1
|
Zhang Y, Xian Y, Yang H, Yang X, Yu T, Liu S, Liang M, Jiang X, Deng S. A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39723813 DOI: 10.1111/pbi.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator. The SBG51 sequence increased transient GFP gene expression in Nicotiana benthamiana leaves by up to ~6 times and ~10 times compared to the gene expression controlled by the UBQ10 promoter and 35S promoter alone, respectively. The increased GFP gene expression level contributed to the continuous accumulation of GFP protein and GFP fluorescence until 8 days post-inoculation (dpi). The SBG51 sequence also enhanced the gene expression in the transgenic Arabidopsis plants and maintained the spatio-temporal pattern of the FLOWERING LOCUS T (FT) and TOO MANY MOUTHS (TMM) promoters. We identified a 123 bp of AT-rich sequence containing seven "ATAAA" or "TTAAA" elements from the SBG51 DNA, which had the gene expression enhancement effect. Furthermore, the artificial synthetic sequences containing tandem repeated "ATAAA" or "TTAAA" elements were sufficient to increase the gene expression but did not alter the polyadenylation of mRNA, similar to the function of matrix attachment regions (MAR). Additionally, the compact artificial synthetic sequence also had an effect on yeast when the expression cassette was integrated into the genome. We conclude that the geminivirus deltasatellite-derived sequence and the "ATAAA"/"TTAAA" elements are powerful tools for enhancing gene expression.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yibo Xian
- Moon (Guangzhou) Biotech Co., Ltd, Guangzhou, Guangdong, China
| | - Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuangang Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianli Yu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sai Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minting Liang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xianzhi Jiang
- Moon (Guangzhou) Biotech Co., Ltd, Guangzhou, Guangdong, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
3
|
Burk RD, Mirabello L, DeSalle R. Distinguishing Genetic Drift from Selection in Papillomavirus Evolution. Viruses 2023; 15:1631. [PMID: 37631973 PMCID: PMC10458755 DOI: 10.3390/v15081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Pervasive purifying selection on non-synonymous substitutions is a hallmark of papillomavirus genome history, but the role of selection on and the drift of non-coding DNA motifs on HPV diversification is poorly understood. In this study, more than a thousand complete genomes representing Alphapapillomavirus types, lineages, and SNP variants were examined phylogenetically and interrogated for the number and position of non-coding DNA sequence motifs using Principal Components Analyses, Ancestral State Reconstructions, and Phylogenetic Independent Contrasts. For anciently diverged Alphapapillomavirus types, composition of the four nucleotides (A, C, G, T), codon usage, trimer usage, and 13 established non-coding DNA sequence motifs revealed phylogenetic clusters consistent with genetic drift. Ancestral state reconstruction and Phylogenetic Independent Contrasts revealed ancient genome alterations, particularly for the CpG and APOBEC3 motifs. Each evolutionary analytical method we performed supports the unanticipated conclusion that genetic drift and different evolutionary drivers have structured Alphapapillomavirus genomes in distinct ways during successive epochs, even extending to differences in more recently formed variant lineages.
Collapse
Affiliation(s)
- Robert D. Burk
- Departments of Pediatrics, Microbiology & Immunology, Epidemiology & Population Health, Obstetrics, Gynecology and Woman’s Health, and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Robert DeSalle
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
4
|
Transcription Factor Homeobox D9 Drives the Malignant Phenotype of HPV18-Positive Cervical Cancer Cells via Binding to the Viral Early Promoter. Cancers (Basel) 2021; 13:cancers13184613. [PMID: 34572841 PMCID: PMC8470817 DOI: 10.3390/cancers13184613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Transcription factor homeobox D9 (HOXD9) was previously reported to bind to the P97 promoter of HPV16 to induce viral E6/E7 oncogenes. In this article, we investigated whether HOXD9 regulated the P105 promoter of HPV18 and examined the role of HOXD9 in intracellular signaling of cervical cancer (CC). HOXD9 was directly bound to the P105 promoter and regulated the expression of E6/E7 genes of HPV18. The HOXD9 knockdown suppressed the E6/E7 gene expression in HPV18-positive cervical cancer cells. It decreased the expression of E6, activated the p53 pathway, and induced apoptosis. In addition, downregulation of the E7 gene expression activated the Rb pathway, causing G1 arrest in the cell cycle and markedly suppressing cell proliferation. Our results indicate that HOXD9 has pivotal roles in the proliferation and immortalization of HPV18-positive cervical cancer cells through activating the P105 promoter. Abstract Persistent infections with two types of human papillomaviruses (HPV), HPV16 and HPV18, are the most common cause of cervical cancer (CC). Two viral early genes, E6 and E7, are associated with tumor development, and expressions of E6 and E7 are primarily regulated by a single viral promoter: P97 in HPV16 and P105 in HPV18. We previously demonstrated that the homeobox D9 (HOXD9) transcription factor is responsible for the malignancy of HPV16-positive CC cell lines via binding to the P97 promoter. Here, we investigated whether HOXD9 is also involved in the regulation of the P105 promoter using two HPV18-positive CC cell lines, SKG-I and HeLa. Following the HOXD9 knockdown, cell viability was significantly reduced, and E6 expression was suppressed and was accompanied by increased protein levels of P53, while mRNA levels of TP53 did not change. E7 expression was also downregulated and, while mRNA levels of RB1 and E2F were unchanged, mRNA levels of E2F-target genes, MCM2 and PCNA, were decreased, which indicates that the HOXD9 knockdown downregulates E7 expression, thus leading to an inactivation of E2F and the cell-cycle arrest. Chromatin immunoprecipitation and promoter reporter assays confirmed that HOXD9 is directly associated with the P105 promoter. Collectively, our results reveal that HOXD9 drives the HPV18 early promoter activity to promote proliferation and immortalization of the CC cells.
Collapse
|
5
|
Ishii Y, Taguchi A, Kukimoto I. The homeobox transcription factor HOXC13 upregulates human papillomavirus E1 gene expression and contributes to viral genome maintenance. FEBS Lett 2019; 594:751-762. [PMID: 31642514 DOI: 10.1002/1873-3468.13646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 11/11/2022]
Abstract
Human papillomavirus (HPV) infects the basal cells of epithelia and maintains its genome stably as episomes. However, the mechanisms of viral genome maintenance are not fully understood. Here, using normal human immortalized keratinocytes (NIKS), we identified the homeobox transcription factor HOXC13 as a critical host factor for retaining the copy number of HPV genomes in the cell. HOXC13 knockdown in NIKS significantly decreased mRNA levels of the E1 gene, which encodes a DNA helicase required for HPV genome replication, accompanied by a reduction of the viral genome copy number. Chromatin immunoprecipitation assays revealed HOXC13 binding to the long control region that regulates E1 expression. These results indicate that HOXC13 plays invaluable roles in maintaining HPV persistent infection through E1 gene upregulation.
Collapse
Affiliation(s)
- Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ayumi Taguchi
- Gynecology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Hirao N, Iwata T, Tanaka K, Nishio H, Nakamura M, Morisada T, Morii K, Maruyama N, Katoh Y, Yaguchi T, Ohta S, Kukimoto I, Aoki D, Kawakami Y. Transcription factor homeobox D9 is involved in the malignant phenotype of cervical cancer through direct binding to the human papillomavirus oncogene promoter. Gynecol Oncol 2019; 155:340-348. [PMID: 31477279 DOI: 10.1016/j.ygyno.2019.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the involvement of homeobox D9 (HOXD9) in the survival, proliferation, and metastasis of cervical cancer cells through regulating the expression of human papillomavirus (HPV) 16 E6/E7 genes using the P97 promoter. METHODS One hundred cases of cervical cancer (CC), CC cell lines SKG-I, SKG-II, SKG-IIIa, SKG-IIIb, HeLa, and SiHa, and a human tumor xenograft mouse model were used to examine the roles of HOXD9 in CC. Knockdown experiments employed RNA interference of HOXD9. qPCR, functional assays, western blotting, DNA microarray, and luciferase and ChIP assays were applied for assessments. RESULTS All CC cell lines expressed HOXD9 mRNA and protein. In uterine CC, HOXD9 gene expression was significantly higher than in normal cervical tissues. A positive correlation of lymphovascular space invasion and lymph node metastasis with high levels of HOXD9 expression was found in patient samples. HOXD9-knockdown cells in the mouse xenograft model only formed small or no tumors. Knockdown of HOXD9 markedly reduced CC cell proliferation, migration and invasion, induced apoptosis, increased P53 protein expression, and suppressed HPV E6/E7 expression by directly binding to the P97 promoter of HPV16 E6/E7 genes. A positive correlation between HOXD9 and HPV16 E6 expression was found in CC patients. CONCLUSIONS HOXD9 promotes HPV16 E6 and E7 expression by direct binding to the P97 promoter, which enhances proliferation, migration, and metastasis of CCr cells. Our results suggest that HOXD9 could be a prognostic biomarker and potential therapeutic target in CC.
Collapse
Affiliation(s)
- Nobumaru Hirao
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan; Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan; Department of Obstetrics and Gynecology, Federation of National Public Service Personnel Mutual Aid Associations, Tachikawa Hospital, Japan
| | - Takashi Iwata
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan; Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan.
| | - Kohsei Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan
| | - Hiroshi Nishio
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan
| | - Masaru Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan
| | - Kenji Morii
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| | - Natsuki Maruyama
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| | - Yuki Katoh
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| | - Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Japan
| |
Collapse
|
7
|
Tan X, Liu N, Yang M, Duan M, Zeng J. Design of peptide inhibitors of human papillomavirus 16 (HPV16) transcriptional regulator E1–E2 formation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here, we have proposed a new scheme of the computational combinatorial design approach to identify potential inhibitor peptides. It consists of four steps: (i) using “multiple copy simultaneous search” (MCSS) procedure to locate specific functional groups on the protein surface; (ii) the peptide main chain is constructed based on the location of favored N-methylacetamide (NMA) groups; (iii) molecular dynamics simulations of the complex formed between the constructed peptides with the target protein in explicit water molecules are carried to select the peptides with strong binding to the protein and (iv) the sequences of the stable peptides selected from (iii) are aligned and the frequencies of the amino acids at each position of peptide are calculated. Sequence patterns of potential inhibitors are determined based on the frequency of amino acids at each position. It was applied to design peptide inhibitors that bind to the E2 protein of HPV16 so as to disrupt its transcriptional regulator of E1–E2 complex formation. The sequence pattern of these potential inhibitors is in agreement with known inhibitors obtained from phage display, and the MCSS calculations indicate that a hydrophobic pocket on HPV16 E2 plays a significant role in E1–E2 formation and inhibitor-E2 binding.
