1
|
Assessment of resistance to rice tungro disease in popular rice varieties in India by introgression of a transgene against Rice tungro bacilliform virus. Arch Virol 2019; 164:1005-1013. [PMID: 30734111 DOI: 10.1007/s00705-019-04159-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Rice crops in South and Southeast Asian countries suffer critical yield losses due to rice tungro disease caused by joint infection with rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Previously, for generating RNA interference-based transgenic resistance against tungro viruses, RTBV ORF IV was used as a transgene to develop RTBV resistance in a popular high-yielding scented rice variety. The transgene from this line was then introgressed into five popular high-yielding but tungro-susceptible rice varieties by marker-assisted backcross breeding with a view to combine the resistant trait with the agronomic traits. The present work includes a resistance assay of the BC3F5 lines of these varieties under glasshouse conditions. Out of a total of 28 lines tested, each consisting of 12 individual plants, eight lines showed significant amelioration in height reduction and 100- to 1000-fold reduction in RTBV titers. The RNAi-mediated resistance was clearly manifested by the presence of virus-derived small RNA (vsRNA) specific for RTBV ORF IV in the transgenic backcrossed lines.
Collapse
|
2
|
Kumar PV, Sharma SK, Rishi N, Baranwal VK. Efficient immunodiagnosis of Citrus yellow mosaic virus using polyclonal antibodies with an expressed recombinant virion-associated protein. 3 Biotech 2018; 8:39. [PMID: 29291152 DOI: 10.1007/s13205-017-1063-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022] Open
Abstract
Citrus yellow mosaic virus (CYMV) is a member of genus Badnavirus of the family Caulimoviridae. It is the causal agent of citrus yellow mosaic disease in citrus and causes reduction in yield. As the virus is vegetative propagated by grafting, development of high-throughput diagnosis methods based on serological techniques is a prerequisite for production of healthy virus-free planting material. The current study describes the development of polyclonal antibodies raised in rabbits against purified recombinant virion-associated protein (rVAP) encoded by ORF-II of CYMV. The specificity of developed antiserum was evaluated in immunosorbent electron microscopy (ISEM), antigen-coated plate-enzyme linked immunosorbent assay (ACP-ELISA) and immunocapture PCR (IC-PCR). The antiserum specifically reacted up to a dilution of 1:2000 in ACP-ELISA for detection of CYMV-infected plants. The antiserum was validated by screening CYMV-infected plants maintained in the glass house through ACP-ELISA. To the best for our knowledge, this is the first report on production of polyclonal antiserum using recombinant virion-associated protein as fusion protein, which could be used for screening CYMV-infected plants by ELISA and IC-PCR. These immunodiagnostic methods can be effectively employed in routine indexing of citrus and in quarantine process.
Collapse
Affiliation(s)
- P Vignesh Kumar
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida, 201303 India
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
3
|
Chiumenti M, Morelli M, De Stradis A, Elbeaino T, Stavolone L, Minafra A. Unusual genomic features of a badnavirus infecting mulberry. J Gen Virol 2016; 97:3073-3087. [PMID: 27604547 DOI: 10.1099/jgv.0.000600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mulberry badnavirus 1 (MBV1) has been characterized as the aetiological agent of a disease observed on a mulberry tree in Lebanon (accession L34). A small RNA next-generation sequencing library was prepared and analysed from L34 extract, and these data together with genome walking experiments have been used to obtain the full-length virus sequence. Uniquely among badnaviruses, the MBV1 sequence encodes a single ORF containing all the conserved pararetrovirus motifs. Two genome sizes (6 kb and 7 kb) were found to be encapsidated in infected plants, the shortest of which shares 98.95 % sequence identity with the full L34 genome. In the less-than-full-length deleted genome, the translational frame for the replication domains was conserved, but the particle morphology, observed under electron microscopy, was somehow altered. Southern blot hybridization confirmed the coexistence of the two genomic forms in the original L34 accession, as well as the absence of cointegration in the plant genome. Both long and deleted genomes were cloned and proved to be infectious in mulberry. Differently from other similar nuclear-replicating viruses or viroids, the characterization of the MBV1-derived small RNAs showed a reduced amount of the 24-mer class size.
