1
|
Liu HY, Li Z, Reindl T, He Z, Qiu X, Golden RP, Donovan KA, Bailey A, Fischer ES, Zhang T, Gray NS, Yang PL. Broad-spectrum activity against mosquito-borne flaviviruses achieved by a targeted protein degradation mechanism. Nat Commun 2024; 15:5179. [PMID: 38898037 PMCID: PMC11187112 DOI: 10.1038/s41467-024-49161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Theresia Reindl
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xueer Qiu
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan P Golden
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Adam Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Priscilla L Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Maloney BE, Carpio KL, Bilyeu AN, Saunders DRD, Park SL, Pohl AE, Ball NC, Raetz JL, Huang CY, Higgs S, Barrett ADT, Roman-Sosa G, Kenney JL, Vanlandingham DL, Huang YJS. Identification of the flavivirus conserved residues in the envelope protein hinge region for the rational design of a candidate West Nile live-attenuated vaccine. NPJ Vaccines 2023; 8:172. [PMID: 37932282 PMCID: PMC10628263 DOI: 10.1038/s41541-023-00765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
The flavivirus envelope protein is a class II fusion protein that drives flavivirus-cell membrane fusion. The membrane fusion process is triggered by the conformational change of the E protein from dimer in the virion to trimer, which involves the rearrangement of three domains, EDI, EDII, and EDIII. The movement between EDI and EDII initiates the formation of the E protein trimer. The EDI-EDII hinge region utilizes four motifs to exert the hinge effect at the interdomain region and is crucial for the membrane fusion activity of the E protein. Using West Nile virus (WNV) NY99 strain derived from an infectious clone, we investigated the role of eight flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region in the conformational change of E protein from dimer to trimer and viral entry. Single mutations of the E-A54, E-I130, E-I135, E-I196, and E-Y201 residues affected infectivity. Importantly, the E-A54I and E-Y201P mutations fully attenuated the mouse neuroinvasive phenotype of WNV. The results suggest that multiple flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region play a critical role in the structure-function of the E protein and some contribute to the virulence phenotype of flaviviruses as demonstrated by the attenuation of the mouse neuroinvasive phenotype of WNV. Thus, as a proof of concept, residues in the EDI-EDII hinge region are proposed targets to engineer attenuating mutations for inclusion in the rational design of candidate live-attenuated flavivirus vaccines.
Collapse
Affiliation(s)
- Bailey E Maloney
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Kassandra L Carpio
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Danielle R D Saunders
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
- Department of Biology, Dean of Faculty, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Adrienne E Pohl
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Natalia Costa Ball
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Janae L Raetz
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Claire Y Huang
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gleyder Roman-Sosa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Institute of Virology, University of Veterinary Medicine Hanover, Foundation, Buentewg 17, 30559, Hanover, Germany
| | - Joanie L Kenney
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Microbiology and Immunology and SUNY Center for Vector-Borne Diseases, Institute of Global Health and Translation Science, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
3
|
Davis EH, Wang B, White M, Huang YJS, Sarathy VV, Wang T, Bourne N, Higgs S, Barrett ADT. Impact of yellow fever virus envelope protein on wild-type and vaccine epitopes and tissue tropism. NPJ Vaccines 2022; 7:39. [PMID: 35322047 PMCID: PMC8942996 DOI: 10.1038/s41541-022-00460-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
The envelope (E) protein of flaviviruses is functionally associated with viral tissue tropism and pathogenicity. For yellow fever virus (YFV), viscerotropic disease primarily involving the liver is pathognomonic for wild-type (WT) infection. In contrast, the live-attenuated vaccine (LAV) strain 17D does not cause viscerotropic disease and reversion to virulence is associated with neurotropic disease. The relationship between structure-function of the E protein for WT strain Asibi and its LAV derivative 17D strain is poorly understood; however, changes to WT and vaccine epitopes have been associated with changes in virulence. Here, a panel of Asibi and 17D infectious clone mutants were generated with single-site mutations at the one membrane residue and each of the eight E protein amino acid substitutions that distinguish the two strains. The mutants were characterized with respect to WT-specific and vaccine-specific monoclonal antibodies (mAbs) binding to virus plus binding of virus to brain, liver, and lung membrane receptor preparations (MRPs) generated from AG129 mice. This approach shows that amino acids in the YFV E protein domains (ED) I and II contain the WT E protein epitope, which overlap with those that mediate YFV binding to mouse liver. Furthermore, amino acids in EDIII associated with the vaccine epitope overlap with those that facilitate YFV binding mouse brain MRPs. Taken together, these data suggest that the YFV E protein is a key determinant in the phenotype of WT and 17D vaccine strains of YFV.
Collapse
Affiliation(s)
- Emily H Davis
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
| | - Binbin Wang
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | - Yan-Jang S Huang
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center on Emerging and Zoonotic Infectious Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
| | - Tian Wang
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
- Department of Pediatrics, UTMB, Galveston, TX, USA
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center on Emerging and Zoonotic Infectious Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA.
| |
Collapse
|
4
|
Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J 2021; 18:136. [PMID: 34217298 PMCID: PMC8254458 DOI: 10.1186/s12985-021-01611-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.