Collapse
Affiliation(s)
- Xin Tan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, the Third Part Renmin South Road, Chengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Woman and Children, Sichuan University, Ministry of Education, No. 20, the Third Part Renmin South Road, Chengdu 610041, P. R. China
| | - Na Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Zeng
- School of Medical Sciences, Royal Melbourne Institute of Technology, Plenty Road, Bundoora, VIC 3083, Australia
- MedChemSoft Solutions, Level 3, 2 Brandon Park Drive, Wheelers Hill, VIC 3150, Australia
| |
Collapse
|
8
|
Mathai J, Mittal SPK, Alam A, Ranade P, Mogare D, Patel S, Saxena S, Ghorai S, Kulkarni AP, Chattopadhyay S. SMAR1 binds to T(C/G) repeat and inhibits tumor progression by regulating miR-371-373 cluster. Sci Rep 2016; 6:33779. [PMID: 27671416 PMCID: PMC5037395 DOI: 10.1038/srep33779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIP-sequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-373.
Collapse
Affiliation(s)
- Jinumary Mathai
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Smriti P K Mittal
- Department of Zoology, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Aftab Alam
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Payal Ranade
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Devraj Mogare
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Sonal Patel
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Smita Saxena
- Bioinformatics Centre, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Suvankar Ghorai
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Abhijeet P Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411007, India
| |
Collapse
|
9
|
Ramdzan ZM, Nepveu A. CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat Rev Cancer 2014; 14:673-82. [PMID: 25190083 DOI: 10.1038/nrc3805] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CUT-like homeobox 1 (CUX1) is a homeobox gene that is implicated in both tumour suppression and progression. The accumulated evidence supports a model of haploinsufficiency whereby reduced CUX1 expression promotes tumour development. Paradoxically, increased CUX1 expression is associated with tumour progression, and ectopic CUX1 expression in transgenic mice increases tumour burden in several tissues. One CUX1 isoform functions as an ancillary factor in base excision repair and the other CUX1 isoforms act as transcriptional activators or repressors. Several transcriptional targets and cellular functions of CUX1 affect tumorigenesis; however, we have yet to develop a mechanistic framework to reconcile the opposite roles of CUX1 in cancer protection and progression.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| | - Alain Nepveu
- 1] Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [2] Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [3] Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [4] Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
10
|
Chakraborty S, Das K, Saha S, Mazumdar M, Manna A, Chakraborty S, Mukherjee S, Khan P, Adhikary A, Mohanty S, Chattopadhyay S, Biswas SC, Sa G, Das T. Nuclear matrix protein SMAR1 represses c-Fos-mediated HPV18 E6 transcription through alteration of chromatin histone deacetylation. J Biol Chem 2014; 289:29074-85. [PMID: 25157104 DOI: 10.1074/jbc.m114.564872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Matrix attachment region (MAR)-binding proteins have been implicated in the transcriptional regulation of host as well as viral genes, but their precise role in HPV-infected cervical cancer remains unclear. Here we show that HPV18 promoter contains consensus MAR element in the LCR and E6 sequences where SMAR1 binds and reinforces HPV18 E6 transcriptional silencing. In fact, curcumin-induced up-regulation of SMAR1 ensures recruitment of SMAR1-HDAC1 repressor complex at the LCR and E6 MAR sequences, thereby decreasing histone acetylation at H3K9 and H3K18, leading to reorientation of the chromatin. As a consequence, c-Fos binding at the putative AP-1 sites on E6 promoter is inhibited. E6 depletion interrupts degradation of E6-mediated p53 and lysine acetyl transferase, Tip60. Tip60, in turn, acetylates p53, thereby restoring p53-mediated transactivation of proapoptotic genes to ensure apoptosis. This hitherto unexplained function of SMAR1 signifies the potential of this unique scaffold matrix-associated region-binding protein as a critical regulator of E6-mediated anti-apoptotic network in HPV18-infected cervical adenocarcinoma. These results also justify the candidature of curcumin for the treatment of HPV18-infected cervical carcinoma.
Collapse
Affiliation(s)
- Samik Chakraborty
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Kaushik Das
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Shilpi Saha
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Minakshi Mazumdar
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Argha Manna
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Sreeparna Chakraborty
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Shravanti Mukherjee
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Poulami Khan
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Arghya Adhikary
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Suchismita Mohanty
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Samit Chattopadhyay
- the National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, Maharashtra, India, and
| | - Subhash C Biswas
- the Department of Gynecology & Obstetrics, Institute of Post-Graduate Medical Education and Research (IPGMER), Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata 700020, West Bengal, India
| | - Gaurisankar Sa
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Tanya Das
- From the Division of Molecular Medicine, Bose Institute, P1/12, Calcutta Improvement Trust Scheme VIIM, Kolkata 700054, West Bengal, India,
| |
Collapse
|
11
|
Ramdzan ZM, Vadnais C, Pal R, Vandal G, Cadieux C, Leduy L, Davoudi S, Hulea L, Yao L, Karnezis AN, Paquet M, Dankort D, Nepveu A. RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PLoS Biol 2014; 12:e1001807. [PMID: 24618719 PMCID: PMC3949673 DOI: 10.1371/journal.pbio.1001807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/29/2014] [Indexed: 01/19/2023] Open
Abstract
The base excision repair (BER) that repairs oxidative damage is upregulated as an adaptive response in maintaining tumorigenesis of RAS-transformed cancer cells. The Cut homeobox 1 (CUX1) gene is a target of loss-of-heterozygosity in many cancers, yet elevated CUX1 expression is frequently observed and is associated with shorter disease-free survival. The dual role of CUX1 in cancer is illustrated by the fact that most cell lines with CUX1 LOH display amplification of the remaining allele, suggesting that decreased CUX1 expression facilitates tumor development while increased CUX1 expression is needed in tumorigenic cells. Indeed, CUX1 was found in a genome-wide RNAi screen to identify synthetic lethal interactions with oncogenic RAS. Here we show that CUX1 functions in base excision repair as an ancillary factor for the 8-oxoG-DNA glycosylase, OGG1. Single cell gel electrophoresis (comet assay) reveals that Cux1+/− MEFs are haploinsufficient for the repair of oxidative DNA damage, whereas elevated CUX1 levels accelerate DNA repair. In vitro base excision repair assays with purified components demonstrate that CUX1 directly stimulates OGG1's enzymatic activity. Elevated reactive oxygen species (ROS) levels in cells with sustained RAS pathway activation can cause cellular senescence. We show that elevated expression of either CUX1 or OGG1 prevents RAS-induced senescence in primary cells, and that CUX1 knockdown is synthetic lethal with oncogenic RAS in human cancer cells. Elevated CUX1 expression in a transgenic mouse model enables the emergence of mammary tumors with spontaneous activating Kras mutations. We confirmed cooperation between KrasG12V and CUX1 in a lung tumor model. Cancer cells can overcome the antiproliferative effects of excessive DNA damage by inactivating a DNA damage response pathway such as ATM or p53 signaling. Our findings reveal an alternate mechanism to allow sustained proliferation in RAS-transformed cells through increased DNA base excision repair capability. The heightened dependency of RAS-transformed cells on base excision repair may provide a therapeutic window that could be exploited with drugs that specifically target this pathway. In the context of tumor development and progression, mutations are believed to accumulate owing to compromised DNA repair. Such mutations promote oncogenic growth. Yet cancer cells also need to sustain a certain level of DNA repair in order to replicate their DNA and successfully proliferate. Here we show that cancer cells that harbor an activated RAS oncogene exhibit heightened DNA repair capability, specifically in the base excision repair (BER) pathway that repairs oxidative DNA damage. RAS oncogenes alone do not transform primary cells but rather cause their senescence—that is, they stop dividing. As such, cellular senescence in this context is proposed to function as a tumor-suppressive mechanism. We show that CUX1, a protein that accelerates oxidative DNA damage repair, prevents cells from senescing and enables proliferation in the presence of a RAS oncogene. Consistent with this, RAS-induced senescence is also prevented by ectopic expression of OGG1, the DNA glycosylase that removes 8-oxoguanine, the most abundant oxidized base. Strikingly, CUX1 expression in transgenic mice enables the emergence of tumors with spontaneous activating Kras mutations. Conversely, knockdown of CUX1 is synthetic lethal for RAS-transformed cells, thereby revealing a potential Achilles' heel of these cancer cells. Overall, the work provides insight into understanding the role of DNA repair in cancer progression, showing that while DNA damage-induced mutations promote tumorigenesis, sustained RAS-dependent tumorigenesis requires suppression of DNA damage. The heightened dependency of RAS-transformed cells on base excision repair may provide a therapeutic window that could be exploited with drugs that specifically target this pathway.