Collapse
Affiliation(s)
- Michela Chiumenti
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Angelo De Stradis
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | | | - Livia Stavolone
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy.,International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Angelantonio Minafra
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| |
Collapse
|
4
|
Valarmathi P, Kumar G, Robin S, Manonmani S, Dasgupta I, Rabindran R. Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding. Virus Genes 2016; 52:521-9. [PMID: 26983604 DOI: 10.1007/s11262-016-1318-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
Abstract
Severe losses of rice yield in south and southeast Asia are caused by Rice tungro disease (RTD) induced by mixed infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to develop transgene-based resistance against RTBV, one of its genes, ORF IV, was used to generate transgenic resistance based on RNA-interference in the easily transformed rice variety Pusa Basmati-1, and the transgene was subsequently introgressed to rice variety ASD 16, a variety popular in southern India, using transgene marker-assisted selection. Here, we report the evaluation of BC3F4 and BC3F5 generation rice plants for resistance to RTBV as well as for agronomic traits under glasshouse conditions. The BC3F4 and BC3F5 generation rice plants tested showed variable levels of resistance, which was manifested by an average of twofold amelioration in height reduction, 1.5-fold decrease in the reduction in chlorophyll content, and 100- to 10,000-fold reduction in the titers of RTBV, but no reduction of RTSV titers, in three backcrossed lines when compared with the ASD 16 parent. Agronomic traits of some of the backcrossed lines recorded substantial improvements when compared with the ASD 16 parental line after inoculation by RTBV and RTSV. This work represents an important step in transferring RTD resistance to a susceptible popular rice variety, hence enhancing its yield in areas threatened by the disease.
Collapse
Affiliation(s)
- P Valarmathi
- Department of Plant Pathology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030, India
| | - G Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - S Robin
- Department of Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - S Manonmani
- Department of Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - I Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| | - R Rabindran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
5
|
Rice genomes recorded ancient pararetrovirus activities: Virus genealogy and multiple origins of endogenization during rice speciation. Virology 2014; 471-473:141-52. [PMID: 25461539 DOI: 10.1016/j.virol.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Viral fossils in rice genomes are a best entity to understand ancient pararetrovirus activities through host plant history because of our advanced knowledge of the genomes and evolutionary history with rice and its related species. Here, we explored organization, geographic origins and genealogy of rice pararetroviruses, which were turned into endogenous rice tungro bacilliform virus-like (eRTBVL) sequences. About 300 eRTBVL sequences from three representative rice genomes were clearly classified into six families. Most of the endogenization events of the eRTBVLs were initiated before differentiation of the rice progenitor (> 160,000 years ago). We successfully followed the genealogy of old relic viruses during rice speciation, and inferred the geographical origins for these viruses. Possible virus genomic sequences were explained mostly by recombinations between different virus families. Interestingly, we discovered that only a few recombination events among the numerous occasions had determined the virus genealogy.
Collapse
|
6
|
Borah BK, Sharma S, Kant R, Johnson AMA, Saigopal DVR, Dasgupta I. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group. MOLECULAR PLANT PATHOLOGY 2013; 14:759-71. [PMID: 23763585 PMCID: PMC6638767 DOI: 10.1111/mpp.12046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. TAXONOMY Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. MICROBIOLOGICAL PROPERTIES Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. HOST RANGE Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. DISEASE SYMPTOMS Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. USEFUL WEBSITES http://www.dpvweb.net.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, Delhi University South Campus, New Delhi 110021, India
| | | | | | | | | | | |
Collapse
|
7
|
Mathur S, Dasgupta I. Further support of genetic conservation in Indian isolates of Rice tungro bacilliform virus by sequence analysis of an isolate from North-Western India. Virus Genes 2012. [PMID: 23197138 DOI: 10.1007/s11262-012-0857-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genomic sequence of an isolate of Rice tungro bacilliform virus (RTBV), collected from the state of Punjab (Pb), a non-endemic tungro region from North-Western India was determined. In silico comparison of the 7931-bp sequence with isolates from Southeast Asia and the three previously characterized Indian isolates, revealed not only similar genome size to other Indian isolates but also high degree of homology both at nucleotide (>93 %) and amino acid (>96 %) levels among them. On the other hand, like the other Indian isolates, RTBV-Pb showed much lower nucleotide (<87 %) and amino acid (<90 % in most of the open reading frames) identities with the Southeast Asian isolates owing to several nucleotide substitutions and indels. In-depth annotation comparisons reinforce the hypothesis that Indian isolates of RTBV have diverged sufficiently from the Southeast Asian ones to form a separate group.