Collapse
Affiliation(s)
- Tao Hu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Dueva EV, Tuchynskaya KK, Kozlovskaya LI, Osolodkin DI, Sedenkova KN, Averina EB, Palyulin VA, Karganova GG. Spectrum of antiviral activity of 4-aminopyrimidine N-oxides against a broad panel of tick-borne encephalitis virus strains. Antivir Chem Chemother 2021; 28:2040206620943462. [PMID: 32811155 PMCID: PMC7545520 DOI: 10.1177/2040206620943462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis is an important human arbovirus neuroinfection spread across the Northern Eurasia. Inhibitors of tick-borne encephalitis virus (TBEV) strain Absettarov, presumably targeting E protein n-octyl-β-d-glucoside (β-OG) pocket, were reported earlier. In this work, these inhibitors were tested in vitro against seven strains representing three main TBEV subtypes. The most potent compound, 2-[(2-methyl-1-oxido-5,6,7,8-tetrahydroquinazolin-4-yl)amino]-phenol, showed EC50 values lower than 22 µM against all the tested strains. Nevertheless, EC50 values for virus samples of certain strains demonstrated a substantial variation, which appeared to be consistent with the presence of E protein not only in infectious virions, but also in non-infectious and immature virus particles, protein aggregates, and membrane complexes.
Collapse
Affiliation(s)
- Evgenia V Dueva
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Liubov I Kozlovskaya
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia *The work on the basis of the FSBSI "Chumakov FSC R&D IBP RAS" was performed by the author during her employment from 2012 to 2017
| | - Dmitry I Osolodkin
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia *The work on the basis of the FSBSI "Chumakov FSC R&D IBP RAS" was performed by the author during her employment from 2012 to 2017
| | | | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Galina G Karganova
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia *The work on the basis of the FSBSI "Chumakov FSC R&D IBP RAS" was performed by the author during her employment from 2012 to 2017
| |
Collapse
|
6
|
Li PC, Jang J, Hsia CY, Groomes PV, Lian W, de Wispelaere M, Pitts JD, Wang J, Kwiatkowski N, Gray NS, Yang PL. Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy in Vivo. ACS Infect Dis 2019; 5:460-472. [PMID: 30608640 DOI: 10.1021/acsinfecdis.8b00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccines and antivirals to combat dengue, Zika, and other flavivirus pathogens present a major, unmet medical need. Vaccine development has been severely challenged by the antigenic diversity of these viruses and the propensity of non-neutralizing, cross-reactive antibodies to facilitate cellular infection and increase disease severity. As an alternative, direct-acting antivirals targeting the flavivirus envelope protein, E, have the potential to act via an analogous mode of action without the risk of antibody-dependent enhancement of infection and disease. We previously discovered that structurally diverse small molecule inhibitors of the dengue virus E protein exhibit varying levels of antiviral activity against other flaviviruses in cell culture. Here, we demonstrate that the broad-spectrum activity of several cyanohydrazones against dengue, Zika, and Japanese encephalitis viruses is due to specific inhibition of E-mediated membrane fusion during viral entry and provide proof of concept for pharmacological inhibition of E as an antiviral strategy in vivo.
Collapse
Affiliation(s)
- Pi-Chun Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Jaebong Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Chih-Yun Hsia
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrice V. Groomes
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Wenlong Lian
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Melissanne de Wispelaere
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jared D. Pitts
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Priscilla L. Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018; 7:pathogens7030068. [PMID: 30104482 PMCID: PMC6161159 DOI: 10.3390/pathogens7030068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic flavivirus, is an enveloped positive-strand RNA virus that can cause a spectrum of clinical manifestations, ranging from mild febrile illness to severe neuroinvasive disease. Today, several killed and live vaccines are available in different parts of the globe for use in humans to prevent JEV-induced diseases, yet no antivirals are available to treat JEV-associated diseases. Despite the progress made in vaccine research and development, JEV is still a major public health problem in southern, eastern, and southeastern Asia, as well as northern Oceania, with the potential to become an emerging global pathogen. In viral replication, the entry of JEV into the cell is the first step in a cascade of complex interactions between the virus and target cells that is required for the initiation, dissemination, and maintenance of infection. Because this step determines cell/tissue tropism and pathogenesis, it is a promising target for antiviral therapy. JEV entry is mediated by the viral glycoprotein E, which binds virions to the cell surface (attachment), delivers them to endosomes (endocytosis), and catalyzes the fusion between the viral and endosomal membranes (membrane fusion), followed by the release of the viral genome into the cytoplasm (uncoating). In this multistep process, a collection of host factors are involved. In this review, we summarize the current knowledge on the viral and cellular components involved in JEV entry into host cells, with an emphasis on the initial virus-host cell interactions on the cell surface.