Collapse
Affiliation(s)
| | - Charles Vadnais
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Ranjana Pal
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Guillaume Vandal
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Chantal Cadieux
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lam Leduy
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Sayeh Davoudi
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Laura Hulea
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lu Yao
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anthony N. Karnezis
- BC Cancer Agency, Centre for Translational and Applied Genomics, Vancouver, British Columbia, Canada
| | - Marilène Paquet
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - David Dankort
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail: (D.D.); (A.N.)
| | - Alain Nepveu
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Oncology McGill University, Montreal, Quebec, Canada
- * E-mail: (D.D.); (A.N.)
| |
Collapse
|
12
|
Kalantari M, Osann K, Calleja-Macias IE, Kim S, Yan B, Jordan S, Chase DM, Tewari KS, Bernard HU. Methylation of human papillomavirus 16, 18, 31, and 45 L2 and L1 genes and the cellular DAPK gene: Considerations for use as biomarkers of the progression of cervical neoplasia. Virology 2014; 448:314-21. [PMID: 24314662 PMCID: PMC4051423 DOI: 10.1016/j.virol.2013.10.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
During progression of cervical cancer, human papillomavirus genomes and cellular tumor suppressor genes can become methylated. Toward a better understanding of these biomarkers, we studied 104 samples with HPV16, 18, 31, and 45 representing five pathological categories from asymptomatic infection to cancer. We grouped all samples by HPV type and pathology and measured the overall methylation of informative amplicons of HPV late genes and the cellular DAPK gene. Methylation of all four HPV types as well as of the DAPK gene is lowest in asymptomatic infection and increases successively in all four pathological categories during progression to cancer. 27 out of 28 cancer samples showed methylation both in the L2/L1 genes as well as in DAPK, but a much lower fraction in all other pathological categories. We discuss the problem to develop diagnostic tests based on complex methylation patterns that make it difficult to classify amplicons as "methylated" or "unmethylated".
Collapse
Affiliation(s)
- Mina Kalantari
- Department of Dermatology, University of California Irvine, Irvine, CA 92697, United States
| | - Kathryn Osann
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States
| | - Itzel E. Calleja-Macias
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, United States
| | - Seong Kim
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, United States
| | - Bing Yan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, United States
| | - Sara Jordan
- Division of Gynecological Oncology, University of California Irvine, Irvine, CA 92697, United States
| | - Dana M. Chase
- Division of Gynecological Oncology, University of California Irvine, Irvine, CA 92697, United States
| | - Krishnansu S. Tewari
- Division of Gynecological Oncology, University of California Irvine, Irvine, CA 92697, United States
| | - Hans-Ulrich Bernard
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, United States
- Program in Public Health, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
13
|
Regulatory elements in the viral genome. Virology 2013; 445:197-204. [DOI: 10.1016/j.virol.2013.04.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022]
|
14
|
Kingsley K. Potential effects of dietary folate supplementation on oral carcinogenesis, development and progression. J Diet Suppl 2013; 7:51-9. [PMID: 22435573 DOI: 10.3109/19390210903535019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Folates are associated with a variety of human health benefits, while folate deficiency has been identified as a potential risk factor for many health problems and cancers, due to its role in dysregulation of DNA synthesis, repair and methylation. The US Food and Drug Administration adopted requirements for folate fortification in some food products, which has resulted in an increase in mean dietary folate intake and a concomitant reduction in the incidence of adverse health effects associated with folate deficiency. This includes a significant reduction in the incidence of folate deficiency-associated birth defects, such as spina bifida.
Collapse
Affiliation(s)
- Karl Kingsley
- University of Nevada, Las Vegas, School of Dental Medicine, 1001 Shadow Lane, B315, Las Vegas, NV 89106, USA.
| |
Collapse
|
15
|
Moody M, Le O, Rickert M, Manuele J, Chang S, Robinson G, Hajibandeh J, Silvaroli J, Keiserman MA, Bergman CJ, Kingsley K. Folic acid supplementation increases survival and modulates high risk HPV-induced phenotypes in oral squamous cell carcinoma cells and correlates with p53 mRNA transcriptional down-regulation. Cancer Cell Int 2012; 12:10. [PMID: 22443202 PMCID: PMC3340312 DOI: 10.1186/1475-2867-12-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the primary risk factors for developing oral cancers are well understood, less is known about the relationship among the secondary factors that may modulate the progression of oral cancers, such as high-risk human papillomavirus (HPV) infection and folic acid (FA) supplementation. This study examined high-risk HPV and FA supplementation effects, both singly and in combination, to modulate the proliferative phenotypes of the oral cancer cell lines CAL27, SCC25 and SCC15. RESULTS Using a comprehensive series of integrated in vitro assays, distinct effects of HPV infection and FA supplementation were observed. Both high-risk HPV strains 16 and 18 induced robust growth-stimulating effects in CAL27 and normal HGF-1 cells, although strain-specific responses were observed in SCC25 and SCC15 cells. Differential effects were also observed with FA administration, which significantly altered the growth rate of the oral cancer cell lines CAL27, SCC15, and SCC25, but not HGF-1 cells. Unlike HPV, FA administration induced broad, general increases in cell viability among all cell lines that were associated with p53 mRNA transcriptional down-regulation. None of these cell lines were found to harbor the common C677T mutation in methylenetetrahydrofolate reductase (MTHFR), which can reduce FA availability and may increase oral cancer risk. CONCLUSION Increased FA utilization and DNA hypermethylation are common features of oral cancers, and in these cell lines, specifically. The results of this study provide further evidence that FA antimetabolites, such as Fluorouracil (f5U or 5-FU) and Raltitrexed, may be alternative therapies for tumors resistant to other therapies. Moreover, since the incidence of oral HPV infection has been increasing, and can influence oral cancer growth, the relationship between FA bioavailability and concomitant HPV infection must be elucidated. This study is among the first pre-clinical studies to evaluate FA- and HPV-induced effects in oral cancers, both separately and in combination, which provides additional rationale for clinical screening of HPV infection prior to treatment.
Collapse
Affiliation(s)
- Michael Moody
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee K, Lee AY, Kwon YK, Kwon H. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells. Biochem Biophys Res Commun 2011; 412:328-33. [DOI: 10.1016/j.bbrc.2011.07.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
17
|
Kingsley K, Truong K, Low E, Hill CK, Chokshi SB, Phipps D, West MA, Keiserman MA, Bergman CJ. Soy protein extract (SPE) exhibits differential in vitro cell proliferation effects in oral cancer and normal cell lines. J Diet Suppl 2011; 8:169-88. [PMID: 22432688 DOI: 10.3109/19390211.2011.571656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prior research has demonstrated that specific isoflavones derived from soy may exhibit antitumor effects against many cancers, including oral cancer. Most of this prior research involved isolation and testing of individual soy components, such as genistein, daidzein, and glycitein, which exhibit cytotoxicity against cancerous cells but may also have residual cytotoxic effects on normal cells. Few studies have evaluated whole soy extract, containing a combination of these isoflavones, and other bioreactive compounds, which may function synergistically and more effectively against oral cancers. This study compared the antiproliferative effects of whole soy protein extract (SPE) on CAL 27 and SCC25 oral cancer cell lines in vitro. Administration of SPE significantly inhibited oral cancer growth and exerted these effects at lower concentrations compared with another class of flavonoids (proanthocyanidins) that were previously tested on these cell lines. This SPE-induced growth inhibition correlated with down-regulated mRNA expression in the oral cancer cell-cycle promoter ornithine decarboxylase (ODC), as well as upregulation of caspase-2 and caspase-8, initiators and effectors of apoptosis. These results suggest that SPE may represent a potential chemopreventive or chemotherapeutic option for oral cancer. Moreover, SPE may be more effective than other flavonoids currently used and may be effective at lower concentrations that approximate physiologic serum levels (0-2 μmol/l). This study may help to explain why diets rich in fruits, vegetables, and soy protein are associated with protection against development and progression of oral cancers, although further study is needed to develop specific public health recommendations for oral cancer treatment and prevention.
Collapse
Affiliation(s)
- Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, Nevada 89106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kalantari M, Chase DM, Tewari KS, Bernard HU. Recombination of human papillomavirus-16 and host DNA in exfoliated cervical cells: a pilot study of L1 gene methylation and chromosomal integration as biomarkers of carcinogenic progression. J Med Virol 2010; 82:311-20. [PMID: 20029805 DOI: 10.1002/jmv.21676] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human papillomavirus-16 DNA replicates in productive infections in circular form, but is found in most carcinomas integrated into the host cell DNA. Because this transition is essential for carcinogenesis, detailed research is desirable and may help to triage patients with abnormal Pap smears. Previous studies addressed the chromosomal integration of HPV-16 DNA in biopsies of tumors by an indirect biomarker, methylation of the viral L1 gene and by reverse ligation polymerase chain reaction (rliPCR). The pilot study reported here asked whether these techniques can be targeted successfully at DNA prepared from exfoliated cervical cells. Abnormal Pap smears of 21 patients that were positive for HPV-16 were analyzed for (i and ii) methylation of the L1 gene after bisulfite modification and PCR amplification by direct sequencing and indirectly in cloned DNA and (iii) recombination with chromosomal DNA by rliPCR. Four of these 21 patients contained highly methylated L1 DNA, which was integrated in three of the samples with sufficient DNA for rliPCR analysis. Seven patients contained sporadically methylated L1 DNA, which was integrated in two and episomal in three samples with sufficient DNA. Ten patients contained only unmethylated DNA, which was episomal in six but possibly integrated in two samples. It is concluded that HPV-16 is found integrated chromosomally in a fraction of precancerous infections, and with higher frequency in methylated than in low or unmethylated samples. Since L1 gene methylation indicates integration, it has the potential to be used as a clinical marker of cancer progression.
