1
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
2
|
Hu G, Dong Y, Zhang Z, Fan X, Ren F. Effect of In Vitro Culture of Long Shoot Tip on Variant Structure and Titer of Grapevine Viruses. PLANTS 2022; 11:plants11151907. [PMID: 35893611 PMCID: PMC9330417 DOI: 10.3390/plants11151907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Shoot tip culture is a very effective approach for studying plant viruses. In this study, we evaluated the numbers, diversity, and titer of grapevine viruses in in vitro grapevine plants after long shoot tip culture. Six virus-infected grapevine cultivars (Cabernet Franc, Cabernet Gernischt, Cabernet Sauvignon, Wink, Victoria, and Merlot) collected from six regions of China were used as the research materials. Approximately 1.5 cm long shoot tips were used for meristem culture. The average survival rate of the six grapevine cultivars was 45.7%. Merlot collected from Beijing showed the highest survival rate (80.0%). Regeneration was not achieved in Cabernet Gernischt collected from Liaoning province and Cabernet Sauvignon from Tianjin due to bacterial and fungal contamination. Virus detection conducted in the surviving regenerated plants showed that the virus infection status, including the viral numbers and the species present in plants grown in vitro, was the same as that in corresponding in vivo plants. Moreover, the analysis of sequence diversity and the mutation frequency in grapevine viruses in vitro indicated that the structure of grapevine viruses was stable in long shoot tip culture after four sub-culture passages. Further, the relative viral titer of in vitro grapevine plants was much higher than that of in vivo plants. These results aid in the investigation of viruses in woody plants.
Collapse
|
3
|
Roossinck MJ. The Ups and Downs of an Out-of-the-Box Scientist with a Curious Mind. Annu Rev Virol 2022; 9:19-38. [PMID: 35512631 DOI: 10.1146/annurev-virology-100520-013446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My early life was challenging, and not conducive to the study of science, but my first introduction to viruses was an epiphany for me. I spent the whole of my career dedicated to understanding viruses, driven largely by curiosity. This led me down many different avenues of study, and to work with many wonderful colleagues, most of whom remain friends. Some highlights of my career include the discovery of a mutualistic three-way symbiosis involving a virus, a fungus, and a plant; genetic mapping of a pathogenicity gene in tomato; uncovering a virus in 1,000-year-old corncobs; exploring virus biodiversity in wild plants; and establishing a system to use a fungal virus to understand the epidemiology of its host. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, USA;
| |
Collapse
|
4
|
Khanal V, Ali A. High Mutation Frequency and Significant Population Differentiation in Papaya Ringspot Virus-W Isolates. Pathogens 2021; 10:pathogens10101278. [PMID: 34684227 PMCID: PMC8537659 DOI: 10.3390/pathogens10101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
A total of 101 papaya ringspot virus-W (PRSV-W) isolates were collected from five different cucurbit hosts in six counties of Oklahoma during the 2016–2018 growing seasons. The coat protein (CP) coding region of these isolates was amplified by reverse transcription-polymerase chain reaction, and 370 clones (3–5 clones/isolate) were sequenced. Phylogenetic analysis revealed three phylogroups while host, location, and collection time of isolates had minimal impact on grouping pattern. When CP gene sequences of these isolates were compared with sequences of published PRSV isolates (both P and W strains), they clustered into four phylogroups based on geographical location. Oklahoman PRSV-W isolates formed one of the four distinct major phylogroups. The permutation-based tests, including Ks, Ks *, Z *, Snn, and neutrality tests, indicated significant genetic differentiation and polymorphisms among PRSV-W populations in Oklahoma. The selection analysis confirmed that the CP gene is undergoing purifying selection. The mutation frequencies among all PRSV-W isolates were within the range of 1 × 10−3. The substitution mutations in 370 clones of PRSV-W isolates showed a high proportion of transition mutations, which gave rise to higher GC content. The N-terminal region of the CP gene mostly contained the variable sites with numerous mutational hotspots, while the core region was highly conserved.
Collapse
|
5
|
Porath‐Krause A, Campbell R, Shoemaker L, Sieben A, Strauss AT, Shaw AK, Seabloom EW, Borer ET. Pliant pathogens: Estimating viral spread when confronted with new vector, host, and environmental conditions. Ecol Evol 2021; 11:1877-1887. [PMID: 33614010 PMCID: PMC7882977 DOI: 10.1002/ece3.7178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Pathogen spread rates are determined, in part, by the performance of pathogens under altered environmental conditions and their ability to persist while switching among hosts and vectors.To determine the effects of new conditions (host, vector, and nutrient) on pathogen spread rate, we introduced a vector-borne viral plant pathogen, Barley Yellow Dwarf Virus PAV (BYDV-PAV) into hosts, vectors, and host nutrient supplies that it had not encountered for thousands of viral generations. We quantified pathogen prevalence over the course of two serial inoculations under the new conditions. Using individual-level transmission rates from this experiment, we parameterized a dynamical model of disease spread and projected spread across host populations through a growing season.A change in nutrient conditions (increased supply of phosphorus) reduced viral transmission whereas shifting to a new vector or host species had no effect on infection prevalence. However, the reduction in the new nutrient environment was only temporary; infection prevalence recovered after the second inoculation. Synthesis. These results highlight how robust the pathogen, BYDV-PAV, is to changes in its biotic and abiotic environment. Our study also highlights the need to quantify longitudinal infection information beyond snapshot assessments to project disease risk for pathogens in new environments.
Collapse
Affiliation(s)
- Anita Porath‐Krause
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Ryan Campbell
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Lauren Shoemaker
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Andrew Sieben
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Alexander T. Strauss
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Odum School of EcologyUniversity of GeorgiaAthensGAUSA
| | - Allison K. Shaw
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
6
|
Helmová R, Hönig V, Tykalová H, Palus M, Bell-Sakyi L, Grubhoffer L. Tick-Borne Encephalitis Virus Adaptation in Different Host Environments and Existence of Quasispecies. Viruses 2020; 12:v12080902. [PMID: 32824843 PMCID: PMC7472235 DOI: 10.3390/v12080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.
Collapse
Affiliation(s)
- Renata Helmová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
| | - Václav Hönig
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-387-775-463
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK;
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| |
Collapse
|
7
|
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 2020; 106:145-169. [PMID: 32327147 DOI: 10.1016/bs.aivir.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed viral infections occur more commonly than would be expected by chance in nature. Virus-virus interactions may affect viral traits and leave a genetic signature in the population, and thus influence the prevalence and emergence of viral diseases. Understanding about how the interactions between viruses within a host shape the evolutionary dynamics of the viral populations is needed for viral disease prevention and management. Here, we first synthesize concepts implied in the occurrence of virus-virus interactions. Second, we consider the role of the within-host interactions of virus-virus and virus-other pathogenic microbes, on the composition and structure of viral populations. Third, we contemplate whether mixed viral infections can create opportunities for the generation and maintenance of viral genetic diversity. Fourth, we attempt to summarize the evolutionary response of viral populations to mixed infections to understand how they shape the spatio-temporal dynamics of viral populations at the individual plant and field scales. Finally, we anticipate the future research under the reconciliation of molecular epidemiology and evolutionary ecology, drawing attention to the need of adding more complexity to future research in order to gain a better understanding about the mechanisms operating in nature.