Collapse
|
8
|
Smith DR, Sprague TR, Hollidge BS, Valdez SM, Padilla SL, Bellanca SA, Golden JW, Coyne SR, Kulesh DA, Miller LJ, Haddow AD, Koehler JW, Gromowski GD, Jarman RG, Alera MTP, Yoon IK, Buathong R, Lowen RG, Kane CD, Minogue TD, Bavari S, Tesh RB, Weaver SC, Linthicum KJ, Pitt ML, Nasar F. African and Asian Zika Virus Isolates Display Phenotypic Differences Both In Vitro and In Vivo. Am J Trop Med Hyg 2017; 98:432-444. [PMID: 29280428 DOI: 10.4269/ajtmh.17-0685] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne member of the genus Flavivirus that has emerged since 2007 to cause outbreaks in Africa, Asia, Oceania, and most recently, in the Americas. Here, we used an isolate history as well as genetic and phylogenetic analyses to characterize three low-passage isolates representing African (ArD 41525) and Asian (CPC-0740, SV0127-14) lineages to investigate the potential phenotypic differences in vitro and in vivo. The African isolate displayed a large plaque phenotype (∼3-4 mm) on Vero and HEK-293 cells, whereas the Asian isolates either exhibited a small plaque phenotype (∼1-2 mm) or did not produce any plaques. In multistep replication kinetics in nine different vertebrate and insect cell lines, the African isolate consistently displayed faster replication kinetics and yielded ∼10- to 10,000-fold higher peak virus titers (infectious or RNA copies) compared with the Asian isolates. Oral exposure of Aedes aegypti mosquitoes with the African isolate yielded higher infection and dissemination rates compared with the Asian isolates. Infection of Ifnar1-/- mice with the African isolate produced a uniformly fatal disease, whereas infection with the Asian isolates produced either a delay in time-to-death or a significantly lower mortality rate. Last, the African isolate was > 10,000-fold more virulent than the Asian isolates in an interferon type I antibody blockade mouse model. These data demonstrate substantial phenotypic differences between low-passage African and Asian isolates both in vitro and in vivo and warrant further investigation. They also highlight the need for basic characterization of ZIKV isolates, as the utilization of the uncharacterized isolates could have consequences for animal model and therapeutic/vaccine development.
Collapse
Affiliation(s)
- Darci R Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Thomas R Sprague
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Bradley S Hollidge
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Stephanie M Valdez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Susana L Padilla
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Stephanie A Bellanca
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Susan R Coyne
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - David A Kulesh
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Lynn Jean Miller
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Andrew D Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Jeff W Koehler
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | | | | | - Maria Theresa P Alera
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - In-Kyu Yoon
- International Vaccine Institute, Seoul, Republic of Korea
| | - Rome Buathong
- Department of Disease Control, Bureau of Epidemiology, Ministry of Public Health, Nonthaburi, Thailand
| | - Robert G Lowen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Christopher D Kane
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Timothy D Minogue
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Sina Bavari
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Robert B Tesh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas.,Institute for Human Infections and Immunity, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas.,Institute for Human Infections and Immunity, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Kenneth J Linthicum
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida
| | - Margaret L Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
9
|
Plante JA, Torres M, Huang CYH, Beasley DWC. Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III. Virology 2016; 496:97-105. [PMID: 27284640 DOI: 10.1016/j.virol.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 01/23/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that causes febrile illness, encephalitis, and occasionally death in humans. The envelope protein is the main component of the WNV virion surface, and domain III of the envelope protein (EIII) is both a putative receptor binding domain and a target of highly specific, potently neutralizing antibodies. Envelope E-332 (E-332) is known to have naturally occurring variation and to be a key determinant of neutralization for anti-EIII antibodies. A panel of viruses containing all possible amino acid substitutions at E-332 was constructed. E-332 was found to be highly tolerant of mutation, and almost all of these changes had large impacts on antigenicity of EIII but only limited effects on growth or virulence phenotypes.
Collapse
Affiliation(s)
- Jessica A Plante
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Claire Y-H Huang
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - David W C Beasley
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
10
|
Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence. J Virol 2016; 90:4757-4770. [PMID: 26912625 DOI: 10.1128/jvi.02861-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, within vivo pathogenesis often not being correlated within vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. IMPORTANCE The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a significant role for this sequence in determining the pathogenesis of the virus within the mammalian host. Our studies demonstrate that these chimeras are viable and suggest that such recombinant viruses may be useful for investigation of domain-specific antibody responses and the more extensive definition of the contributions of EIII to the tropism and pathogenesis of WNV or other flaviviruses.
Collapse
|
11
|
Williams DT, Diviney SM, Niazi AUR, Durr PA, Chua BH, Herring B, Pyke A, Doggett SL, Johansen CA, Mackenzie JS. The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1. PLoS Negl Trop Dis 2015; 9:e0004240. [PMID: 26600318 PMCID: PMC4657991 DOI: 10.1371/journal.pntd.0004240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV) in Australia has renewed concerns regarding its potential to spread and cause disease. Methodology/Principal Findings To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM) and Envelope (Env) genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951–2011). Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B). Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G) was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994. Conclusions/Significance The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus. Murray Valley encephalitis virus is the most significant cause of mosquito-borne encephalitis in humans in Australia, and can also cause neurological disease in horses. This study reports an expanded phylogenetic study of this virus and the first molecular evolutionary analysis. Of the four recognized genotypes of Murray Valley encephalitis virus, only two were found to be actively circulating (genotypes 1 and 2), and genotype 1 was dominant. Distinct genetic sub-lineages within genotype 1 were found to have recently emerged. Molecular clock analysis indicated that genotype 2 viruses are the oldest genetic lineage while genotype 1 viruses are the most recent to diverge. The co-circulation of distinct genetic lineages of this virus in northwestern Australia, comprising the oldest and youngest lineages, supports previous findings that MVEV circulates endemically in this region.