Collapse
Affiliation(s)
- Mina Kalantari
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California, USA
| | | | | | | |
Collapse
|
19
|
Hansen CN, Nielsen L, Norrild B. Activities of E7 promoters in the human papillomavirus type 16 genome during cell differentiation. Virus Res 2010; 150:34-42. [PMID: 20184926 DOI: 10.1016/j.virusres.2010.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 02/14/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
Worldwide, one of the most common cancer forms diagnosed in women is cervical cancer induced by infections with high-risk human papillomaviruses (HPVs) with HPV type 16 (HPV-16) being the most frequently identified. The oncogenicity is caused mainly by expression of the oncogenes E6 and E7 leading to deregulation of the cell cycle control. HPV-16 preferably infects the proliferating cells that will differentiate when they move upwards in the epithelium. The viral gene-expression is tightly coupled to the cellular differentiation program with early gene-expression being initiated in non- or low-differentiated cells and late gene-expression in more differentiated cells. We induced epithelial cells to differentiate by growth in medium with a high calcium concentration and measured the activity of different promoters thought to initiate E6 and/or E7 transcripts. The overall activity of the main promoter, P97, situated in the long control region as well as the two promoters, P441 and P542, in the E6 ORF upstream of the E7 ORF, were decreased during differentiation. However, P441 and P542 were not down-regulated as much as P97. Therefore, we suggest that P441 and P542 regulate gene-expression in differentiated cells.
Collapse
Affiliation(s)
- Christina Neigaard Hansen
- The DNA Tumor Virus Laboratory, Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | | | | |
Collapse
|
20
|
Hong D, Lu W, Ye F, Hu Y, Xie X. Gene silencing of HPV16 E6/E7 induced by promoter-targeting siRNA in SiHa cells. Br J Cancer 2009; 101:1798-804. [PMID: 19826423 PMCID: PMC2778536 DOI: 10.1038/sj.bjc.6605344] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Recently, transcriptional gene silencing induced by small interfering RNA (siRNA) was found in mammalian and human cells. However, previous studies focused on endogenous genes. Methods: In this study, we designed siRNA targeting the promoter of human papillomavirus 16 E6/E7 and transfected it into the cervical cancer cell line, SiHa. E6 and E7 mRNA and protein expression were detected in cells treated by promoter-targeting siRNA. Futhermore, cellular growth, proliferation, apoptosis and senescence were detected. Thereafter, we investigated promoter DNA methylation and histone methylation status in cells treated with promoter-targeting siRNA. Results: We found that E6/E7 mRNA and protein were simultaneously reduced, cell growth and proliferation were inhibited and cell death, especially senescence, was remarkably increased. Meanwhile, we also found a significantly increasing histone H3-Lys9 methylation on the promoter when E6/E7 gene expression was inhibited. Interpretation: Our findings suggest that promoter-targeting siRNA effectively and simultaneously knocks down both extraneous HPV 16 E6 and E7 at the transcriptional level, and consequently inhibits proliferation and induces death in HPV 16-infected cells. This transcriptional repression is probably induced by histone modification rather than by alteration of DNA methylation.
Collapse
Affiliation(s)
- D Hong
- Women's Reproductive Health Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | | | | | | | | |
Collapse
|
21
|
Ding DC, Chiang MH, Lai HC, Hsiung CA, Hsieh CY, Chu TY. Methylation of the long control region of HPV16 is related to the severity of cervical neoplasia. Eur J Obstet Gynecol Reprod Biol 2009; 147:215-20. [PMID: 19819061 DOI: 10.1016/j.ejogrb.2009.08.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/29/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Oncogenic human papillomavirus (HPV) is the cause of cervical cancer. Hypermethylation of the CpG islands located at the long control region (LCR) of the HPV genome may regulate the expression of the major oncogenes E6 and E7, and may relate to cancer progression. The goal of the present study was to investigate the methylation patterns of CpG dinucleotides contained within the LCR of the HPV16 genome in a collection of clinical specimens comprising the full spectrum of cervical carcinogenesis. STUDY DESIGN The status of LCR methylation was investigated in HPV16-infected cervical precancer and cancer cell lines, and in HPV16-infected low-grade squamous intraepithelial lesion of cervix (LSIL, n=17), high-grade squamous intraepithelial lesion (HSIL, n=21) and invasive squamous cell carcinoma (SCC, n=15) by bisulfite sequencing. RESULTS Among the three CpG islands of HPV16 LCR, methylation was found in three in the CaSki cell, in two upstream ones in SiHa cell, and none in the precancerous Z172 cell. Reactivation of E6 gene expression upon demethylation by 5-aza-dC and TSA treatments was noted in CaSki cells. In HPV-infected cervical specimens, progressive methylation of HPV16 LCR was noted, with rates of 5.9%, 33.3% and 53.3% in LSIL, HSIL and SCC, respectively (P<0.01). A trend toward increasing density of CpG methylation was also noted. Topologically, more methylated sites were found at the E6/E7 promoter region in SCC, compared with LSIL and HSIL. CONCLUSION The study disclosed downregulation of E6 gene transcription by LCR methylation in cervical cancer cells. Methylation of HPV 16 LCR is highly associated with severity of cervical neoplasm.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
22
|
Kalantari M, Villa LL, Calleja-Macias IE, Bernard HU. Human papillomavirus-16 and -18 in penile carcinomas: DNA methylation, chromosomal recombination and genomic variation. Int J Cancer 2008; 123:1832-40. [PMID: 18688866 PMCID: PMC2750853 DOI: 10.1002/ijc.23707] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Penile carcinomas are frequently associated with high risk human papillomavirus (HPV) types. Because little is known about the molecular biology of this association, we investigated three properties of HPV genomes in penile carcinomas from Brazilian patients: (i) HPV DNA methylation, (ii) junctions between HPV and cellular DNA and (iii) genomic variation. In cervical carcinogenesis, recombination between HPV and chromosomal DNA is frequent and likely necessary for progression, and DNA hypermethylation-specifically of the L1 gene-is a biomarker for cancerous progression. The same mechanisms apparently occur during penile carcinogenesis, because 95 HPV-16 molecules derived from 19 penile lesions had 58% of the CpGs in L1 and 22% in the 5' part of the long control region methylated, more than the percentages found in cervical carcinomas. In addition, 2 out of 3 HPV-18 infections, all present in double infections with HPV-16, showed L1 specific methylation typical of malignant cervical lesions. In 11 out of 15 HPV-16 lesions, we confirmed chromosomal integration by reverse ligation inverted PCR, while 4 samples had concatemeric integrations or episomes. Nine of 17 penile carcinomas contained HPV-16 AA variants, and 8 E variants. As AA variants are relatively rare in Brazilian cohorts of asymptomatic women, the high prevalence in penile carcinomas may indicate a higher risk of progression of AA lesions, as suspected for cervical infections. Our observations of frequent viral DNA methylation, chromosomal integration and the prevalence of high risk variants suggest that HPV-dependent carcinogenesis of the penis and cervix follows similar etiological and epidemiological parameters.
Collapse
Affiliation(s)
- Mina Kalantari
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697
| | | | - Itzel E. Calleja-Macias
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697
| | - Hans-Ulrich Bernard
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697
- Program of Public Health, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
23
|
Abstract
Cellular defence mechanisms against HIV contribute to its persistence. One of the cellular defenses against virus infection is the silencing of viral gene expression. There is evidence that at least two gene-silencing mechanisms are used against the human immuno-deficiency virus (HIV). Paradoxically, this cellular defense mechanism contributes to viral latency and persistence, and we review here the relationship of viral latency to gene-silencing mechanisms.
Collapse
Affiliation(s)
- Hoi-Ping Mok
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | |
Collapse
|
24
|
Krüppel U, Müller-Schiffmann A, Baldus SE, Smola-Hess S, Steger G. E2 and the co-activator p300 can cooperate in activation of the human papillomavirus type 16 early promoter. Virology 2008; 377:151-9. [DOI: 10.1016/j.virol.2008.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/27/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
|
25
|
p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol 2008; 28:3127-38. [PMID: 18347061 DOI: 10.1128/mcb.02089-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor p110 CUX1 was shown to stimulate cell proliferation by accelerating entry into S phase. As p110 CUX1 can function as a transcriptional repressor or activator depending on promoter context, we investigated its mechanism of transcriptional activation using the DNA polymerase alpha gene promoter as a model system. Linker-scanning analysis revealed that a low-affinity E2F binding site is required for transcriptional activation. Moreover, coexpression with a dominant-negative mutant of DP-1 suggested that endogenous E2F factors are indeed needed for p110-mediated activation. Tandem affinity purification, coimmunoprecipitation, chromatin immunoprecipitation, and reporter assays indicated that p110 CUX1 can engage in weak protein-protein interactions with E2F1 and E2F2, stimulate their recruitment to the DNA polymerase alpha gene promoter, and cooperate with these factors in transcriptional activation. On the other hand, in vitro assays suggested that the interaction between CUX1 and E2F1 either is not direct or is regulated by posttranslational modifications. Genome-wide location analysis revealed that targets common to p110 CUX1 and E2F1 included many genes involved in cell cycle, DNA replication, and DNA repair. Comparison of the degree of enrichment for various E2F factors suggested that binding of p110 CUX1 to a promoter will favor the specific recruitment of E2F1, and to a lesser extent E2F2, over E2F3 and E2F4. Reporter assays on a subset of common targets confirmed that p110 CUX1 and E2F1 cooperate in their transcriptional activation. Overall, our results show that p110 CUX1 and E2F1 cooperate in the regulation of many cell cycle genes.
Collapse
|
26
|
Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 2008; 412:84-94. [PMID: 18313863 DOI: 10.1016/j.gene.2008.01.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023]
Abstract
Cux (Cut homeobox) genes are present in all metazoans. Early reports described many phenotypes caused by cut mutations in Drosophila melanogaster. In vertebrates, CUX1 was originally characterized as the CCAAT-displacement protein (CDP). Another line of investigation revealed the presence of CUX1 within a multi-protein complex called the histone nuclear factor D (HiNF-D). Recent studies led to the identification of several CUX1 isoforms with distinct DNA binding and transcriptional properties. While the CCAAT-displacement activity was implicated in the transcriptional repression of several genes, some CUX1 isoforms were found to participate in the transcriptional activation of some genes. The expression and activity of CUX1 was shown to be regulated through the cell cycle and to be a target of TGF-beta signaling. Mechanisms of regulation include alternative transcription initiation, proteolytic processing, phosphorylation and acetylation. Cell-based assays have established a role for CUX1 in the control of cell cycle progression, cell motility and invasion. In the mouse, gene inactivation as well as over-expression in transgenic mice has revealed phenotypes in multiple organs and cell types. While some phenotypes could be explained by the presumed functions of CUX1 in the affected cells, other phenotypes invoked non-cell-autonomous effects that suggest regulatory functions with an impact on cell-cell interactions. The implication of CUX1 in cancer was suggested first from its over-expression in primary tumors and cancer cell lines and was later confirmed in mouse models.