Collapse
Affiliation(s)
- Cristina Alcaide
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel G Moreno-Pérez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
8
|
Komorowska B, Hasiów-Jaroszewska B, Elena SF. Evolving by deleting: patterns of molecular evolution of Apple stem pitting virus isolates from Poland. J Gen Virol 2019; 100:1442-1456. [PMID: 31424379 DOI: 10.1099/jgv.0.001290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, 267 coat protein gene (CP) sequences from 48 Polish isolates of Apple stem pitting virus (ASPV) were determined. The genetic structure of the virus population was analysed and possible mechanisms of molecular evolution explored. We found evidence of recombination within the ASPV population and the presence of 17 ASPV molecular variants that differ in the length, number and arrangement of deletions in the CP. Population genetic analyses showed significant variation among isolates from pear and apple trees, between isolates from the same host species and, more interestingly, within isolates, supporting the existence of significant levels of variability within individual hosts, as expected by a quasispecies population structure. In addition, different tests support that selection might have been an important force driving diversification within isolates: positive selection was found acting upon certain amino acids. Phylogenetic analyses also showed that isolates did not classify according to the host species (pear or apple trees) but according to the pattern of deletions, suggesting a possible role for deletions during clade diversification.
Collapse
Affiliation(s)
- Beata Komorowska
- Research Institute of Horticulture, Department of Phytopathology, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wł. Węgorka 20, 60-318 Poznań, Poland
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
9
|
Zhao L, Duffy S. Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution. Virus Evol 2019; 5:vez019. [PMID: 31275611 PMCID: PMC6599687 DOI: 10.1093/ve/vez019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Ali A, Melcher U. Modeling of Mutational Events in the Evolution of Viruses. Viruses 2019; 11:v11050418. [PMID: 31060293 PMCID: PMC6563203 DOI: 10.3390/v11050418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022] Open
Abstract
Diverse studies of viral evolution have led to the recognition that the evolutionary rates of viral taxa observed are dependent on the time scale being investigated—with short-term studies giving fast substitution rates, and orders of magnitude lower rates for deep calibrations. Although each of these factors may contribute to this time dependent rate phenomenon, a more fundamental cause should be considered. We sought to test computationally whether the basic phenomena of virus evolution (mutation, replication, and selection) can explain the relationships between the evolutionary and phylogenetic distances. We tested, by computational inference, the hypothesis that the phylogenetic distances between the pairs of sequences are functions of the evolutionary path lengths between them. A Basic simulation revealed that the relationship between simulated genetic and mutational distances is non-linear, and can be consistent with different rates of nucleotide substitution at different depths of branches in phylogenetic trees.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA.
| | - Ulrich Melcher
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA.
| |
Collapse
|
11
|
Salánki K, Gellért Á, Nemes K, Divéki Z, Balázs E. Molecular Modeling for Better Understanding of Cucumovirus Pathology. Adv Virus Res 2018; 102:59-88. [PMID: 30266176 DOI: 10.1016/bs.aivir.2018.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cucumber mosaic virus (CMV) is a small RNA virus capable of infecting a wide variety of plant species. The high economic losses due to the CMV infection made this virus a relevant subject of scientific studies, which were further facilitated by the small size of the viral genome. Hence, CMV also became a model organism to investigate the molecular mechanism of pathogenesis. All viral functions are dependent on intra- and intermolecular interactions between nucleic acids and proteins of the virus and the host. This review summarizes the recent data on molecular determinants of such interactions. A particular emphasis is given to the results obtained by utilizing molecular-based planning and modeling techniques.
Collapse
Affiliation(s)
- Katalin Salánki
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- MTA ATK, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Nemes
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Divéki
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ervin Balázs
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
12
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Sánchez-Campos S, Domínguez-Huerta G, Díaz-Martínez L, Tomás DM, Navas-Castillo J, Moriones E, Grande-Pérez A. Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences. FRONTIERS IN PLANT SCIENCE 2018; 9:932. [PMID: 30013589 PMCID: PMC6036239 DOI: 10.3389/fpls.2018.00932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
Geminiviruses (family Geminiviridae) possess single-stranded circular DNA genomes that are replicated by cellular polymerases in plant host cell nuclei. In their hosts, geminivirus populations behave as ensembles of mutant and recombinant genomes, known as viral quasispecies. This favors the emergence of new geminiviruses with altered host range, facilitating new or more severe diseases or overcoming resistance traits. In warm and temperate areas several whitefly-transmitted geminiviruses of the genus Begomovirus cause the tomato yellow leaf curl disease (TYLCD) with significant economic consequences. TYLCD is frequently controlled in commercial tomatoes by using the dominant Ty-1 resistance gene. Over a 45 day period we have studied the diversification of three begomoviruses causing TYLCD: tomato yellow leaf curl virus (TYLCV), tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl Malaga virus (TYLCMaV, a natural recombinant between TYLCV and TYLCSV). Viral quasispecies resulting from inoculation of geminivirus infectious clones were examined in plants of susceptible tomato (ty-1/ty-1), heterozygous resistant tomato (Ty-1/ty-1), common bean, and the wild reservoir Solanum nigrum. Differences in virus fitness across hosts were observed while viral consensus sequences remained invariant. However, the complexity and heterogeneity of the quasispecies were high, especially in common bean and the wild host. Interestingly, the presence or absence of the Ty-1 allele in tomato did not lead to differences in begomovirus mutant spectra. However, the fitness decrease of TYLCSV and TYLCV in tomato at 45 dpi might be related to an increase in CP (Coat protein) mutation frequency. In Solanum nigrum the recombinant TYLCMaV, which showed lower fitness than TYLCSV, at 45 dpi actively explored Rep (Replication associated protein) ORF but not the overlapping C4. Our results underline the importance of begomovirus mutant spectra during infections. This is especially relevant in the wild reservoir of the viruses, which has the potential to maintain highly diverse mutant spectra without modifying their consensus sequences.
Collapse
Affiliation(s)
- Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Diego M. Tomás
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
14
|
Maayan Y, Pandaranayaka EPJ, Srivastava DA, Lapidot M, Levin I, Dombrovsky A, Harel A. Using genomic analysis to identify tomato Tm-2 resistance-breaking mutations and their underlying evolutionary path in a new and emerging tobamovirus. Arch Virol 2018; 163:1863-1875. [PMID: 29582165 DOI: 10.1007/s00705-018-3819-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
In September 2014, a new tobamovirus was discovered in Israel that was able to break Tm-2-mediated resistance in tomato that had lasted 55 years. The virus was isolated, and sequencing of its genome showed it to be tomato brown rugose fruit virus (ToBRFV), a new tobamovirus recently identified in Jordan. Previous studies on mutant viruses that cause resistance breaking, including Tm-2-mediated resistance, demonstrated that this phenotype had resulted from only a few mutations. Identification of important residues in resistance breakers is hindered by significant background variation, with 9-15% variability in the genomic sequences of known isolates. To understand the evolutionary path leading to the emergence of this resistance breaker, we performed a comprehensive phylogenetic analysis and genomic comparison of different tobamoviruses, followed by molecular modeling of the viral helicase. The phylogenetic location of the resistance-breaking genes was found to be among host-shifting clades, and this, together with the observation of a relatively low mutation rate, suggests that a host shift contributed to the emergence of this new virus. Our comparative genomic analysis identified twelve potential resistance-breaking mutations in the viral movement protein (MP), the primary target of the related Tm-2 resistance, and nine in its replicase. Finally, molecular modeling of the helicase enabled the identification of three additional potential resistance-breaking mutations.