Collapse
Affiliation(s)
- David T. Williams
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail: (DW); (SMD)
| | - Sinéad M. Diviney
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail: (DW); (SMD)
| | - Aziz-ur-Rahman Niazi
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Peter A. Durr
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Beng Hooi Chua
- Office of Research and Development, Curtin University, Perth, Western Australia, Australia
| | - Belinda Herring
- Infectious Diseases and Immunology, University of Sydney, New South Wales, Australia
| | - Alyssa Pyke
- Public Health Virology, Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Westmead Hospital, University of Sydney and Institute for Clinical Pathology and Medical Research, New South Wales, Australia
| | - Cheryl A. Johansen
- Arbovirus Surveillance and Research Laboratory, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Structure-based mutational analysis of several sites in the E protein: implications for understanding the entry mechanism of Japanese encephalitis virus. J Virol 2015; 89:5668-86. [PMID: 25762738 DOI: 10.1128/jvi.00293-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV), which causes viral encephalitis in humans, is a serious risk to global public health. The JEV envelope protein mediates the viral entry pathway, including receptor-binding and low-pH-triggered membrane fusion. Utilizing mutagenesis of a JEV infectious cDNA clone, mutations were introduced into the potential receptor-binding motif or into residues critical for membrane fusion in the envelope protein to systematically investigate the JEV entry mechanism. We conducted experiments evaluating infectious particle, recombinant viral particle, and virus-like particle production and found that most mutations impaired virus production. Subcellular fractionation confirmed that five mutations--in I0, ij, BC, and FG and the R9A substitution-impaired virus assembly, and the assembled virus particles of another five mutations--in kl and the E373A, F407A, L221S, and W217A substitutions--were not released into the secretory pathway. Next, we examined the entry activity of six mutations yielding infectious virus. The results showed N154 and the DE loop are not the only or major receptor-binding motifs for JEV entry into BHK-21 cells; four residues, H144, H319, T410, and Q258, participating in the domain I (DI)-DIII interaction or zippering reaction are important to maintain the efficiency of viral membrane fusion. By continuous passaging of mutants, adaptive mutations from negatively charged amino acids to positively charged or neutral amino acids, such as E138K and D389G, were selected and could restore the viral entry activity. IMPORTANCE Recently, there has been much interest in the entry mechanism of flaviviruses into host cells, including the viral entry pathway and membrane fusion mechanism. Our study provides strong evidence for the critical role of several residues in the envelope protein in the assembly, release, and entry of JEV, which also contributes to our understanding of the flaviviral entry mechanism. Furthermore, we demonstrate that the H144A, H319A, T410A, and Q258A mutants exhibit attenuated fusion competence, which may be used to develop novel vaccine candidates for flaviviruses.
Collapse
|
13
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
14
|
Yun SI, Song BH, Kim JK, Yun GN, Lee EY, Li L, Kuhn RJ, Rossmann MG, Morrey JD, Lee YM. A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog 2014; 10:e1004290. [PMID: 25077483 PMCID: PMC4117607 DOI: 10.1371/journal.ppat.1004290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 06/18/2014] [Indexed: 01/12/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other encephalitic flaviviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/genetics
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Female
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- Nervous System/virology
- Protein Conformation
- Sequence Homology, Amino Acid
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virulence/genetics
- Virus Replication
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Gil-Nam Yun
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Young Lee
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Long Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - John D. Morrey
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
15
|
Mann RA, Fegan M, O'Riley K, Motha J, Warner S. Molecular characterization and phylogenetic analysis of Murray Valley encephalitis virus and West Nile virus (Kunjin subtype) from an arbovirus disease outbreak in horses in Victoria, Australia, in 2011. J Vet Diagn Invest 2013; 25:35-44. [PMID: 23345269 DOI: 10.1177/1040638712467985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Virus was detected in the central nervous system (CNS) tissue of 11 horses from Victoria that died displaying neurological symptoms during an outbreak of disease in Australia in 2011. Five horses were identified as being infected with Murray Valley encephalitis virus (MVEV) and 6 as being infected with West Nile virus subtype Kunjin (WNV(KUN)). Analysis of partial sequence information from the NS5 and E genes indicated that the MVEVs within the samples were highly homogenous and all belonged to lineage I, which is enzootic to the tropical regions of northern Australia. Likewise, analysis of partial NS5 and E gene and full genome sequences indicated that the WNV(KUN) within the samples were also highly homogenous and clustered with WNV lineage 1, clade b, which is consistent with other WNV(KUN) isolates. Full genomes of 1 MVEV isolate and 2 WNV(KUN) isolates were sequenced and characterized. The genome sequences of Victorian WNV(KUN) are almost identical (3 amino acid differences) to that of the recently sequenced WNV isolate WNV(NSW2011). Metagenome sequencing directly from CNS tissue identified the presence of WNV(KUN) and MVEV within infected CNS tissue.