Collapse
|
27
|
Kalantari M, Lee D, Calleja-Macias IE, Lambert PF, Bernard HU. Effects of cellular differentiation, chromosomal integration and 5-aza-2'-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. Virology 2008; 374:292-303. [PMID: 18242658 DOI: 10.1016/j.virol.2007.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/10/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral life cycle, (ii) integration of the viral genome into the host chromosome events leads to an alteration in methylation patterns on the viral genome that is dependent upon the type of integration event and possibly copy number, and (iii) integration universally results in the viral DNA becoming refractory to changes in methylation state upon cellular differentiation that are observed with extrachromosomal HPV-16 genomes.
Collapse
Affiliation(s)
- Mina Kalantari
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
28
|
Kisseljov F, Sakharova O, Kondratjeva T. Chapter 2 Cellular and Molecular Biological Aspects of Cervical Intraepithelial Neoplasia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:35-95. [DOI: 10.1016/s1937-6448(08)01202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Harada R, Vadnais C, Sansregret L, Leduy L, Bérubé G, Robert F, Nepveu A. Genome-wide location analysis and expression studies reveal a role for p110 CUX1 in the activation of DNA replication genes. Nucleic Acids Res 2007; 36:189-202. [PMID: 18003658 PMCID: PMC2248751 DOI: 10.1093/nar/gkm970] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proteolytic processing of the CUX1 transcription factor generates an isoform, p110 that accelerates entry into S phase. To identify targets of p110 CUX1 that are involved in cell cycle progression, we performed genome-wide location analysis using a promoter microarray. Since there are no antibodies that specifically recognize p110, but not the full-length protein, we expressed physiological levels of a p110 isoform with two tags and purified chromatin by tandem affinity purification (ChAP). Conventional ChIP performed on synchronized populations of cells confirmed that p110 CUX1 is recruited to the promoter of cell cycle-related targets preferentially during S phase. Multiple approaches including silencing RNA (siRNA), transient infection with retroviral vectors, constitutive expression and reporter assays demonstrated that most cell cycle targets are activated whereas a few are repressed or not affected by p110 CUX1. Functional classes that were over-represented among targets included DNA replication initiation. Consistent with this finding, constitutive expression of p110 CUX1 led to a premature and more robust induction of replication genes during cell cycle progression, and stimulated the long-term replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV).
Collapse
Affiliation(s)
- Ryoko Harada
- Molecular Oncology Group, McGill University Health Center, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 2007; 212:356-67. [PMID: 17573670 DOI: 10.1002/path.2192] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An important occurrence in cervical carcinogenesis is deregulated expression of the high-risk human papillomavirus (HR-HPV) oncogenes E6 and E7. Several risk factors for cervical neoplastic progression are likely to contribute to viral oncogene deregulation, particularly integration of HR-HPV into the host genome. Integration represents a by-product of viral infection that is detected in almost 90% of cervical carcinomas. The mechanism of integration is not fully understood, although there is a clear predilection for chromosomal common fragile sites, most likely due to their accessibility for insertion of foreign DNA. Recent work has suggested that an important intermediate stage in cervical carcinogenesis is characterized by transcriptionally silent HR-HPV integrants, which co-exist with viral episomes in infected cells. As episome-derived E2 protein inhibits integrant transcription, clearance of episomes (eg by host innate immunity) is associated with loss of integrant silencing and integrant selection. The process of integration and subsequent clonal selection of integrants can therefore be considered as two independent and biologically distinct events. Indeed, integrated HPV may be viewed as selectable because it represents a form of the virus that is resistant to host mechanisms of viral clearance, enabling infected cells to maintain viral oncogene expression and avoid cell death. Care should be taken in interpreting studies of HPV integration frequency in clinical samples, as the techniques used have assessed either the presence of integrated viral DNA or evidence of transcriptional activity from integrants, but not both.
Collapse
Affiliation(s)
- M Pett
- Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
| | | |
Collapse
|
31
|
Delgado-Enciso I, Cervantes-García D, Martínez-Dávila IA, Ortiz-López R, Alemany-Bonastre R, Silva-Platas CI, Lugo-Trampe A, Barrera-Saldaña HA, Galván-Salazar HR, Coronel-Tene CG, Sánchez-Santillán CF, Rojas-Martínez A. A potent replicative delta-24 adenoviral vector driven by the promoter of human papillomavirus 16 that is highly selective for associated neoplasms. J Gene Med 2007; 9:852-61. [PMID: 17729237 DOI: 10.1002/jgm.1071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Several human epithelial neoplasms are associated with high-risk strains of human papillomavirus (HPV) such as cervical, anorectal, and other carcinomas. For some tumor types the current therapeutic tools are only palliative. Conditionally replicative adenoviruses (CRAds) are promising antineoplastic agents, which also can trigger confined antitumor effects. METHODS We constructed a series of CRAds driven by the upstream regulatory promoter region (URR) of an Asian-American variant of HPV-16, which contained different mutations at the E1A region (dl1015 and/or Delta24) and wild-type. All vectors were tested in vitro for viral replication and cytotoxicity. Viral DNA replication and E1A expression were also assessed by quantitative PCR. Finally, we confirmed the antitumoral efficacy of this vector in injected and non-injected xenotransplanted cervical tumors in a murine model for tumor regression and survival studies. RESULTS A vector denominated Ad-URR/E1ADelta24 displayed a potent cytopathic effect associated with high selectivity for HPV+ cell lines. We found that the oncolytic effect of this CRAd was comparable to Ad-wt or Ad-Delta24, but this efficacy was significantly attenuated in HPV- cell lines, an effect that was contributed by the URR promoter. Ad-URR/E1ADelta24 was very effective to control tumor growth, in both, injected and non-injected tumors generated with two different HPV+ cell lines. CONCLUSIONS CRAd Ad-URR/E1ADelta24 is a highly selective vector for HPV+ cell lines and tumors that preserves the oncolytic efficacy of Ad-wt and Ad-Delta24. Our preclinical data suggest that this vector may be useful and safe for the treatment of tumors induced by HPV, like cervical cancers.
Collapse
Affiliation(s)
- Iván Delgado-Enciso
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The DNA in eukaryotic genome is compartmentalized into various domains by a series of loops tethered onto the base of nuclear matrix. Scaffold/ Matrix attachment regions (S/MAR) punctuate these attachment sites and govern the nuclear architecture by establishing chromatin boundaries. In this context, specific proteins that interact with and bind to MAR sequences called MAR binding proteins (MARBPs), are of paramount importance, as these sequences spool the proteins that regulate transcription, replication, repair and recombination. Recent evidences also suggest a role for these cis-acting elements in viral integration, replication and transcription, thereby affecting host immune system. Owing to the complex nature of these nucleotide sequences, less is known about the MARBPs that bind to and bring about diverse effects on chromatin architecture and gene function. Several MARBPs have been identified and characterized so far and the list is growing. The fact that most the MARBPs exist in a co-repressor/ co-activator complex and bring about gene regulation makes them quintessential for cellular processes. This participation in gene regulation means that any perturbation in the regulation and levels of MARBPs could lead to disease conditions, particularly those caused by abnormal cell proliferation, like cancer. In the present chapter, we discuss the role of MARs and MARBPs in eukaryotic gene regulation, recombination, transcription and viral integration by altering the local chromatin structure and their dysregulation in disease manifestation
Collapse
|
33
|
Turan T, Kalantari M, Cuschieri K, Cubie HA, Skomedal H, Bernard. HU. High-throughput detection of human papillomavirus-18 L1 gene methylation, a candidate biomarker for the progression of cervical neoplasia. Virology 2006; 361:185-93. [PMID: 17175003 PMCID: PMC1975683 DOI: 10.1016/j.virol.2006.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/31/2006] [Accepted: 11/10/2006] [Indexed: 11/23/2022]
Abstract
The L1 gene of human papillomavirus-18 (HPV-18) is consistently hypermethylated in cervical carcinomas, but frequently hypo- or unmethylated in exfoliated cells from asymptomatic patients. In precancerous lesions, L1 is sporadically hypermethylated, correlating with the severity of the neoplasia. In order to explore the potential of using L1 methylation as a workable biomarker for carcinogenic progression of HPV-18 infections in routinely taken samples, our aim was to develop methylation-detection techniques that were sensitive and rapid without being overly complex technically. Therein, we developed a methylation-specific PCR (MSP) through the design of primer sets that specifically amplify either methylated or unmethylated HPV-18 L1 DNA within bisulfite-modified sample DNA. Amplification of unmethylated and in vitro methylated HPV-18 DNA by MSP resulted in 2500 copies of either of the two L1 DNA species being detected, a satisfactory sensitivity considering that bisulfite treatment leads to the fragmentation of about 99% of sample DNA. The primers proved specific and did not generate false positive results at concentrations exceeding the lowest limit of detection by a factor of 400. DNA from carcinomas yielded PCR signals only with the methylation-specific primers, and not with primers specific for unmethylated L1 genes. The inverse result was obtained with DNA from precursor lesions that contained only hypomethylated DNA. High-grade precursor lesions and carcinomas that contained hyper- as well as hypomethylated L1 DNA yielded PCR signals with both primers. By developing a fluorescence based real-time PCR, we quantitatively analyzed samples with in vitro methylated and unmethylated L1 DNA, and could distinguish clinical samples with hyper- and hypomethylated DNA or mixtures of both DNAs. The methylation-specific and real-time PCR techniques permitted efficient HPV-18 L1 methylation analyses and open the door for larger-scale clinical studies where the utility of methylation status to predict the progression of HPV-18 infection and HPV-18 associated lesions is assessed.