Collapse
Affiliation(s)
- Yonatan Maayan
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Eswari P J Pandaranayaka
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Dhruv Aditya Srivastava
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Moshe Lapidot
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Ilan Levin
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Arye Harel
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
15
|
Díaz-Martínez L, Brichette-Mieg I, Pineño-Ramos A, Domínguez-Huerta G, Grande-Pérez A. Lethal mutagenesis of an RNA plant virus via lethal defection. Sci Rep 2018; 8:1444. [PMID: 29362502 PMCID: PMC5780445 DOI: 10.1038/s41598-018-19829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Lethal mutagenesis is an antiviral therapy that relies on increasing the viral mutation rate with mutagenic nucleoside or base analogues. Currently, the molecular mechanisms that lead to virus extinction through enhanced mutagenesis are not fully understood. Increasing experimental evidence supports the lethal defection model of lethal mutagenesis of RNA viruses, where replication-competent-defectors drive infective virus towards extinction. Here, we address lethal mutagenesis in vivo using 5-fluorouracil (5-FU) during the establishment of tobacco mosaic virus (TMV) systemic infections in N. tabacum. The results show that 5-FU decreased the infectivity of TMV without affecting its viral load. Analysis of molecular clones spanning two genomic regions showed an increase of the FU-related base transitions A → G and U → C. Although the mutation frequency or the number of mutations per molecule did not increase, the complexity of the mutant spectra and the distribution of the mutations were altered. Overall, our results suggest that 5-FU antiviral effect on TMV is associated with the perturbation of the mutation-selection balance in the genomic region of the RNA-dependent RNA polymerase (RdRp). Our work supports the lethal defection model for lethal mutagenesis in vivo in a plant RNA virus and opens the way to study lethal mutagens in plant-virus systems.
Collapse
Affiliation(s)
- Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Isabel Brichette-Mieg
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Axier Pineño-Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
16
|
Abstract
Population diversity was examined in individual and natural mixed infections of Cowpea chlorotic mottle virus (CCMV) and Cucumber mosaic virus (CMV) isolates in two systemic hosts, cowpea and Nicotiana benthamiana. Isolates of CCMV and CMV obtained from a cowpea field in Arkansas were separated biologically in cowpea and tobacco plants, respectively. After separation, individual and mixed cultures of both viruses were serially passaged ten times by mechanical inoculation in cowpea and N. benthamiana. High-fidelity reverse transcriptase-polymerase chain reaction (HiFi RT-PCR) of RNA 3, followed by cDNA cloning and sequence analysis was used to assess the quasispecies cloud size of CCMV and CMV populations in passages zero and ten of each host species. The levels of population variation were generally higher in individual infections of CCMV-Car1 and-Car2 isolates, and the CMV-Car2 isolate compared with mixed infections, in both host species, although the significance of the differences varied depending on how mutations were counted. There were no significant differences in the levels of population variation in individual and mixed infections of the CMV-Car1 isolate. Partially fixed mutations were observed in both individual and mixed infections of the CCMV-Car2 isolate in N. benthamiana and CMV-Car1 and-Car2 isolates in both cowpea and N. benthamiana.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biological Science, University of Tulsa, 800 S. Tucker Dr, Tulsa, OK 74104, USA
| | - Marilyn J Roossinck
- Dept. of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, W229A MSC Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Yang X, Wang B, Luan J, Xie Y, Liu S, Zhou X. Molecular variation of tomato yellow leaf curl virus in the insect vector Bemisia tabaci. Sci Rep 2017; 7:16427. [PMID: 29180745 PMCID: PMC5703973 DOI: 10.1038/s41598-017-16330-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Insect vectors play significant roles in geminivirus spread and evolution in nature. To date little is known about the population dynamics of begomoviruses in their insect vector Bemisia tabaci. In this study we analyzed the genetic variation of tomato yellow leaf curl virus (TYLCV) in its host plant, Solanum lycopersicum, in its transmission vector B. tabaci raised on TYLCV-infected S. lycopersicum plants, and in B. tabaci after being transferred from S. lycopersicum to Gossypium hirsutum. We found that the levels of variability of TYLCV remained stable in S. lycopersicum plants, but increased significantly in both invasive and indigenous species of B. tabaci. We also presented evidence that the elevated mutation frequencies in TYLCV populations from vector whiteflies were caused mainly by mutations that occurred at several distinct sites within the TYLCV genome. Simultaneous introduction of mutations in the hot spots did not affect the ability of TYLCV to be transmitted by B. tabaci, but reduced its pathogenicity in both S. lycopersicum and Nicotiana benthamiana. Our findings provide new information on population variability of TYLCV in its insect vector, extending the knowledge of the influence of insect vector on plant virus population dynamics.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Junbo Luan
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shusheng Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Minicka J, Elena SF, Borodynko-Filas N, Rubiś B, Hasiów-Jaroszewska B. Strain-dependent mutational effects for Pepino mosaic virus in a natural host. BMC Evol Biol 2017; 17:67. [PMID: 28264646 PMCID: PMC5339997 DOI: 10.1186/s12862-017-0920-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pepino mosaic virus (PepMV) is an emerging plant pathogen that infects tomatoes worldwide. Understanding the factors that influence its evolutionary success is essential for developing new control strategies that may be more robust against the evolution of new viral strains. One of these evolutionary factors is the distribution of mutational fitness effect (DMFE), that is, the fraction of mutations that are lethal, deleterious, neutral, and beneficial on a given viral strain and host species. The goal of this study was to characterize the DMFE of introduced nonsynonymous mutations on a mild isolate of PepMV from the Chilean 2 strain (PepMV-P22). Additionally, we also explored whether the fitness effect of a given mutation depends on the gene where it appears or on epistatic interactions with the genetic background. To address this latter possibility, a subset of mutations were also introduced in a mild isolate of the European strain (PepMV-P11) and the fitness of the resulting clones measured. Results A collection of 25 PepMV clones each containing a single nucleotide nonsynonymous substitution was created by site-directed mutagenesis and the fitness of each mutant was determined. PepMV-P22 genome showed a high degree of robustness against point mutations, with 80% of mutations being either neutral or even beneficial and only 20% being deleterious or lethal. We found that the effect of mutations strongly depended on the gene in which they were introduced. Mutations with the largest average beneficial effects were those affecting the RdRp gene, in contrast to mutations affecting TGB1 and CP genes, for which the average effects were deleterious. Moreover, significant epistatic interactions were observed between nonsynonymous mutations and the genetic background, meaning that the effect of a given nucleotide substitution on a particular genomic context cannot be predicted by knowing its effect in a different one. Conclusions Our results indicated that PepMV genome has a surprisingly high robustness against mutations. We also found that fitness consequences of a given mutation differ between the two strains analyzed. This discovery suggests that the strength of selection, and thus the rates of evolution, vary among PepMV strains.