Collapse
Affiliation(s)
- Saloni Mathur
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | |
Collapse
|
8
|
Mangrauthia SK, Malathi P, Agarwal S, Sailaja B, Singh J, Ramkumar G, Krishnaveni D, Balachandran SM. The molecular diversity and evolution of Rice tungro bacilliform virus from Indian perspective. Virus Genes 2012; 45:126-38. [PMID: 22544477 DOI: 10.1007/s11262-012-0751-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
Abstract
Rice tungro disease is caused by a combination of two viruses: Rice tungro spherical virus and Rice tungro bacilliform virus (RTBV). This study was performed with the objective to decipher the molecular variability and evolution of RTBV isolates present in the tungro-affected states of Indian subcontinent. Phylogenetic analysis based on ORF-I, ORF-II, and ORF-IV sequences showed distinct divergence of Indian RTBV isolates into two groups; one consisted isolates from Hyderabad (Andhra Pradesh), Cuttack (Orissa), and Puducherry and another from West Bengal, Chinsura West Bengal, and Kanyakumari (Tamil Nadu). The results obtained from phylogenetic analysis were further supported with the single nucleotide polymorphisms (SNPs), insertion and deletion (INDELs) and evolutionary distance analysis. In addition, sequence difference count matrix revealed a maximum of 56 (ORF-I), 13 (ORF-II) and 73 (ORF-IV) nucleotides differences among all the Indian RTBV isolates taken in this study. However, at the protein level these differences were not significant as revealed by K (a)/K (s) ratio calculation. Sequence identity at nucleotide and amino acid level was 92-100 % (ORF-I), 96-100 % (ORF-II), 94-100 % (ORF-IV) and 86-100 % (ORF-I), 98-100 % (ORF-II) and 95-100 % (ORF-IV), respectively, among Indian isolates of RTBV. The divergence of RTBV isolates into two independent clusters of Indian and non-Indian was shown with the help of the data obtained from phylogeny, SNPs, and INDELs, evolutionary distance analysis, and conserved motifs analysis. The important role of ORF-I and ORF-IV in RTBV diversification and adaptation to different rice growing regions is also discussed.
Collapse
|
9
|
Phylogenetic analysis of Rice tungro bacilliform virus ORFs revealed strong correlation between evolution and geographical distribution. Virus Genes 2011; 43:398-408. [PMID: 21796436 DOI: 10.1007/s11262-011-0647-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
A new isolate of Rice tungro bacilliform virus (RTBV) was collected from Chinsura, West Bengal, India. The full genome was sequenced and deposited to GenBank designating the new one as Chinsura isolate. The four open reading frames (ORFs) of the new isolate were compared with those of previously reported 'South-east Asian' (SEA) and 'South Asian' (SA) isolates emphasizing the ORF3, which is the largest and functionally most important gene of RTBV. In the ORFs, Chinsura isolate shared 90.0-100.0% identity at amino acid level with SA isolates, but only 58.76-88.63% identity with SEA isolates for the same. Similarly, the amino acid identity of ORFs between SEA and SA isolates ranged from 58.77 to 88.64, whereas within each group the corresponding value was >96.0%. The phylogenetic analysis based on nucleotide and amino acid sequences of each ORF made two broad clusters of SEA- and SA-types including Chinsura isolate within SA cluster. Moreover, the relative positions and length of functional domains corresponding to movement protein (MP), coat protein (CP), aspartate protease (PR) and reverse transcriptase/ribonuclease H (RT/RNase H) of ORF3 of Chinsura isolate were completely identical with SA isolates. The clustering pattern indicated strong influence of geographical habitat on genomic evolution. Comparison of ORF3 among all the isolates revealed major variations at non-functional regions in between the functional domains and at the hypervariable 3'-terminal end of ORF3, while PR appeared to have evolved differentially in SA isolates expecting further characterization.