Collapse
Affiliation(s)
- Tolga Turan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697
| | - Mina Kalantari
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697
| | | | | | | | - Hans-Ulrich Bernard.
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697
- corresponding author: Phone: 1-949-824-5162, Fax: 1-949-824-8551,
| |
Collapse
|
34
|
Goulet B, Truscott M, Nepveu A. A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L. Biol Chem 2006; 387:1285-93. [PMID: 16972798 DOI: 10.1515/bc.2006.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe Cut-like genes code for multiple isoforms of the CDP/Cux transcription factor. The full-length protein contains four DNA-binding domains: Cut repeats 1, 2 and 3 (CR1, CR2 and CR3) and the Cut homeodomain (HD). The p75 isoform is expressed from an mRNA that is initiated within intron 20 and contains only CR3 and HD. The p110 isoform is generated by proteolytic processing by cathepsin L and contains CR2, CR3 and HD. In the present study, we show that an additional isoform of 90 kDa is expressed in many cell lines of epithelial origin. Mapping experiments with deletion mutants indicated that the N-terminus of p90 is located upstream of CR2, between amino acids 918 and 938. Indeed, p90 and p110 displayed similar DNA-binding and transcriptional activities. The p90 isoform, like p110, was found to be generated by proteolytic processing. The steady-state level of both p90 and p110 correlated with the level of cathepsin L activity. Importantly, co-expression with a cathepsin L mutant that is initiated at downstream AUG sites also stimulated the generation of p90 and p110. These results strongly suggest that p90, like p110, is generated by cathepsin L isoforms that are devoid of a signal peptide.
Collapse
Affiliation(s)
- Brigitte Goulet
- Molecular Oncology Group, McGill University Health Center, McGill University, Montreal H3A 1A1, Canada
| | | | | |
Collapse
|
35
|
Sichero L, Villa LL. Epidemiological and functional implications of molecular variants of human papillomavirus. Braz J Med Biol Res 2006; 39:707-17. [PMID: 16751975 DOI: 10.1590/s0100-879x2006000600002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human papillomavirus genomes are classified into molecular variants when they present more than 98% of similarity to the prototype sequence within the L1 gene. Comparative nucleotide sequence analyses of these viruses have elucidated some features of their phylogenetic relationship. In addition, human papillomavirus intratype variability has also been used as an important tool in epidemiological studies of viral transmission, persistence and progression to clinically relevant cervical lesions. Until the present, little has been published concerning the functional significance of molecular variants. It has been shown that nucleotide variability within the long control region leads to differences in the binding affinity of some cellular transcriptional factors and to the enhancement of the expression of E6 and E7 oncogenes. Furthermore, in vivo and in vitro studies revealed differences in E6 and E7 biochemical and biological properties among molecular variants. Nevertheless, further correlation with additional functional information is needed to evaluate the significance of genome intratypic variability. These results are also important for the development of vaccines and to determine the extent to which immunization with L1 virus-like particles of one variant could induce antibodies that cross-neutralize other variants.
Collapse
Affiliation(s)
- L Sichero
- Instituto Ludwig de Pesquisa sobre o Câncer, São Paulo, SP, Brasil.
| | | |
Collapse
|
36
|
Sansregret L, Goulet B, Harada R, Wilson B, Leduy L, Bertoglio J, Nepveu A. The p110 isoform of the CDP/Cux transcription factor accelerates entry into S phase. Mol Cell Biol 2006; 26:2441-55. [PMID: 16508018 PMCID: PMC1430290 DOI: 10.1128/mcb.26.6.2441-2455.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/31/2005] [Accepted: 12/29/2005] [Indexed: 01/19/2023] Open
Abstract
The CDP/Cux transcription factor was previously found to acquire distinct DNA binding and transcriptional properties following a proteolytic processing event that takes place at the G1/S transition of the cell cycle. In the present study, we have investigated the role of the CDP/Cux processed isoform, p110, in cell cycle progression. Populations of cells stably expressing p110 CDP/Cux displayed a faster division rate and reached higher saturation density than control cells carrying the empty vector. p110 CDP/Cux cells reached the next S phase faster than control cells under various experimental conditions: following cell synchronization in G0 by growth factor deprivation, synchronization in S phase by double thymidine block treatment, or enrichment in G2 by centrifugal elutriation. In each case, duration of the G1 phase was shortened by 2 to 4 h. Gene inactivation confirmed the role of CDP/Cux as an accelerator of cell cycle progression, since mouse embryo fibroblasts obtained from Cutl1z/z mutant mice displayed a longer G1 phase and proliferated more slowly than their wild-type counterparts. The delay to enter S phase persisted following immortalization by the 3T3 protocol and transformation with H-RasV12. Moreover, CDP/Cux inactivation hindered both the formation of foci on a monolayer and tumor growth in mice. At the molecular level, expression of both cyclin E2 and A2 was increased in the presence of p110 CDP/Cux and decreased in its absence. Overall, these results establish that p110 CDP/Cux functions as a cell cycle regulator that accelerates entry into S phase.
Collapse
Affiliation(s)
- Laurent Sansregret
- McGill University Health Center, Molecular Oncology Group, 687 Pine Avenue West, room H5.21, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Vinther J, Rosenstierne MW, Kristiansen K, Norrild B. The 3' region of human papillomavirus type 16 early mRNAs decrease expression. BMC Infect Dis 2005; 5:83. [PMID: 16225671 PMCID: PMC1266366 DOI: 10.1186/1471-2334-5-83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 10/14/2005] [Indexed: 11/27/2022] Open
Abstract
Background High risk human papillomavirus (HR-HPV) infects mucosal surfaces and HR-HPV infection is required for development of cervical cancer. Accordingly, enforced expression of the early HR-HPV proteins can induce immortalisation of human cells. In most cervical cancers and cervical cancer cell lines the HR-HPV double stranded DNA genome has been integrated into the host cell genome. Methods We have used a retroviral GUS reporter system to generate pools of stably transfected HaCaT and SiHa cells. The HPV-16 early sequences that are deleted upon integration of the HPV-16 genome was inserted into the 3' UTR of the reporter mRNA. Pools containing thousands of independent integrations were tested for the steady state levels of the reporter mRNA by Real Time PCR and reporter protein by a GUS enzymatic activity assays. In addition, we tested the cellular distribution and half lives of the reporter mRNAs. The integrity of the reporter mRNAs were tested by northern blotting. Results We show that the 3' region of the HPV-16 early mRNAs (HPV-16 nucleotide (nt.) 2582–4214) act in cis to decrease both mRNA and protein levels. This region seems to affect transcription from the exogenous minimal CMV promoter or processing of the reporter mRNA. The observed repression was most pronounced at the protein level, suggesting that this sequence may also affect translation. For the HPV types: 2, 6, 11, 13, 18, 30, 31, and 35 we have investigated the regulatory effect of the regions corresponding to the HPV-16 nt. 3358–4214. For all types, except HPV-18, the region was found to repress expression by posttranscriptional mechanisms. Conclusion We find that the 3' region of HPV-16 early mRNAs interfere with gene expression. It is therefore possible that the deletion of the 3' part of early HPV-16 mRNAs occurring during cervical oncogenesis could contribute to transformation of cells through deregulation of the viral oncogene synthesis. Moreover, we find that the corresponding region from several other HPV types also repress expression, suggesting that the repression by this region may be a general feature of the HPV life cycle.
Collapse
Affiliation(s)
- Jeppe Vinther
- Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej 3C, Bldg. 6.2, DK-2200 Copenhagen N, Denmark
- Institute of Molecular Biology, University of Copenhagen, Universitetsparken 15, Bldg. 10, DK-2100 Copenhagen Ø, Denmark
| | - Maiken W Rosenstierne
- Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej 3C, Bldg. 6.2, DK-2200 Copenhagen N, Denmark
| | - Karen Kristiansen
- Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej 3C, Bldg. 6.2, DK-2200 Copenhagen N, Denmark
- BioCentrum-DTU, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Bodil Norrild
- Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej 3C, Bldg. 6.2, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
38
|
Kalantari M, Calleja-Macias IE, Tewari D, Hagmar B, Lie K, Barrera-Saldana HA, Wiley DJ, Bernard HU. Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 2004; 78:12762-72. [PMID: 15542628 PMCID: PMC525027 DOI: 10.1128/jvi.78.23.12762-12772.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA methylation contributes to the chromatin conformation that represses transcription of human papillomavirus type16 (HPV-16), which is prevalent in the etiology of cervical carcinoma. In an effort to clarify the role of this phenomenon in the regulation and carcinogenicity of HPV-16, 115 clinical samples were studied to establish the methylation patterns of the 19 CpG dinucleotides within the long control region and part of the L1 gene by bisulfite modification, PCR amplification, DNA cloning, and sequencing. We observed major heterogeneities between clones from different samples as well as between clones from individual samples. The methylation frequency of CpGs was measured at 14.5%. In addition, 0.21 and 0.23%, respectively, of the CpA and CpT sites, indicators of de novo methylation, were methylated. Methylation frequencies exceeded 30% in the CpGs overlapping with the L1 gene and were about 10% for most other positions. A CpG site located in the linker between two nucleosomes positioned over the enhancer and promoter of HPV-16 had minimal methylation. This region forms part of the HPV replication origin and is close to binding sites of master-regulators of transcription during epithelial differentiation. Methylation of most sites was highest in carcinomas, possibly due to tandem repetition and chromosomal integration of HPV-16 DNA. Methylation was lowest in dysplasia, likely reflecting the transcriptional activity in these infections. Our data document the efficient targeting of HPV genomes by the epithelial methylation machinery, possibly as a cellular defense mechanism, and suggest involvement of methylation in HPV oncogene expression and the early-late switch.