Collapse
Affiliation(s)
- Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain.,Instituto de Biología Integrativa y de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain.,The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Natasza Borodynko-Filas
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland.
| |
Collapse
|
19
|
Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Res 2016; 239:82-86. [PMID: 27876625 DOI: 10.1016/j.virusres.2016.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
The advent of next generation sequencing (NGS), or deep sequencing, has allowed great advances to be made in discovery, diagnostics, and evolutionary studies in plant viruses. Various methods have been used for enrichment for virus-specific nucleic acids, each of which have some drawbacks. Many novel viruses have been discovered in plants by NGS technologies, and there is a good deal of promise for more comprehensive studies in virus evolution. However, each aspect of using NGS has its caveats that need to be considered, and there is still a need for better tools of analysis, as well as method for validation of sequence variation.
Collapse
|
20
|
Bartels M, French R, Graybosch RA, Tatineni S. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat. Virology 2016; 492:92-100. [PMID: 26914507 DOI: 10.1016/j.virol.2016.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.
Collapse
Affiliation(s)
- Melissa Bartels
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Roy French
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Robert A Graybosch
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
21
|
Plant Virus Diversity and Evolution. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123681 DOI: 10.1007/978-3-319-32919-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, the majority of plant virology focused on agricultural systems. Recent efforts have expanded our knowledge of the true diversity of plant viruses by studying those viruses that infect wild, undomesticated plants. Those efforts have provided answers to basic ecological questions regarding viruses in the wild, and insights into evolutionary questions, regarding the origins of viruses. While much work has been done, we have merely scratched the surface of the diversity that is estimated to exist. In this chapter we discuss the state of our knowledge of virus diversity, both in agricultural systems as well as in native wild systems, the border between these two systems and how viruses adapt and move across this border into an artificial, domesticated environment. We look at how this diversity has affected our outlook on viruses as a whole, shifting our past view of viruses as purely antagonistic entities of destruction to one where viruses are in a mutually beneficial relationship with their hosts. Additionally, we discuss the current work that plant virology has put forth regarding the evolutionary mechanisms, the life histories, and the deep evolution of viruses.
Collapse
|
22
|
Mutation and recombination frequencies reveal a biological contrast within strains of Cucumber mosaic virus. J Virol 2015; 89:6817-23. [PMID: 25903331 DOI: 10.1128/jvi.00040-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Recent in planta studies have shown that strains Fny and LS of Cucumber mosaic virus (CMV) display differential genetic diversities, Fny and LS having higher and lower mutation frequencies, respectively (J. S. Pita and M. J. Roossinck, J Virol 87:790–797, 2012 http://dx.doi.org/10.1128/JVI.01891-12). In this article, we show that these virus strains have differential recombination frequencies as well. However, the high-diversity Fny strain is a low-recombination virus, whereas the very-low-diversity LS strain is instead a high-recombination virus. Unlike the mutation frequency that was determined by both RNAs 1 and 2, the control elements of recombination frequency reside predominantly within RNA 2, specifically within the 2a gene. IMPORTANCE Recombination is an important mechanism in virus evolution that can lead to increased or decreased variation and is a major player in virus speciation events that can lead to emerging viruses. Although viral genomes show very frequent evidence of recombination, details of the mechanism involved in these events are still poorly understood. We show here that the reciprocal effects of high mutation frequency and low recombination frequency (and vice versa) involve the RNA-dependent RNA polymerase of the virus, and we speculate that these evolutionary events are related to differences in processivity for two strains of the same virus.
Collapse
|
23
|
Huang L, Li Z, Wu J, Xu Y, Yang X, Fan L, Fang R, Zhou X. Analysis of genetic variation and diversity of Rice stripe virus populations through high-throughput sequencing. FRONTIERS IN PLANT SCIENCE 2015; 6:176. [PMID: 25852724 PMCID: PMC4371650 DOI: 10.3389/fpls.2015.00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/05/2015] [Indexed: 05/09/2023]
Abstract
Plant RNA viruses often generate diverse populations in their host plants through error-prone replication and recombination. Recent studies on the genetic diversity of plant RNA viruses in various host plants have provided valuable information about RNA virus evolution and emergence of new diseases caused by RNA viruses. We analyzed and compared the genetic diversity of Rice stripe virus (RSV) populations in Oryza sativa (a natural host of RSV) and compared it with that of the RSV populations generated in an infection of Nicotiana benthamiana, an experimental host of RSV, using the high-throughput sequencing technology. From infected O. sativa and N. benthamiana plants, a total of 341 and 1675 site substitutions were identified in the RSV genome, respectively, and the average substitution ratio in these sites was 1.47 and 7.05 %, respectively, indicating that the RSV populations from infected N. benthamiana plant are more diverse than those from infected O. sativa plant. Our result gives a direct evidence that virus might allow higher genetic diversity for host adaptation.
Collapse
Affiliation(s)
- Lingzhe Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, HangzhouPeople’s Republic of China
| | - Zefeng Li
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, HangzhouPeople’s Republic of China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, HangzhouPeople’s Republic of China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, HangzhouPeople’s Republic of China
| | - Xiuling Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, HangzhouPeople’s Republic of China
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, HangzhouPeople’s Republic of China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingPeople’s Republic of China
- *Correspondence: Xueping Zhou, State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China ; Rongxiang Fang, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, HangzhouPeople’s Republic of China
- *Correspondence: Xueping Zhou, State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China ; Rongxiang Fang, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
24
|
How does the genome structure and lifestyle of a virus affect its population variation? Curr Opin Virol 2014; 9:39-44. [DOI: 10.1016/j.coviro.2014.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022]
|
25
|
Sasaki N, Kaido M, Okuno T, Mise K. Effects of Artificial Codon Changes in the Movement Protein Gene on Adaptation of a Hybrid Bromovirus to Cowpea. Microbiol Immunol 2013; 48:131-5. [PMID: 14978339 DOI: 10.1111/j.1348-0421.2004.tb03499.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A hybrid Cowpea chlorotic mottle virus(CCMV) with the movement protein (MP) gene replaced with that of the closely related Brome mosaic virus cannot infect cowpea systemically. Twenty-nine spontaneous mutants from the hybrid CCMV capable of systemic infection in cowpea appeared through biased codon changes that resulted in Lys or Arg at five specific positions in the MP gene. In this study, we report that systemic infection of cowpea with the hybrid CCMV can be achieved by artificial codon changes that do not result in Lys or Arg. We discuss mechanisms that restrict the occurrence of cowpea-adapted mutants in nature.