Collapse
|
10
|
Purkayastha A, Mathur S, Verma V, Sharma S, Dasgupta I. Virus-induced gene silencing in rice using a vector derived from a DNA virus. PLANTA 2010; 232:1531-40. [PMID: 20872012 DOI: 10.1007/s00425-010-1273-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/02/2010] [Indexed: 05/08/2023]
Abstract
Virus-induced gene silencing (VIGS) is a method of rapid and transient gene silencing in plants using viral vectors. A VIGS vector for gene silencing in rice has been developed from Rice tungro bacilliform virus (RTBV), a rice-infecting virus containing DNA as the genetic material. A full-length RTBV DNA cloned as a partial dimer in a binary plasmid accumulated in rice plants when inoculated through Agrobacterium (agroinoculation) within 2 weeks and produced detectable levels of RTBV coat protein. Deletion of two of the four viral ORFs did not compromise the ability of the cloned RTBV DNA to accumulate in rice plants. To modify the cloned RTBV DNA as a VIGS vector (pRTBV-MVIGS), the tissue-specific RTBV promoter was replaced by the constitutively expressed maize ubiquitin promoter, sequences comprising the tRNA-binding site were incorporated to ensure reverse transcription-mediated replication, sequences to ensure optimal context for translation initiation of the viral genes were added and a multi-cloning site for the ease of cloning DNA fragments was included. The silencing ability of pRTBV-MVIGS was tested using the rice phytoene desaturase (pds) gene on rice. More than half of the agroinoculated rice plants showed white streaks in leaves within 21 days post-inoculation (dpi), which continued to appear in all emerging leaves till approximately 60-70 dpi. Compared to control samples, real-time PCR showed only 10-40% accumulation of pds transcripts in the leaves showing the streaks. This is the first report of the construction of a VIGS vector for rice which can be introduced by agroinoculation.
Collapse
Affiliation(s)
- Arunima Purkayastha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | |
Collapse
|
11
|
Guerra-Peraza O, Kirk D, Seltzer V, Veluthambi K, Schmit AC, Hohn T, Herzog E. Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha. J Gen Virol 2005; 86:1815-1826. [PMID: 15914861 DOI: 10.1099/vir.0.80920-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus--Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin alpha, suggesting that both CPs are imported into the nucleus via an importin alpha-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed.
Collapse
Affiliation(s)
- O Guerra-Peraza
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - D Kirk
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - V Seltzer
- Institut de Biologie Moléculaire des Plantes, UPR-CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - K Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - A C Schmit
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - T Hohn
- University of Basel, Botanical Institute, Plant Health Unit, Schoenbeinstrasse 6, 4056 Basel, Switzerland
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - E Herzog
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Stavolone L, Villani ME, Leclerc D, Hohn T. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 2005; 102:6219-24. [PMID: 15837934 PMCID: PMC1087906 DOI: 10.1073/pnas.0407731102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells.
