologous sequences are not required for mouse cytomegalovirus (MCMV) growth in vitro; yet, they are important for MCMV growth and pathogenesis in vivo. Similarly, UL37x3 sequences are dispensable for HCMV growth in culture, but their requirement for HCMV growth in vivo is not known. To determine this requirement, we directly sequenced the complete UL37x3 gene in multiple HCMV primary strains. A total of 63 of the 310 amino acids in the UL37x3 ORF differ non-conservatively in one or more HCMV primary strains. The HCMV UL37x3 genetic diversity is non-random: the N-glycosylation (46/186 aa) and basic (9/15 aa) domains have the highest proportion of non-conservative variant amino acids. Nonetheless, most (15/17 signals) of the N-glycosylation signals are retained in all HCMV primary strains. Moreover, new N-glycosylation signals are encoded by 5/20 primary strains. In sharp contrast, the UL37x3 transmembrane (TM) ORF completely lacks diversity in all 20 HCMV sequenced primary strains, and only 1 of 28 cytosolic tail residues differs non-conservatively. To test the functional significance of the conserved carboxyl terminus, gpUL37 mutants lacking the TM and/or cytosolic tail were tested for transactivating activity. The gpUL37 carboxyl-terminal mutants are partially defective in hsp70 promoter transactivation even though they trafficked similarly to the wild-type protein into the endoplasmic reticulum and to mitochondria. From these results, we conclude that N-glycosylated gpUL37, particularly its TM and cytosolic domains, is important for HCMV growth in humans.
Collapse
Affiliation(s)
- Wail A Hayajneh
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Despina G Contopoulos-Ioannidis
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Marci M Lesperance
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Ana M Venegas
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|