Collapse
Affiliation(s)
- Nobumitsu Sasaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University
| | | | | | | |
Collapse
|
26
|
Wiik-Nielsen J, Alarcón M, Fineid B, Rode M, Haugland Ø. Genetic variation in Norwegian piscine myocarditis virus in Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2013; 36:129-139. [PMID: 23126380 DOI: 10.1111/jfd.12008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
Cardiomyopathy syndrome (CMS) in Atlantic salmon, Salmo salar L., is a severe cardiac disease characterized by a necrotizing myocarditis involving the atrium and the spongious part of the ventricle. The disease is caused by piscine myocarditis virus (PMCV), a double-stranded RNA virus likely belonging to the family Totiviridae. The objective of this study was to evaluate the genetic variation in Norwegian PMCV isolates focusing on the putative structural proteins encoded by open reading frames (ORFs) 1 and 3. The virus isolates were sampled from a total of 36 farms along the Norwegian coastline. This study represents the first investigation of PMCV genome variation and shows that Norwegian isolates are highly similar, with the most divergent isolates sharing 98.6% nucleotide identity. Interestingly, amino acid sequence diversity within ORF3 is approximately threefold higher than for ORF1. While phylogenetic analysis based on concatenated nucleotide data covering ORF1 and ORF3 revealed four main clusters, the maximum sequence variation of 1.4% at the nucleotide level suggests that all Norwegian isolates belong to a single genogroup. Substantial sequence variation within farms was also observed, which may complicate future molecular epidemiological investigations. The genetic homogeneity among the Norwegian isolates might facilitate development of both diagnostic tools and an efficient vaccine against CMS in the future.
Collapse
|
27
|
Smith-Tsurkan SD, Herr RA, Khuder S, Wilke CO, Novella IS. The role of environmental factors on the evolution of phenotypic diversity in vesicular stomatitis virus populations. J Gen Virol 2012; 94:860-868. [PMID: 23239575 DOI: 10.1099/vir.0.048082-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus adaptation to an ever-changing environment requires the availability of variants with phenotypes that can fulfil new requirements for replication. High mutation rates result in the generation of these variants. The factors that contribute to the maintenance or elimination of this diversity, however, are not fully understood. This study used a collection of vesicular stomatitis virus strains generated under different conditions to measure the extent of variation within each population, and tested the effects of several environmental factors on diversity. It was found that the host-cell type used for selection sometimes had an effect on the extent of variation and that there may be different levels of variation over time. Persistent infections promoted higher levels of diversity than acute infections, presumably due to complementation. In contrast, environmental heterogeneity, host breadth and the cell type used for testing (as opposed to the cell type used for selection) did not seem to have an effect on the amount of phenotypic diversity observed.
Collapse
Affiliation(s)
- Sarah D Smith-Tsurkan
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Roger A Herr
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Sadik Khuder
- Department of Medicine, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Claus O Wilke
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology, and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| |
Collapse
|
28
|
Abstract
Cucumber mosaic virus (CMV) comprises numerous isolates with various levels of in-host diversity. Subgroup-distinctive features of the Fny and LS strains provided us with a platform to genetically map the viral control elements for genetic variation in planta. We found that both RNAs 1 and 2 controlled levels of genetic diversity, and further fine mapping revealed that the control elements of mutation frequency reside within the first 596 amino acids (aa) of RNA 1. The 2a/2b overlapping region of the 2a protein also contributed to control of viral genetic variation. Furthermore, the 3' nontranslated region (NTR) of RNA 3 constituted a hot spot of polymorphism, where the majority of fixed mutations found in the population were clustered. The 2b gene of CMV, a viral suppressor of gene silencing, controls the abundance of the fixed mutants in the viral population via a host-dependent mechanism.
Collapse
|
29
|
Neill JD, Newcomer BW, Marley SD, Ridpath JF, Givens MD. Greater numbers of nucleotide substitutions are introduced into the genomic RNA of bovine viral diarrhea virus during acute infections of pregnant cattle than of non-pregnant cattle. Virol J 2012; 9:150. [PMID: 22867008 PMCID: PMC3487799 DOI: 10.1186/1743-422x-9-150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. Methods The sequence of the open reading frame (ORF) from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI) calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Results Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a) co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were identified in the PI virus of a calf born to a PI dam. Conclusions These results demonstrate that nucleotide changes are introduced into the BVDV infecting pregnant cattle at rates of 2.3 to 8 fold higher then during the acute infection of non-pregnant animals.
Collapse
Affiliation(s)
- John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, Iowa 50010, USA.
| | | | | | | | | |
Collapse
|
30
|
Dinh PX, Panda D, Das PB, Das SC, Das A, Pattnaik AK. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Virology 2012; 432:460-9. [PMID: 22832124 DOI: 10.1016/j.virol.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 05/25/2012] [Accepted: 07/03/2012] [Indexed: 12/19/2022]
Abstract
Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.
Collapse
Affiliation(s)
- Phat X Dinh
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rangel EA, Alfaro-Fernández A, Font-San-Ambrosio MI, Luis-Arteaga M, Rubio L. Genetic variability and evolutionary analyses of the coat protein gene of Tomato mosaic virus. Virus Genes 2011; 43:435-8. [DOI: 10.1007/s11262-011-0651-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
32
|
Fondong VN, Chen K. Genetic variability of East African cassava mosaic Cameroon virus under field and controlled environment conditions. Virology 2011; 413:275-82. [PMID: 21429548 DOI: 10.1016/j.virol.2011.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 02/05/2023]
Abstract
Cassava geminiviruses occur in all cassava growing areas of Africa and are considered to be the most damaging vector-borne plant pathogens. At least seven species of these viruses have been identified. We investigated genetic variation in East African cassava mosaic cassava Cameroon virus (EACMCV) from naturally infected cassava and from experimentally infected Nicotiana benthamiana. Results showed that the populations of EACMCV in cassava and in N. benthamiana were genetically heterogeneous. Mutation frequencies in the order of 10(-4), comparable to that reported for plant RNA viruses, were observed in both hosts. We also produced an EACMCV mutant that induces reversion and second site mutations, thus suggesting that a high mutation frequency facilitates the maintenance of genome structure and function. This is direct experimental evidence showing that cassava geminiviruses exhibit a high mutation frequency and that a single clone quickly transforms into a collection of mutant sequences upon introduction into the host.
Collapse
Affiliation(s)
- Vincent N Fondong
- Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA.
| | | |
Collapse
|
33
|
Schneider WL, Damsteegt VD, Stone AL, Kuhlmann M, Bunyard BA, Sherman DJ, Graves MV, Smythers G, Smith OP, Hatziloukas E. Molecular analysis of soybean dwarf virus isolates in the eastern United States confirms the presence of both D and Y strains and provides evidence of mixed infections and recombination. Virology 2011; 412:46-54. [PMID: 21256532 DOI: 10.1016/j.virol.2011.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/24/2010] [Accepted: 01/04/2011] [Indexed: 11/28/2022]
Abstract
Soybean dwarf virus (SbDV), first identified as an agricultural problem in Japan, has emerged as a growing problem in the Midwestern United States. The majority of research on SbDV had been limited to four lab maintained strains from Japan. SbDV had been found in clover in the eastern United States, but these isolates rarely emerged into soybeans. These isolates were analyzed by multiplex PCR and sequencing, revealing that some were infections of both Y and D components, including a recombinant subisolate. Phylogenetic analyses for the US isolates revealed a broad diversity of SbDV, with selection pressure greater on the movement protein than the coat protein. The field isolates from the Eastern United States showed differences in symptoms, aphid transmission and host range, demonstrating that a study of field isolates is an important complement to laboratory maintained strains in understanding the biology and evolution of plant viruses.