Collapse
Affiliation(s)
- Rachel A Mann
- Biosciences Research Division, Department of Primary Industries, AgriBio, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | | | | | | | | |
Collapse
|
16
|
Abstract
Enveloped viruses rely on fusion proteins in their envelope to fuse the viral membrane to the host-cell membrane. This key step in viral entry delivers the viral genome into the cytoplasm for replication. Although class II fusion proteins are genetically and structurally unrelated to class I fusion proteins, they use the same physical principles and topology as other fusion proteins to drive membrane fusion. Exposure of a fusion loop first allows it to insert into the host-cell membrane. Conserved hydrophobic residues in the fusion loop act as an anchor, which penetrates only partway into the outer bilayer leaflet of the host-cell membrane. Subsequent folding back of the fusion protein on itself directs the C-terminal viral transmembrane anchor towards the fusion loop. This fold-back forces the host-cell membrane (held by the fusion loop) and the viral membrane (held by the C-terminal transmembrane anchor) against each other, resulting in membrane fusion. In class II fusion proteins, the fold-back is triggered by the reduced pH of an endosome, and is accompanied by the assembly of fusion protein monomers into trimers. The fold-back occurs by domain rearrangement rather than by an extensive refolding of secondary structure, but this domain rearrangement and the assembly of monomers into trimers together bury a large surface area. The energy that is thus released exerts a bending force on the apposed viral and cellular membranes, causing them to bend towards each other and, eventually, to fuse.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- grid.10423.340000000095299877Institute for Virology, Hannover Medical School, Hannover, Germany ,grid.418215.b0000000085027018German Primate Center, Göttingen, Germany
| | - Graham Simmons
- grid.266102.10000000122976811Blood Systems Research Institute, and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California USA
| |
Collapse
|
17
|
Pierson TC, Kielian M. Flaviviruses: braking the entering. Curr Opin Virol 2013; 3:3-12. [PMID: 23352692 DOI: 10.1016/j.coviro.2012.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/05/2012] [Accepted: 12/05/2012] [Indexed: 12/12/2022]
Abstract
Flaviviruses are small spherical virus particles covered by a dense icosahedral array of envelope (E) proteins that mediate virus attachment to cells and the fusion of viral and cellular membranes. Our understanding of the mechanism by which flavivirus E proteins orchestrate entry into cells has been advanced by studies of E structure and arrangement on the virion at different steps of the virus entry/membrane fusion process. When combined with an increasingly clear (albeit still incomplete) view of the cell biology of virus entry, these advances suggest new antiviral strategies. Indeed, inhibitors that target cellular and viral processes involved in entry show promise as powerful tools to study this critical step of the viral lifecycle, and with luck, may ultimately lead to therapeutic advances.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States.
| | | |
Collapse
|
18
|
|
19
|
Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Res 2012; 95:216-23. [DOI: 10.1016/j.antiviral.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
|
20
|
Prow NA, May FJ, Westlake DJ, Hurrelbrink RJ, Biron RM, Leung JY, McMinn PC, Clark DC, Mackenzie JS, Lobigs M, Khromykh AA, Hall RA. Determinants of attenuation in the envelope protein of the flavivirus Alfuy. J Gen Virol 2011; 92:2286-2296. [PMID: 21733886 DOI: 10.1099/vir.0.034793-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murray Valley encephalitis virus (MVEV) is a mosquito-borne flavivirus endemic to Australia and Papua New Guinea. Most strains of MVEV cause potentially fatal cases of encephalitis in humans and horses, and have been shown to be highly neuroinvasive in weanling mice. In contrast, the naturally occurring subtype Alfuy virus (ALFV) has never been associated with human disease, nor is it neuroinvasive in weanling mice, even at high doses. To identify viral factors associated with ALFV attenuation, a chimeric infectious clone was constructed containing the structural genes premembrane (prM) and envelope (E) of ALFV swapped into the MVEV genome. The resulting virus (vMVEV/ALFVstr) was no longer neuroinvasive in mice, suggesting that motifs within prM-E of ALFV confer attenuation. To define these motifs further, mutants were constructed by targeting divergent sequences between the MVEV and ALFV E proteins that are known markers of virulence in other encephalitic flaviviruses. MVEV mutants containing a unique ALFV sequence in the flexible hinge region (residues 273-277) or lacking the conserved glycosylation site at position 154 were significantly less neuroinvasive in mice than wild-type MVEV, as determined by delayed time to death or increased LD(50). Conversely, when the corresponding MVEV sequences were inserted into the vMVEV/ALFVstr chimera, the mutant containing the MVEV hinge sequence was more neuroinvasive than the parental chimera, though not to the same level as wild-type MVEV. These results identify the hinge region and E protein glycosylation as motifs that contribute to the attenuation of ALFV.