Collapse
Affiliation(s)
- Livia Stavolone
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002, Basel, Switzerland.
| | | | | | | |
Collapse
|
13
|
Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution. BMC Genomics 2004; 5:80. [PMID: 15488154 PMCID: PMC526188 DOI: 10.1186/1471-2164-5-80] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 10/18/2004] [Indexed: 11/10/2022] Open
Abstract
Background Plant genomes contain various kinds of repetitive sequences such as transposable elements, microsatellites, tandem repeats and virus-like sequences. Most of them, with the exception of virus-like sequences, do not allow us to trace their origins nor to follow the process of their integration into the host genome. Recent discoveries of virus-like sequences in plant genomes led us to set the objective of elucidating the origin of the repetitive sequences. Endogenous rice tungro bacilliform virus (RTBV)-like sequences (ERTBVs) have been found throughout the rice genome. Here, we reconstructed putative virus structures from RTBV-like sequences in the rice genome and characterized to understand evolutionary implication, integration manner and involvements of endogenous virus segments in the corresponding disease response. Results We have collected ERTBVs from the rice genomes. They contain rearranged structures and no intact ORFs. The identified ERTBV segments were shown to be phylogenetically divided into three clusters. For each phylogenetic cluster, we were able to make a consensus alignment for a circular virus-like structure carrying two complete ORFs. Comparisons of DNA and amino acid sequences suggested the closely relationship between ERTBV and RTBV. The Oryza AA-genome species vary in the ERTBV copy number. The species carrying low-copy-number of ERTBV segments have been reported to be extremely susceptible to RTBV. The DNA methylation state of the ERTBV sequences was correlated with their copy number in the genome. Conclusions These ERTBV segments are unlikely to have functional potential as a virus. However, these sequences facilitate to establish putative virus that provided information underlying virus integration and evolutionary relationship with existing virus. Comparison of ERTBV among the Oryza AA-genome species allowed us to speculate a possible role of endogenous virus segments against its related disease.
Collapse
|
14
|
Vetter G, Hily JM, Klein E, Schmidlin L, Haas M, Merkle T, Gilmer D. Nucleo-cytoplasmic shuttling of the beet necrotic yellow vein virus RNA-3-encoded p25 protein. J Gen Virol 2004; 85:2459-2469. [PMID: 15269388 DOI: 10.1099/vir.0.80142-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein p25 encoded by beet necrotic yellow vein virus (BNYVV) RNA-3 is involved in symptom expression of infected plants. Confocal microscopy analysis of wild-type and mutated p25 fused to GFP and transiently expressed in BY-2 tobacco suspension cells identified a nuclear localization signal (NLS) in the N-terminal part of the protein. Functionality of the NLS was confirmed by pull-down assays using rice and pepper importin-α. Furthermore, it was demonstrated that p25 contains a nuclear export sequence sensitive to leptomycin B. The nuclear export signal (NES) was characterized by mutagenesis. A GFP–p25 fusion protein expressed during a BNYVV infection of Chenopodium quinoa leaves had the same subcellular localization as observed during transient expression in BY-2 cells. The symptom phenotype induced by expression of GFP–p25 during infection was similar to that induced by wild-type virus. Studies with mutated derivatives of GFP–p25 revealed that symptom phenotype was altered when the subcellular localization of GFP–p25 was modified.
Collapse
Affiliation(s)
- Guillaume Vetter
- Département de Virologie, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Jean-Michel Hily
- Département de Virologie, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Elodie Klein
- Département de Virologie, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Laure Schmidlin
- Département de Virologie, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Muriel Haas
- Département de Virologie, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Thomas Merkle
- Fakultät für Biologie, Lehrstuhl für Genomforschung, 33594 Bielefeld, Germany
| | - David Gilmer
- Département de Virologie, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
15
|
Park HS, Himmelbach A, Browning KS, Hohn T, Ryabova LA. A plant viral "reinitiation" factor interacts with the host translational machinery. Cell 2001; 106:723-33. [PMID: 11572778 DOI: 10.1016/s0092-8674(01)00487-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cauliflower mosaic virus transactivator, TAV, controls translation reinitiation of major open reading frames on polycistronic RNA. We show here that TAV function depends on its association with polysomes and eukaryotic initiation factor eIF3 in vitro and in vivo. TAV physically interacts with eIF3 and the 60S ribosomal subunit. Two proteins mediating these interactions were identified: eIF3g and 60S ribosomal protein L24. Transient expression of eIF3g and L24 in plant protoplasts strongly affects TAV-mediated reinitiation activity. We demonstrate that TAV/eIF3/40S and eIF3/TAV/60S ternary complexes form in vitro, and propose that TAV mediates efficient recruitment of eIF3 to polysomes, allowing translation of polycistronic mRNAs by reinitiation, overcoming the normal cell barriers to this process.