Collapse
Affiliation(s)
- William L Schneider
- USDA-ARS Foreign Disease Weed Science Research Unit, U.S. Department of Agriculture, 1301 Ditto Avenue, Fort Detrick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Elena SF, Bedhomme S, Carrasco P, Cuevas JM, de la Iglesia F, Lafforgue G, Lalić J, Pròsper A, Tromas N, Zwart MP. The evolutionary genetics of emerging plant RNA viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:287-93. [PMID: 21294624 DOI: 10.1094/mpmi-09-10-0214] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the years, agriculture across the world has been compromised by a succession of devastating epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Viral emergence is usually associated with ecological change or with agronomical practices bringing together reservoirs and crop species. The complete picture is, however, much more complex, and results from an evolutionary process in which the main players are ecological factors, viruses' genetic plasticity, and host factors required for virus replication, all mixed with a good measure of stochasticity. The present review puts emergence of plant RNA viruses into the framework of evolutionary genetics, stressing that viral emergence begins with a stochastic process that involves the transmission of a preexisting viral strain into a new host species, followed by adaptation to the new host.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ali A, Roossinck MJ. Genetic bottlenecks during systemic movement of Cucumber mosaic virus vary in different host plants. Virology 2010; 404:279-83. [PMID: 20542533 DOI: 10.1016/j.virol.2010.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/25/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
Abstract
Genetic bottlenecks are stochastic events that narrow variation in a population. We compared bottlenecks during the systemic infection of Cucumber mosaic virus (CMV) in four host plants. We mechanically inoculated an artificial population of twelve CMV mutants to young leaves of tomato, pepper, Nicotiana benthamiana, and squash. The inoculated leaves and primary and secondary systemically infected leaves were sampled at 2, 10, and 15 days post-inoculation. All twelve mutants were detected in all of the inoculated leaves. The number of mutants recovered from the systemically infected leaves of all host species was reduced significantly, indicating bottlenecks in systemic movement. The recovery frequencies of a few of the mutants were significantly different in each host probably due to host-specific selective forces. These results have implications for the differences in virus population variation that is seen in different host plants.
Collapse
Affiliation(s)
- Akhtar Ali
- Plant Biology Division, The Samuel Roberts Noble Foundation, P.O. Box 2180, Ardmore, OK 73401, USA
| | | |
Collapse
|
36
|
Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes 2010; 41:260-7. [PMID: 20549323 DOI: 10.1007/s11262-010-0497-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/26/2010] [Indexed: 12/26/2022]
Abstract
Genetic variability is an essential feature of RNA viruses. It allows them to adapt to the ever-changing environmental conditions. Important biological properties of the viruses, their infectivity, adaptability, and host range, may also depend on the level of quasispecies diversity. Here, we present the analysis of the genetic polymorphism of Pepino mosaic virus (PepMV). The examined populations were isolated from the naturally infected tomato plants (Solanum lycopersicum). In order to determine the complexity of the PepMV populations, the number of different viral variants and their genetic diversity was established. Moreover, phylogenetic trees were created to depict relations between the identified variants. For the first time we have shown that the PepMV exists as a quasispecies. The observed level of genetic variability allows PepMV for a quick and flexible adaptation to different hosts. Our results suggest that the level of PepMV variability possibly influences the course of infection.
Collapse
|
37
|
Ohshima K, Akaishi S, Kajiyama H, Koga R, Gibbs AJ. Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. J Gen Virol 2010; 91:788-801. [PMID: 19906944 DOI: 10.1099/vir.0.016055-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Little is known about how some plant viruses establish successful cross-species transmission whilst others do not; the genetic basis for adaptation is largely unknown. This study investigated the genetic changes that occurred using the progeny of an infectious clone, p35Tunos, derived from the turnip mosaic virus (TuMV) UK 1 isolate, which has a Brassica host type, but rarely infects Raphanus systemically and then only asymptomatically. The genetic trajectory leading to viral adaptation was studied in a TuMV isolate passaged in Nicotiana benthamiana (parental), Brassica rapa, the old (susceptible) host and Raphanus sativus, the new (almost insusceptible) host. Almost-complete consensus genomic sequences were obtained by RT-PCR of viral populations passaged up to 35 times together with 59 full sequences of 578,200 nt. There were significant differences in the nucleotide and encoded amino acid changes in the consensus genomes from the old and new hosts. Furthermore, a 3264 nt region corresponding to nt 3222-6485 of the UK 1 genome was cloned, and 269 clones from 23 populations were sequenced; this region covered 33 % of the genome and represented a total of 878,016 nt. The results showed that the nucleotide diversity and the non-synonymous/synonymous ratio of the populations from the new host were higher than those from the old host. An analysis of molecular variance showed significant differences among the populations from the old and new hosts. As far as is known, this is the first report comparing the evolutionary trajectory dynamics of plant virus populations in old and new hosts.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan.
| | | | | | | | | |
Collapse
|
38
|
Wei TY, Yang JG, Liao FL, Gao FL, Lu LM, Zhang XT, Li F, Wu ZJ, Lin QY, Xie LH, Lin HX. Genetic diversity and population structure of rice stripe virus in China. J Gen Virol 2009; 90:1025-1034. [PMID: 19264655 DOI: 10.1099/vir.0.006858-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most economically important pathogens of rice and is repeatedly epidemic in China, Japan and Korea. The most recent outbreak of RSV in eastern China in 2000 caused significant losses and raised serious concerns. In this paper, we provide a genotyping profile of RSV field isolates and describe the population structure of RSV in China, based on the nucleotide sequences of isolates collected from different geographical regions during 1997-2004. RSV isolates could be divided into two or three subtypes, depending on which gene was analysed. The genetic distances between subtypes range from 0.050 to 0.067. The population from eastern China is composed only of subtype I/IB isolates. In contrast, the population from Yunnan province (southwest China) is composed mainly of subtype II isolates, but also contains a small proportion of subtype I/IB isolates and subtype IA isolates. However, subpopulations collected from different districts in eastern China or Yunnan province are not genetically differentiated and show frequent gene flow. RSV genes were found to be under strong negative selection. Our data suggest that the most recent outbreak of RSV in eastern China was not due to the invasion of new RSV subtype(s). The evolutionary processes contributing to the observed genetic diversity and population structure are discussed.