Collapse
Affiliation(s)
- Natalie A Prow
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fiona J May
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel J Westlake
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Hurrelbrink
- Division of Virology, Telethon Institute for Child Health Research, Roberts Road, Subiaco, WA 6008, Australia
| | - Rebecca M Biron
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jason Y Leung
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter C McMinn
- Division of Virology, Telethon Institute for Child Health Research, Roberts Road, Subiaco, WA 6008, Australia
| | - David C Clark
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John S Mackenzie
- Australian Biosecurity Cooperative Research Centre, Faculty of Health Sciences, Curtin University of Technology, GPO U1987, Perth, WA 6845, Australia
| | - Mario Lobigs
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Alexander A Khromykh
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Roy A Hall
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
21
|
Umamaheswari A, Kumar MM, Pradhan D, Marisetty H. Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus. Interdiscip Sci 2011; 3:64-77. [PMID: 21369890 DOI: 10.1007/s12539-011-0064-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/18/2022]
Abstract
Yellow fever is among one of the most lethal viral diseases for which approved antiviral therapies were yet to be discovered. Herein, functional assignment of complete YFV proteome was done through support vector machine. Major envelope (E) protein that mediates entry of YFV into host cell was selected as a potent molecular target. Three dimensional structure of the molecular target was predicted using Modeller9v7. The model was optimized in Maestro9.0 applying OPLS AA force field and was evaluated using PROCHECK, ProSA, ProQ and Profile 3D. The BOG pocket residues Val48, Glu197, Thr200, Ile204, Thr265, Thr268 and Gly278 were located in YFV E protein using SiteMap2.3. More than one million compounds of Ligandinfo Meta database were explored using a computational virtual screening protocol targeting BOG pocket of the E protein. Finally, ten top ranked lead molecules with strong binding affinity to BOG pocket of YFV E protein were identified based on XP Gscore. Drug likeliness and comparative bioactivity analysis for these leads using QikProp3.2 had shown that these molecules would have the potential to act as better drug. Thus, the 10 lead molecules suggested in the present study would be of interest as promising starting point for designing antiviral compound against yellow fever.
Collapse
Affiliation(s)
- Amineni Umamaheswari
- SVIMS Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, 517507, AP, India.
| | | | | | | |
Collapse
|
22
|
Butrapet S, Childers T, Moss KJ, Erb SM, Luy BE, Calvert AE, Blair CD, Roehrig JT, Huang CYH. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion. Virology 2011; 413:118-27. [PMID: 21353281 DOI: 10.1016/j.virol.2011.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/12/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.
Collapse
Affiliation(s)
- Siritorn Butrapet
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaufmann B, Rossmann MG. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect 2010; 13:1-9. [PMID: 20869460 DOI: 10.1016/j.micinf.2010.09.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 12/31/2022]
Abstract
Flaviviruses enter their host cells by receptor-mediated endocytosis, a well-orchestrated process of receptor recognition, penetration and uncoating. Recent findings on these early steps in the life cycle of flaviviruses are the focus of this review.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | |
Collapse
|
24
|
Zhang S, Bovshik EI, Maillard R, Gromowski GD, Volk DE, Schein CH, Huang CYH, Gorenstein DG, Lee JC, Barrett ADT, Beasley DWC. Role of BC loop residues in structure, function and antigenicity of the West Nile virus envelope protein receptor-binding domain III. Virology 2010; 403:85-91. [PMID: 20447672 DOI: 10.1016/j.virol.2010.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/23/2010] [Indexed: 12/22/2022]
Abstract
Site-directed mutagenesis of residues in the BC loop (residues 329-333) of the envelope (E) protein domain III in a West Nile virus (WNV) infectious clone and in plasmids encoding recombinant WNV and dengue type 2 virus domain III proteins demonstrated a critical role for residues in this loop in the function and antigenicity of the E protein. This included a strict requirement for the tyrosine at residue 329 of WNV for virus viability and E domain III folding. The absence of an equivalent residue in this region of yellow fever group viruses and most tick-borne flavivirus suggests there is an evolutionary divergence in the molecular mechanisms of domain III folding employed by different flaviviruses.