Collapse
Affiliation(s)
- Mina Kalantari
- Department of Molecular Biology and Biochemistry, 114 Sprague Hall, University of California, Irvine, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Truscott M, Raynal L, Wang Y, Bérubé G, Leduy L, Nepveu A. The N-terminal Region of the CCAAT Displacement Protein (CDP)/Cux Transcription Factor Functions as an Autoinhibitory Domain that Modulates DNA Binding. J Biol Chem 2004; 279:49787-94. [PMID: 15377665 DOI: 10.1074/jbc.m409484200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CCAAT displacement protein/Cut homeobox (CDP/Cux) transcription factor is expressed as multiple isoforms that may contain up to four DNA-binding domains: Cut repeats 1, 2, and 3 (CR1, CR2, CR3) and the Cut homeodomain (HD). The full-length protein, which contains all four DNA-binding domains, is surprisingly less efficient than the shorter isoforms in DNA binding. Using a panel of recombinant proteins expressed in mammalian or bacterial cells, we have identified a domain at the extreme N terminus of the protein that can inhibit DNA binding. This domain was able to inhibit the activity of full-length CDP/Cux and of proteins containing various combinations of DNA-binding domains: CR1CR2, CR3HD, or CR2CR3HD. Since inhibition of DNA binding was also observed with purified proteins obtained from bacteria, we conclude that autoinhibition does not require post-translational modification or interaction with an interacting protein but instead functions through an intramolecular mechanism. Antibodies directed against the N-terminal region were able to partially relieve inhibition. In vivo, the transition between the inactive and active states for DNA binding is likely to be governed by posttranslational modifications and/or interaction with one or more protein partners. In addition, we show that the relief of autoinhibition can be accomplished via the proteolytic processing of CDP/Cux. Altogether, these results reveal a novel mode of regulation that serves to modulate the DNA binding activity of CDP/Cux.
Collapse
Affiliation(s)
- Mary Truscott
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Kaul-Ghanekar R, Jalota A, Pavithra L, Tucker P, Chattopadhyay S. SMAR1 and Cux/CDP modulate chromatin and act as negative regulators of the TCRbeta enhancer (Ebeta). Nucleic Acids Res 2004; 32:4862-75. [PMID: 15371550 PMCID: PMC519105 DOI: 10.1093/nar/gkh807] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin modulation at various cis-acting elements is critical for V(D)J recombination during T and B cell development. MARbeta, a matrix-associated region (MAR) located upstream of the T cell receptor beta (TCRbeta) enhancer (Ebeta), serves a crucial role in silencing Ebeta-mediated TCR activation. By DNaseI hypersensitivity assays, we show here that overexpression of the MAR binding proteins SMAR1 and Cux/CDP modulate the chromatin structure at MARbeta. We further demonstrate that the silencer function of MARbeta is mediated independently by SMAR1 and Cux/CDP as judged by their ability to repress Ebeta-dependent reporter gene expression. Moreover, the repressor activity of SMAR1 is strongly enhanced in the presence of Cux/CDP. These two proteins physically interact with each other and colocalize within the perinuclear region through a SMAR1 domain required for repression. The repression domain of SMAR1 is separate from the MARbeta binding domain and contains a nuclear localization signal and an arginine-serine (RS)-rich domain, characteristic of pre-mRNA splicing regulators. Our data suggest that at the double positive stage of T cell development, cis-acting MARbeta elements recruit the strong negative regulators Cux and SMAR1 to control Ebeta-mediated recombination and transcription.
Collapse
|
41
|
Rudd S, Frisch M, Grote K, Meyers BC, Mayer K, Werner T. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. PLANT PHYSIOLOGY 2004; 135:715-22. [PMID: 15208419 PMCID: PMC514109 DOI: 10.1104/pp.103.037861] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/26/2004] [Accepted: 03/28/2004] [Indexed: 05/17/2023]
Abstract
We carried out a genome-wide prediction of scaffold/matrix attachment regions (S/MARs) in Arabidopsis. Results indicate no uneven distribution on the chromosomal level but a clear underrepresentation of S/MARs inside genes. In cases where S/MARs were predicted within genes, these intragenic S/MARs were preferentially located within the 5'-half, most prominently within introns 1 and 2. Using Arabidopsis whole-genome expression data generated by the massively parallel signature sequencing methodology, we found a negative correlation between S/MAR-containing genes and transcriptional abundance. Expressed sequence tag data correlated the same way with S/MAR-containing genes. Thus, intragenic S/MARs show a negative correlation with transcription level. For various genes it has been shown experimentally that S/MARs can function as transcriptional regulators and that they have an implication in stabilizing expression levels within transgenic plants. On the basis of a genome-wide in silico S/MAR analysis, we found a significant correlation between the presence of intragenic S/MARs and transcriptional down-regulation.
Collapse
Affiliation(s)
- Stephen Rudd
- Munich Information Center for Protein Sequences/Institute for Bioinformatics, GSF-National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Mearini G, Nielsen PE, Fackelmayer FO. Localization and dynamics of small circular DNA in live mammalian nuclei. Nucleic Acids Res 2004; 32:2642-51. [PMID: 15141035 PMCID: PMC419472 DOI: 10.1093/nar/gkh587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While genomic DNA, packaged into chromatin, is known to be locally constrained but highly dynamic in the nuclei of living cells, little is known about the localization and dynamics of small circular DNA molecules that invade cells by virus infection, application of gene therapy vectors or experimental transfection. To address this point, we have created traceable model substrates by direct labeling of plasmid DNA with fluorescent peptide nucleic acids, and have investigated their fate after microinjection into living cells. Here, we report that foreign DNA rapidly undergoes interactions with intranuclear structural sites that strongly reduce its mobility and restrict the DNA to regions excluding nucleoli and nuclear bodies such as PML bodies. The labeled plasmids partially co-localize with SAF-A, a well characterized marker protein for the nuclear 'scaffold' or 'matrix', and are resistant towards extraction by detergent and, in part, elevated salt concentrations. We show that the localization and the low mobility of plasmids is independent of the plasmid sequence, and does not require the presence of either a scaffold attachment region (SAR) DNA element or a functional promoter.
Collapse
Affiliation(s)
- Giulia Mearini
- Department of Molecular Cell Biology, Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | |
Collapse
|
43
|
Glahder JA, Hansen CN, Vinther J, Madsen BS, Norrild B. A promoter within the E6 ORF of human papillomavirus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA. J Gen Virol 2004; 84:3429-3441. [PMID: 14645924 DOI: 10.1099/vir.0.19250-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) has the capacity to transform human primary keratinocytes. Maintenance of the transformed phenotype requires constitutive expression of the oncoproteins E6 and E7. The low-risk HPV types express E7 from monocistronic mRNA, but for the high-risk types, no mRNA that encodes E7 as the first open reading frame (ORF) has been identified. We recently identified a transcription initiation site within the E6 ORF of HPV-16 at nt 542. In the present study we have characterized the P542 promoter, which putatively controls monocistronic expression of E7. The monocistronic mRNA is not very abundant, but we have shown that an E7-luciferase fusion protein can be expressed in SiHa cells from a monocistronic HPV-16 transcript initiated at nt 542. The monocistronic mRNA expresses E7-luciferase more efficiently than the most abundant in vivo-like mRNA E6*IE7, initiated by P97 and spliced from nt 226 to 409. Furthermore, the translation initiation of E7 is most abundant from the monocistronic mRNA. We have also shown that the P542 promoter is downregulated by the transcription factor activator protein 4 (AP-4) and the differentiation-dependent factor hSkn-1a, both binding downstream of the transcription initiation site. In conclusion, we have found that P542 is a relatively weak promoter compared with P97 and may be downregulated in differentiated epithelial cells.
Collapse
Affiliation(s)
- Jacob A Glahder
- The DNA Tumour Virus Group, Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Christina N Hansen
- The DNA Tumour Virus Group, Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Jeppe Vinther
- The DNA Tumour Virus Group, Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Birger S Madsen
- The DNA Tumour Virus Group, Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Bodil Norrild
- The DNA Tumour Virus Group, Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
44
|
Kim K, Garner-Hamrick PA, Fisher C, Lee D, Lambert PF. Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J Virol 2004; 77:12450-9. [PMID: 14610169 PMCID: PMC262585 DOI: 10.1128/jvi.77.23.12450-12459.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The biological activities of the papillomavirus E2 protein in transcription, replication, and maintenance of the papillomavirus genome rely on the E2 protein's ability to bind that genome specifically. The E2 binding sites (E2BSs), located within the long control region (LCR) of human papillomavirus (HPV) genomes, contain potential sites for 5'methylation at cytosine (CpG) residues. The E2 protein's capacity to bind E2BS in vitro is inhibited by methylation of these cytosines (59). Herein, we describe experiments to assess the influence of methylation on E2 function in cells. E2's ability to activate transcription was inhibited by the global methylation of CpG dinucleotides in E2-responsive transcriptional templates or when only the CpG dinucleotides within the E2BSs of a transcriptional template were methylated. Thus at least one biological activity of E2 that is dependent on its ability to bind DNA in a site-specific manner is influenced by the methylation status of its cognate binding site. The activity of DNA methylases is influenced by the differentiation status of mammalian cells. The life cycle of HPVs is tied to the differentiation of its host cells within stratified squamous epithelia. To investigate whether methylation of the papillomavirus genomes is influenced by the differentiation status of host epithelial cells, we analyzed HPV16 DNA harvested from a cervical epithelial cell line that was isolated from an HPV16-infected patient. We found, using bisulfite treatment to discriminate between methylated and unmethylated cytosines, that the HPV16 LCR was selectively hypomethylated in highly differentiated cell populations. In contrast, the HPV16 LCR from poorly differentiated, basal cell-like cells contained multiple methylated cytosines and were often methylated at E2BSs, particularly E2BS(2). These experiments indicate that the methylation state of the viral genome, and particular that of E2BSs, may vary during the viral life cycle, providing a novel means for modulating E2 function. These studies also uncovered an extensive pattern of methylation at non-CpG dinucleotides indicative of de novo methylation. The potential implications of this de novo methylation pattern are discussed.