Collapse
Affiliation(s)
- Tai-Yun Wei
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jin-Guang Yang
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fu-Long Liao
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fang-Luan Gao
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lian-Ming Lu
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Xiao-Ting Zhang
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fan Li
- Key Laboratory of Agricultural Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, PR China.,Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zu-Jian Wu
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qi-Yin Lin
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lian-Hui Xie
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Han-Xin Lin
- Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
39
|
Sanjuán R, Agudelo-Romero P, Elena SF. Upper-limit mutation rate estimation for a plant RNA virus. Biol Lett 2009; 5:394-6. [PMID: 19324646 DOI: 10.1098/rsbl.2008.0762] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is generally accepted that mutation rates of RNA viruses are inherently high due to the lack of proofreading mechanisms. However, direct estimates of mutation rate are surprisingly scarce, in particular for plant viruses. Here, based on the analysis of in vivo mutation frequencies in tobacco etch virus, we calculate an upper-bound mutation rate estimation of 3x10(-5) per site and per round of replication; a value which turns out to be undistinguishable from the methodological error. Nonetheless, the value is barely on the lower side of the range accepted for RNA viruses, although in good agreement with the only direct estimate obtained for other plant viruses. These observations suggest that, perhaps, differences in the selective pressures operating during plant virus evolution may have driven their mutation rates towards values lower than those characteristic of other RNA viruses infecting bacteria or animals.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | | | | |
Collapse
|
40
|
Genetic variability within the coat protein gene of Grapevine fanleaf virus isolates from South Africa and the evaluation of RT-PCR, DAS-ELISA and ImmunoStrips as virus diagnostic assays. Virus Res 2009; 142:28-35. [PMID: 19428739 DOI: 10.1016/j.virusres.2009.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/04/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Grapevine fanleaf virus (GFLV) is responsible for severe fanleaf degeneration in grapevines of all major wine producing regions of the world, including South Africa. In order to successfully control the spread of the virus, specific and reliable diagnostic assays are necessary. The genetic variability of 12 GFLV isolates recovered from naturally infected grapevine plants in the Western Cape region of South Africa were characterised. These samples were subjected to RNA extraction, RT-PCR analysis and sequencing of the coat protein gene (2CCP). Sequence identities between different GFLV isolates from South Africa were between 86-99% and 94-99% at the nucleotide and amino acid levels, respectively. Phylogenetic analysis based on the 2CCP gene sequences showed that the South African isolates form two distinct clades or sub-populations. The specificity and sensitivity of three diagnostic techniques (rapid-direct-one-tube-RT-PCR, DAS-ELISA and ImmunoStrips) for the detection of GFLV were analysed to determine the appropriate diagnostic assay for virus infection. Rapid-direct-one-tube-RT-PCR was found to be the most reliable technique for detection. This is the first report on sequence analysis of full-length 2CCP gene cDNA clones of GFLV isolates from South Africa.
Collapse
|
41
|
van der Walt E, Martin DP, Varsani A, Polston JE, Rybicki EP. Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J 2008; 5:104. [PMID: 18816368 PMCID: PMC2572610 DOI: 10.1186/1743-422x-5-104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/24/2008] [Indexed: 12/18/2022] Open
Abstract
Background Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ~10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules.
Collapse
Affiliation(s)
- Eric van der Walt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
42
|
Quan S, Nelson RS, Deom CM. The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea. Arch Virol 2008; 153:1505-16. [PMID: 18604602 DOI: 10.1007/s00705-008-0137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
The type strain of cowpea chlorotic mottle virus (CCMV-T) induces a local and systemic infection in California Blackeye cowpea (Vigna unguiculata (L.) Walp. subs. unguiculata cv. California Blackeye), but accumulates to low levels in inoculated leaves and fails to accumulate systemically in the cowpea plant introduction (PI) 186465. CCMV-R, a mutant strain derived from CCMV-T, accumulates to higher levels than CCMV-T in inoculated leaves and systemically infects PI 186465 plants. The phenotypic determinant of CCMV-R was previously mapped to viral RNA1, but the location of the determinant within RNA1 was not identified. Pseudorecombinants generated from genomic cDNA clones of CCMV-T and CCMV-R indicated that the phenotypic differences on PI 186465 were independent of replication. Through the use of chimeric RNA1 cDNA clones containing portions of CCMV-T and CCMV-R and site-directed mutagenesis, two nucleotides, 299 (amino acid residue 77) and 951 (amino acid residue 294), were identified as being independently critical for the local and systemic accumulation patterns of CCMV-R in PI 186465 plants. A second independently derived CCMV-R-like mutant, identified nucleotide 216 (amino acid residue 49) as being critical for induction of the CCMV-R infection phenotype. Amino acid residues 49, 77, and 294 are within the methytransferase domain of the CCMV 1a protein, suggesting that the methytransferase domain has a role in cell-to-cell and systemic accumulation of the virus that is independent of replication.
Collapse
Affiliation(s)
- S Quan
- Department of Plant Pathology, Plant Sciences Building, The University of Georgia, Athens, GA 30602-7274, USA
| | | | | |
Collapse
|
43
|
Abstract
Undoubtedly, viruses represent a major threat faced by human and veterinary medicines and by agronomy. The rapid evolution of viruses enables them to escape from natural immunities and from state-of-the-art antiviral treatments, with new viruses periodically emerging with deadly consequences. Viruses have also become powerful and are increasingly used tools in the field of experimental evolution. A growing body of evidence points that the evolution of viruses is mainly determined by key features such as their compacted genomes, enormous population sizes, and short generation times. In addition, RNA viruses also present large selection coefficients, antagonistic epistasis, and high mutation rates. Most of this knowledge comes from studies that have used either bacteriophages or animal viruses in cell cultures as experimental systems. However, plant viruses provide almost identical advantages for evolutionary studies and, in addition, offer an invaluable tool for studying the interplay between viruses and pluricellular hosts. Without seeking to be exhaustive, here we summarize some peculiarities of plant viruses and review recent experiments that have explored important questions on evolution, such as the role of deleterious mutation and neutrality, the effect of different transmission modes in the evolution of virulence, and the heterogeneous selective constraints imposed by multiple hosts.
Collapse
|
44
|
Duffy S, Holmes EC. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 2008; 82:957-65. [PMID: 17977971 PMCID: PMC2224568 DOI: 10.1128/jvi.01929-07] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/22/2007] [Indexed: 01/04/2023] Open
Abstract
Geminiviruses are devastating viruses of plants that possess single-stranded DNA (ssDNA) DNA genomes. Despite the importance of this class of phytopathogen, there have been no estimates of the rate of nucleotide substitution in the geminiviruses. We report here the evolutionary rate of the tomato yellow leaf curl disease-causing viruses, an intensively studied group of monopartite begomoviruses. Sequences from GenBank, isolated from diseased plants between 1988 and 2006, were analyzed using Bayesian coalescent methods. The mean genomic substitution rate was estimated to be 2.88 x 10(-4) nucleotide substitutions per site per year (subs/site/year), although this rate could be confounded by frequent recombination within Tomato yellow leaf curl virus genomes. A recombinant-free data set comprising the coat protein (V1) gene in isolation yielded a similar mean rate (4.63 x 10(-4) subs/site/year), validating the order of magnitude of genomic substitution rate for protein-coding regions. The intergenic region, which is known to be more variable, was found to evolve even more rapidly, with a mean substitution rate of approximately 1.56 x 10(-3) subs/site/year. Notably, these substitution rates, the first reported for a plant DNA virus, are in line with those estimated previously for mammalian ssDNA viruses and RNA viruses. Our results therefore suggest that the high evolutionary rate of the geminiviruses is not primarily due to frequent recombination and may explain their ability to emerge in novel hosts.