Collapse
Affiliation(s)
- Shuliu Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kampmann T, Yennamalli R, Campbell P, Stoermer MJ, Fairlie DP, Kobe B, Young PR. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res 2009; 84:234-41. [DOI: 10.1016/j.antiviral.2009.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 08/19/2009] [Accepted: 09/11/2009] [Indexed: 01/09/2023]
|
26
|
Abstract
Enveloped viruses rely on transmembrane fusion proteins to fuse the viral membrane to the host-cell membrane and deliver the viral genome into the cytoplasm for replication. Although the structures and evolutionary origins of viral fusion proteins vary widely, all fusion proteins use the same physical principles and topology to drive membrane fusion. First, exposure of a hydrophobic fusion anchor allows them to insert into the host-cell membrane. Conserved hydrophobic residues in the fusion anchor penetrate part way into the outer bilayer leaflet of the host-cell membrane. The fusion protein then folds back on itself, directing the C-terminal viral transmembrane anchor toward the fusion loop. This fold-back forces the host-cell membrane (held by the fusion loop) and the viral membrane (held by the C-terminal transmembrane anchor) against one another until they fuse. In West Nile virus and other flaviviruses this fold-back in the fusion protein, E, is triggered by the reduced pH of an endosome, is accompanied by the assembly of E monomers into trimers, and occurs by domain rearrangement rather than by an extensive refolding of secondary structure. The rearrangement releases a large amount of energy, which is used to exert a bending force on the apposed viral and cellular membranes, propelling them toward each other and, eventually, causing them to fuse. The conserved regions of E that are responsible for driving membrane fusion are attractive targets for antiviral therapies.
Collapse
|
27
|
Li Z, Khaliq M, Zhou Z, Post CB, Kuhn RJ, Cushman M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J Med Chem 2008; 51:4660-71. [PMID: 18610998 DOI: 10.1021/jm800412d] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavivirus envelope proteins (E proteins) have been shown to play a pivotal role in virus assembly, morphogenesis, and infection of host cells. Inhibition of flavivirus infection of a host cell by means of a small molecule envelope protein antagonist is an attractive strategy for the development of antiviral agents. Virtual screening of the NCI chemical database using the dengue virus envelope protein structure revealed several hypothetical hit compounds. Bioassay results identified a class of thiazole compounds with antiviral potency in cell-based assays. Modification of these lead compounds led to a series of analogues with improved antiviral activity and decreased cytotoxicity. The most active compounds 11 and 36 were effective in the low micromolar concentration range in a cellular assay system.
Collapse
Affiliation(s)
- Ze Li
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences and the PurdueCancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence. J Virol 2007; 82:2966-74. [PMID: 18160430 DOI: 10.1128/jvi.02060-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Sindbis virus (SINV) strain MRE16 efficiently infects Aedes aegypti midgut epithelial cells (MEC), but laboratory-derived neurovirulent SINV strain TE/5'2J infects MEC poorly. SINV determinants for MEC infection have been localized to the E2 glycoprotein. The E2 amino acid sequences of MRE16 and TE/5'2J differ at 60 residue sites. To identify the genetic determinants of MEC infection of MRE16, the TE/5'2J virus genome was altered to contain either domain chimeras or more focused nucleotide substitutions of MRE16. The growth patterns of derived viruses in cell culture were determined, as were the midgut infection rates (MIR) in A. aegypti mosquitoes. The results showed that substitutions of MRE16 E2 aa 95 to 96 and 116 to 119 into the TE/5'2J virus increased MIR both independently and in combination with each other. In addition, a unique PPF/.GDS amino acid motif was located between these two sites that was found to be a highly conserved sequence among alphaviruses and flaviviruses but not other arboviruses.
Collapse
|
30
|
Yu X, Qiao M, Atanasov I, Hu Z, Kato T, Liang TJ, Zhou ZH. Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology 2007; 367:126-34. [PMID: 17618667 DOI: 10.1016/j.virol.2007.05.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
The structural details of hepatitis C virus (HCV) have been elusive because of the lack of a robust tissue culture system for producing an adequate amount of virions from infectious sources for in-depth three-dimensional (3D) structural analysis. Using both negative-stain and cryo-electron microscopy (cryoEM), we show that HCV virions isolated from cell culture have a rather uniform size of 500 A in diameter and that recombinantly expressed HCV-like particles (HCV-LPs) have similar morphologic, biophysical and antigenic features in spite of the varying sizes of the particles. 3D reconstructions were obtained from HCV-LPs with the same size as the HCV virions in the presence and absence of monoclonal antibodies bound to the E1 glycoprotein. The 3D reconstruction of HCV-LP reveals a multilayered architecture, with smooth outer-layer densities arranged in a 'fishbone' configuration. Reconstruction of the particles in complex with anti-E1 antibodies shows that sites of the E1 epitope are exposed and surround the 5-, 3- and 2-fold axes. The binding pattern of the anti-E1 antibody and the fitting of the structure of the dengue virus E glycoprotein into our 3D reconstructions further suggest that the HCV-LP E1 and E2 proteins form a tetramer (or dimer of heterodimers) that corresponds morphologically and functionally to the flavivirus E homodimer. This first 3D structural analysis of HCV particles offers important insights into the elusive mechanisms of HCV assembly and maturation.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Pathology and Laboratory Medicine, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Maier CC, Delagrave S, Zhang ZX, Brown N, Monath TP, Pugachev KV, Guirakhoo F. A single M protein mutation affects the acid inactivation threshold and growth kinetics of a chimeric flavivirus. Virology 2007; 362:468-74. [PMID: 17303204 DOI: 10.1016/j.virol.2007.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/05/2007] [Accepted: 01/05/2007] [Indexed: 11/20/2022]
Abstract
Numerous viruses of the Flaviviridae family, including dengue, yellow fever, Japanese encephalitis, and West Nile, cause significant disease in humans and animals. The structure and function of the molecular components of the flavivirus envelope are therefore of significant interest. To our knowledge, a membrane (M) protein mutation which affects the pH at which flavivirus particles are inactivated in vitro has never been reported. Here we show that substitution of proline for glutamine at residue M5 (MQ5P) of a Japanese encephalitis-yellow fever chimera (ChimeriVax-JE) increases its acid sensitivity in vitro by 0.3 pH units (i.e., increases the pH at which virus titer is reduced by 50% from 6.08 to 6.38). In addition, growth kinetics of this mutant virus are accelerated in Vero cells, while neurovirulence and neuroinvasiveness measured in a mouse model are unaffected. A possible interpretation of these observations is that M can modulate the envelope (E) protein function during cell infection.