Collapse
Affiliation(s)
- H S Park
- Friedrich Miescher-Institute, P.O. Box 2543, CH-4002, Basel, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Stavolone L, Herzog E, Leclerc D, Hohn T. Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol 2001; 75:7739-43. [PMID: 11462048 PMCID: PMC115011 DOI: 10.1128/jvi.75.16.7739-7743.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plant pararetroviruses belong to the Caulimoviridae family. This family contains six genera of viruses with different biological, serological, and molecular characteristics. Although some important mechanisms of viral replication and host infection are understood, much remains to be discovered about the many functions of the viral proteins. The focus of this study, the virion-associated protein (VAP), is conserved among all members of the group and contains a coiled-coil structure that has been shown to assemble as a tetramer in the case of cauliflower mosaic virus. We have used the yeast two-hybrid system to characterize self-association of the VAPs of four distinct plant pararetroviruses, each belonging to a different genus of Caulimoviridae. Chemical cross-linking confirmed that VAPs assemble into tetramers. Tetramerization is thus a common property of these proteins in plant pararetroviruses. The possible implications of this conserved feature for VAP function are discussed.
Collapse
Affiliation(s)
- L Stavolone
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
17
|
Leclerc D, Stavolone L, Meier E, Guerra-Peraza O, Herzog E, Hohn T. The product of ORF III in cauliflower mosaic virus interacts with the viral coat protein through its C-terminal proline rich domain. Virus Genes 2001; 22:159-65. [PMID: 11324752 DOI: 10.1023/a:1008121228637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using the yeast two-hybrid system, we show that the ORF III product of cauliflower mosaic virus (pIII) interacts through its C-terminus with the viral coat protein. The last five amino acids of pIII were essential for the interaction and virus infectivity. Deletion of the last three amino acids or the mutation F129A decreased the strength of the interaction by 90%. We further show that pIII is closely associated with virus particles found in the inclusion bodies of infected plants but not in viral particles released from the inclusion bodies by urea treatment.
Collapse
Affiliation(s)
- D Leclerc
- CHUQ, Pav.CHUL, Center de Recherche en Infectiologie, P. Quebec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Leh V, Jacquot E, Geldreich A, Haas M, Blanc S, Keller M, Yot P. Interaction between the open reading frame III product and the coat protein is required for transmission of cauliflower mosaic virus by aphids. J Virol 2001; 75:100-6. [PMID: 11119578 PMCID: PMC113902 DOI: 10.1128/jvi.75.1.100-106.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of cauliflower mosaic virus (CaMV) by aphids requires two viral nonstructural proteins, the open reading frame (ORF) II and ORF III products (P2 and P3). An interaction between a C-terminal domain of P2 and an N-terminal domain of P3 is essential for transmission. Purified particles of CaMV are efficiently transmitted only if aphids, previously fed a P2-containing solution, are allowed to acquire a preincubated mixture of P3 and virions in a second feed, thus suggesting a direct interaction between P3 and coat protein. Herein we demonstrate that P3 directly interacts with purified viral particles and unassembled coat protein without the need for any other factor and that P3 mediates the association of P2 with purified virus particles. The interaction domain of P3 is located in its C-terminal half, downstream of the P3-P2 interaction domain but overlapping a region which binds nucleic acids. Mutagenesis of P3 which interferes with the interaction between P3 and virions is correlated with the loss of transmission by aphids. Taken together, our results demonstrate that P3 plays a crucial role in the formation of the CaMV transmissible complex by serving as a bridge between P2 and virus particles.
Collapse
Affiliation(s)
- V Leh
- Institut de Biologie Moléculaire des Plantes, FRE CNRS 2161, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|