Collapse
Affiliation(s)
- Siobain Duffy
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
45
|
Genetic variation of papaya ringspot virus in Venezuela. Arch Virol 2007; 153:343-9. [DOI: 10.1007/s00705-007-1091-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
|
46
|
Komatsu K, Yamaji Y, Ozeki J, Hashimoto M, Kagiwada S, Takahashi S, Namba S. Nucleotide sequence analysis of seven Japanese isolates of Plantago asiatica mosaic virus (PlAMV): a unique potexvirus with significantly high genomic and biological variability within the species. Arch Virol 2007; 153:193-8. [PMID: 17987351 DOI: 10.1007/s00705-007-1078-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 10/13/2007] [Indexed: 10/22/2022]
Abstract
The genomic sequences of Plantago asiatica mosaic virus (PlAMV), six lily isolates and one primrose isolate from Japan, were determined. The genomic size of all isolates was 6102 nucleotides, containing the five open reading frames typical of members of the genus Potexvirus. Pairwise comparison analyses confirmed the close relationship between PlAMV and tulip virus X. However, quite low identities were observed between different PlAMV isolates, including foreign isolates; nucleotide sequence identities of the RNA-dependent RNA polymerase (RdRp) gene between a Russian isolate (PlAMV-Ru), a Nandina isolate (PlAMV-Na) and Japanese isolates were 75-77%. These values were the lowest amongst different isolates of the same species of any potexviruses.
Collapse
Affiliation(s)
- K Komatsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Revised sequence of foxtail mosaic virus reveals a triple gene block structure similar to potato virus X. Arch Virol 2007; 153:223-6. [PMID: 17955161 DOI: 10.1007/s00705-007-1057-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
|
48
|
Dietrich C, Al Abdallah Q, Lintl L, Pietruszka A, Maiss E. A chimeric plum pox virus shows reduced spread and cannot compete with its parental wild-type viruses in a mixed infection. J Gen Virol 2007; 88:2846-2851. [PMID: 17872539 DOI: 10.1099/vir.0.82989-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of a recombination event in the genomic 3' end on the biological properties and competitiveness of plum pox virus (PPV) was investigated. Therefore, a fragment spanning the coat protein (CP) coding region and a part of the 3' non-translated region of a non-aphid-transmissible strain of PPV (PPV-NAT) was replaced by the corresponding region of a PPV sour cherry isolate (PPV-SoC). The resulting chimera (PPV-NAT/SoC) caused severe symptoms in Nicotiana benthamiana, resembling those of PPV-NAT. In mixed infections with either of the parental viruses, the chimera PPV-NAT/SoC was less competitive. Labelling experiments with DsRed showed that PPV-NAT/SoC (PPV-NAT/SoC-red) moved more slowly from cell to cell than PPV-NAT (PPV-NAT-red). In mixed infections of PPV-NAT/SoC-red with a green fluorescent protein-expressing PPV-NAT (PPV-NAT-AgfpS), spatial separation of the viruses was observed. These data suggest that, in PPV infections, symptom severity and competitiveness are independent aspects and that spatial separation may contribute to the displacement of a recombinant virus.
Collapse
Affiliation(s)
- Christof Dietrich
- German Collection of Microorganisms and Cell Cultures, Plant Virus Division, Inhoffenstr. 7b, 38124 Braunschweig, Germany
| | - Qusai Al Abdallah
- Institute of Plant Diseases and Plant Protection, University of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Lara Lintl
- German Collection of Microorganisms and Cell Cultures, Plant Virus Division, Inhoffenstr. 7b, 38124 Braunschweig, Germany
| | - Agnes Pietruszka
- German Collection of Microorganisms and Cell Cultures, Plant Virus Division, Inhoffenstr. 7b, 38124 Braunschweig, Germany
| | - Edgar Maiss
- Institute of Plant Diseases and Plant Protection, University of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
49
|
Ciota AT, Lovelace AO, Jones SA, Payne A, Kramer LD. Adaptation of two flaviviruses results in differences in genetic heterogeneity and virus adaptability. J Gen Virol 2007; 88:2398-2406. [PMID: 17698648 PMCID: PMC3249635 DOI: 10.1099/vir.0.83061-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that was first introduced into the USA in the New York City area in 1999. Since its introduction, WNV has steadily increased both its host and geographical ranges. Outbreaks of the closely related flavivirus, St. Louis encephalitis virus (SLEV), occur in the USA periodically, but levels of activity and host range are more restricted than those of WNV. Understanding the selective pressures that drive arbovirus adaptation and evolution in their disparate mosquito and avian hosts is crucial to predicting their ability to persist and re-emerge. Here, we evaluated the in vivo phenotypes of mosquito cell-adapted WNV and SLEV. Results indicated that in vitro adaptations did not translate to in vivo adaptations for either virus, yet SLEV displayed attenuated growth in both mosquitoes and chickens, while WNV generally did not. In vitro growth analyses also indicated that WNV adaptations could be generalized to cell cultures derived from other mosquito species, while SLEV could not. Analysis of genetic diversity for passaged SLEV revealed a highly homogeneous population that differed significantly from previous results of high levels of diversity in WNV. We hypothesize that this difference in genetic diversity is directly related to the viruses' success in new and changing environments in the laboratory and that differences in a viruses' ability to produce and maintain heterogeneous populations in nature may in some instances explain the variable levels of success seen among arboviruses.
Collapse
Affiliation(s)
- Alexander T. Ciota
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Amy O. Lovelace
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Susan A. Jones
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Anne Payne
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Laura D. Kramer
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA
- School of Public Health, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
50
|
Hall GS, Little DP. Relative quantitation of virus population size in mixed genotype infections using sequencing chromatograms. J Virol Methods 2007; 146:22-8. [PMID: 17640742 PMCID: PMC2246048 DOI: 10.1016/j.jviromet.2007.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/22/2007] [Accepted: 05/31/2007] [Indexed: 11/17/2022]
Abstract
In order to quantitatively distinguish between highly similar RNA sequences, specific primers or probes must be designed. Unfortunately, consistent and reliable results are not always obtained with conventional techniques. This study uses reverse transcription-PCR coupled with direct terminator sequencing to economically and efficiently distinguish between sequence types in pooled samples while providing accurate relative quantification. As an example, the method is applied to measure template concentration of two Barley yellow dwarf virus (BYDV; family Luteoviridae) species in doubly infected wheat plants. A PERL script (polySNP) was developed that uses PHRED to automatically extract relative peak areas and heights from sequencing chromatograms at polymorphic sites. Peak measurements from experimental samples were compared to a standard curve generated by mixing in vitro transcribed RNA from BYDV-PAV and PAS templates in several ratios (ranging from 1:9 to 9:1 PAV:PAS) prior to RT-PCR amplification and sequencing. The relative amount of RNA template added to a sample was regressed onto the proportion of the chromatogram peak height or area corresponding to one virus species. The function of the best fit line was used to calculate template frequency in the experimental samples.
Collapse
Affiliation(s)
- Gerod S. Hall
- New York State Department of Health/Arbovirus Laboratory, 5668 State Farm Rd., Slingerland, NY 12159, Office phone 518-869-4592, Fax 518-869-4530,
| | - Damon P. Little
- The New York Botanical Garden, Bronx, New York 10458, Office phone 718-817-8130, Fax 718-817-8101,
| |
Collapse
|