Collapse
Affiliation(s)
- Kitai Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
45
|
Rosenstierne MW, Vinther J, Hansen CN, Prydsoe M, Norrild B. Identification and characterization of a cluster of transcription start sites located in the E6 ORF of human papillomavirus type 16. J Gen Virol 2003; 84:2909-2920. [PMID: 14573795 DOI: 10.1099/vir.0.19332-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) is the prototype strain among the malignant types of HPV in the western world. The main promoter, P97, located in front of the E6 ORF, has been shown to control expression of the oncogenes E6 and E7. These oncogenes are expressed continuously in HPV-16-transformed cells. In contrast to malignant HPV types, non-malignant HPV types have separate promoters driving the expression of E6 and E7. Experiments have shown that the translation of E7 is more efficient from monocistronic than bicistronic transcripts encoding both E6 and E7. Here, identification of a cluster of transcription start sites located in the E6 ORF of HPV-16 is presented. Transcripts from this region contain the E7 ORF as the first reading frame. The cluster consists of multiple transcription start sites located around nt 441. Additional transcription start sites were identified in a cluster around nt 480. A transcription start site has been identified previously at nt 480 but has never been characterized further. The region responsible for transcription activity was mapped to nt 272-448. Mutational analysis showed that initiation of transcription is independent of a TATA-box element, which is consistent with the finding of multiple transcription start sites. Furthermore, it is shown that proteins from HeLa and SiHa nuclear cell extracts bind to the two regions at nt 291-314 and 388-411, and that these two regions influence transcription activity in a cell type-dependent manner.
Collapse
Affiliation(s)
- Maiken W Rosenstierne
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Jeppe Vinther
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Christina N Hansen
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Martin Prydsoe
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Bodil Norrild
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| |
Collapse
|
46
|
Badal V, Chuang LSH, Tan EHH, Badal S, Villa LL, Wheeler CM, Li BFL, Bernard HU. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 2003; 77:6227-34. [PMID: 12743279 PMCID: PMC154984 DOI: 10.1128/jvi.77.11.6227-6234.2003] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 03/14/2003] [Indexed: 12/14/2022] Open
Abstract
Infection with genital human papillomaviruses (HPVs) is the primary cause of cervical cancer. The infection is widespread, and little is known about the secondary factors associated with progression from subclinical infection to invasive carcinoma. Here we report that HPV genomes are efficiently targeted in vivo by CpG methylation, a well-known mechanism of transcriptional repression. Indeed, it has been shown previously that in vitro-methylated HPV type 16 (HPV-16) DNA is transcriptionally repressed after transfection into cell cultures. By using a scan with the restriction enzyme McrBC, we observed a conserved profile of CpG hyper- and hypomethylation throughout the HPV-16 genomes of the tumor-derived cell lines SiHa and CaSki. Methylation is particularly high in genomic segments overlying the late genes, while the long control region (LCR) and the oncogenes are unmethylated in the single HPV-16 copy in SiHa cells. In 81 patients from two different cohorts, the LCR and the E6 gene of HPV-16 DNA were found to be hypermethylated in 52% of asymptomatic smears, 21.7% of precursor lesions, and 6.1% of invasive carcinomas. This suggests that neoplastic transformation may be suppressed by CpG methylation, while demethylation occurs as the cause of or concomitant with neoplastic progression. These prevalences of hyper- and hypomethylation also indicate that CpG methylation plays an important role in the papillomavirus life cycle, which takes place in asymptomatic infections and precursor lesions but not in carcinomas. Bisulfite modification revealed that in most of the HPV-16 genomes of CaSki cells and of asymptomatic patients, all 11 CpG dinucleotides that overlap with the enhancer and the promoter were methylated, while in SiHa cells and cervical lesions, the same 11 or a subset of CpGs remained unmethylated. Our report introduces papillomaviruses as models to study the mechanism of CpG methylation, opens research on the importance of this mechanism during the viral life cycle, and provides a marker relevant for the etiology and diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Vinay Badal
- Laboratory for DNA Repair and DNA Methylation in Chemical Carcinogenesis, Institute of Molecular Cell Biology, Singapore 117609, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Truscott M, Raynal L, Premdas P, Goulet B, Leduy L, Bérubé G, Nepveu A. CDP/Cux stimulates transcription from the DNA polymerase alpha gene promoter. Mol Cell Biol 2003; 23:3013-28. [PMID: 12665598 PMCID: PMC152546 DOI: 10.1128/mcb.23.8.3013-3028.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CDP/Cux (CCAAT-displacement protein/cut homeobox) contains four DNA binding domains, namely, three Cut repeats (CR1, CR2, and CR3) and a Cut homeodomain. CCAAT-displacement activity involves rapid but transient interaction with DNA. More stable DNA binding activity is up-regulated at the G(1)/S transition and was previously shown to involve an N-terminally truncated isoform, CDP/Cux p110, that is generated by proteolytic processing. CDP/Cux has been previously characterized as a transcriptional repressor. However, here we show that expression of reporter plasmids containing promoter sequences from the human DNA polymerase alpha (pol alpha), CAD, and cyclin A genes is stimulated in cotransfections with N-terminally truncated CDP/Cux proteins but not with full-length CDP/Cux. Moreover, expression of the endogenous DNA pol alpha gene was stimulated following the infection of cells with a retrovirus expressing a truncated CDP/Cux protein. Chromatin immunoprecipitation (ChIP) assays revealed that CDP/Cux was associated with the DNA pol alpha gene promoter specifically in the S phase. Using linker scanning analyses, in vitro DNA binding, and ChIP assays, we established a correlation between binding of CDP/Cux to the DNA pol alpha promoter and the stimulation of gene expression. Although we cannot exclude the possibility that stimulation of gene expression by CDP/Cux involved the repression of a repressor, our data support the notion that CDP/Cux participates in transcriptional activation. Notwithstanding its mechanism of action, these results establish CDP/Cux as an important transcriptional regulator in the S phase.
Collapse
Affiliation(s)
- Mary Truscott
- Molecular Oncology Group, McGill University Health Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | | | |
Collapse
|
48
|
Lukaszuk K, Liss J, Wozniak I, Emerich J, Wójcikowski C. Human papillomavirus type 16 status in cervical carcinoma cell DNA assayed by multiplex PCR. J Clin Microbiol 2003; 41:608-12. [PMID: 12574254 PMCID: PMC149681 DOI: 10.1128/jcm.41.2.608-612.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of human papillomavirus (HPV) DNA into host genome occurs early in cancer development and is probably an important event in malignant transformation of cervical cancer. The HPV genome integration usually disrupts E2 gene open reading frames. It results in the lack of E2 gene suppressor of the synthesis of E6 and E7 products which, in turn, leads to the overexpression of E6 and E7 genes. The oncogenic HPV types (HPV16, -18, -45, and -58) can be present as episomes or may integrate into human chromosomes. Sixty-six cervical cancer patients positive for HPV16 were tested for the presence of E6, E2, E1, and L1 genes. Multiplex PCR was carried out in all cases. Using cluster analysis, the calculated ratios of E1/E6, E2/E6, L1/E6, E1/E2, and E2/(E1*E6) gene amplification products were divided into two or three statistically different groups. These were used for statistical analysis of the prevalence of specific gene types in histological types of cancer, different levels of clinical staging, and histologically confirmed nodal metastases. The statistical analysis proved a significant correlation in the ratios of E2/E6 and E1/E2 only. The E2/E6 and E1/E2 were higher in carcinoma in situ than in advanced squamous cancers. The E2/E6 ratios were lower in higher clinical stages. The multiplex PCR estimation of the E2/E6 ratio could be a simple method for selecting patients with a high risk of a poor outcome in a standard stage-dependent treatment procedure.
Collapse
|
49
|
Tan SH, Baker CC, Stünkel W, Bernard HU. A transcriptional initiator overlaps with a conserved YY1 binding site in the long control region of human papillomavirus type 16. Virology 2003; 305:486-501. [PMID: 12573593 DOI: 10.1006/viro.2002.1779] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single promoter has so far been found in the long control region (LCRs) of human papillomavirus-16 (HPV-16). Multiple promoters exist in the LCRs of several other papillomaviruses, which are spliced to become mRNAs for late and some early genes. Here we have investigated whether such promoters exist in the LCR of HPV-16. In in vitro transcription experiments, we detected a strong transcript starting 280 bp downstream from the 3' end of the L1 gene between a nuclear matrix attachment region and the epithelial-specific enhancer. Promoter activity coincides with a GCCATTTT motif, which binds the transcription factor YY1 (YY1-7436). The A of this motif is the first nucleotide of the transcripts and identifies YY1-7436 as an initiator. Genomic segments with YY1-7436 initiate expression of a luciferase reporter gene in transfection experiments. Mutational analysis of YY1-7436 suggests, however, that promoter function originates from another factor but YY1, which can contact overlapping sequences. Promoter activity of YY1-7436 is modulated by upstream A-T-rich sequences, which bind the basal transcription factor TFIID, and it is stimulated by the viral E2 protein binding to a downstream E2 binding site. In differentiating W12 cells, which contain episomal HPV-16 copies, we detected transcripts including LCR sequences downstream of YY1-7436, which were differentially spliced to early and late genes. However, we could not detect 5' ends mapping to YY1-7436, but we detected two novel HPV-16 promoters within the L1 gene. Conservation of the arrangement of the YY1 and E2 binding sites suggests a role in important biological functions, which, however, is difficult to confirm in every type of cell culture. The study of W12 cells complements the examination of YY1-7436 and points to yet undetected promoters upstream of the LCR.
Collapse
Affiliation(s)
- Shyh-Han Tan
- Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore
| | | | | | | |
Collapse
|
50
|
Girod PA, Mermod N. Use of scaffold/matrix-attachment regions for protein production. GENE TRANSFER AND EXPRESSION IN MAMMALIAN CELLS 2003. [DOI: 10.1016/s0167-7306(03)38022-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|