Collapse
Affiliation(s)
- Caroline C Maier
- Virology Department, Acambis Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Yang JM, Chen YF, Tu YY, Yen KR, Yang YL. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS One 2007; 2:e428. [PMID: 17502914 PMCID: PMC1855430 DOI: 10.1371/journal.pone.0000428] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/13/2007] [Indexed: 11/26/2022] Open
Abstract
Limited structural information of drug targets, cellular toxicity possessed by lead compounds, and large amounts of potential leads are the major issues facing the design-oriented approach of discovering new leads. In an attempt to tackle these issues, we have developed a process of virtual screening based on the observation that conformational rearrangements of the dengue virus envelope protein are essential for the mediation of viral entry into host cells via membrane fusion. Screening was based solely on the structural information of the Dengue virus envelope protein and was focused on a target site that is presumably important for the conformational rearrangements necessary for viral entry. To circumvent the issue of lead compound toxicity, we performed screening based on molecular docking using structural databases of medical compounds. To enhance the identification of hits, we further categorized and selected candidates according to their novel structural characteristics. Finally, the selected candidates were subjected to a biological validation assay to assess inhibition of Dengue virus propagation in mammalian host cells using a plaque formation assay. Among the 10 compounds examined, rolitetracycline and doxycycline significantly inhibited plaque formation, demonstrating their inhibitory effect on dengue virus propagation. Both compounds were tetracycline derivatives with IC50s estimated to be 67.1 µM and 55.6 µM, respectively. Their docked conformations displayed common hydrophobic interactions with critical residues that affected membrane fusion during viral entry. These interactions will therefore position the tetracyclic ring moieties of both inhibitors to bind firmly to the target and, subsequently, disrupt conformational rearrangement and block viral entry. This process can be applied to other drug targets in which conformational rearrangement is critical to function.
Collapse
Affiliation(s)
- Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu, Taiwan
| | - Yan-Fu Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Yin Tu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuei-Rong Yen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yun-Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Mukherjee M, Dutta K, White MA, Cowburn D, Fox RO. NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition. Protein Sci 2006; 15:1342-55. [PMID: 16731969 PMCID: PMC2242546 DOI: 10.1110/ps.051844006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Flaviviruses cause many human diseases, including dengue fever, yellow fever, West Nile viral encephalitis, and hemorrhagic fevers, and are transmitted to their vertebrate hosts by infected mosquitoes and ticks. Domain III of the envelope protein (E-D3) is considered to be the primary viral determinant involved in the virus-host-cell receptor interaction, and thus represents an excellent target for antiviral drug development. Langat (LGT) virus is a naturally attenuated BSL-2 TBE virus and is a model for the pathogenic BSL-3 and BSL-4 viruses in the serogroup. We have determined the solution structure of LGT-E-D3 using heteronuclear NMR spectroscopy. The backbone dynamics of LGT-E-D3 have been investigated using 15N relaxation measurements. A detailed analysis of the solution structure and dynamics of LGT-E-D3 suggests potential residues that could form a surface for molecular recognition, and thereby represent a target site for antiviral therapeutics design.
Collapse
Affiliation(s)
- Munia Mukherjee
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | |
Collapse
|
34
|
Wu SC, Yu JC, Hsu SH, Chen DC. Artificial extracellular matrix proteins contain heparin-binding and RGD-containing domains to improve osteoblast-like cell attachment and growth. J Biomed Mater Res A 2006; 79:557-65. [PMID: 16807886 DOI: 10.1002/jbm.a.30845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Through the recombinant DNA technology, it is possible to create artificial extracellular matrix (aECM) proteins with domains chosen to modulate cellular behaviors. In this study, we constructed three aECM proteins containing both heparin-binding and RGD-containing domains (387RGDS, Tri-FN10, and TNC-FN3) produced in Escherichia coli. Promotion of MG-63 cell attachment and growth in two-dimensional (2D) cultures (tissue culture plate, polycaprolactone membrane) and 3D cultures (Cytodex 1 and Plastic Plus microcarriers) were demonstrated on these three aECM protein-coated surfaces. These three aECM proteins improved MG-63 cell attachment and growth in the order TNC-FN3 > Tri-FN10 > 387RGDS in both 2D and 3D cultures. This study is the first report of the construction of aECM proteins that contain both heparin-binding and RGD-containing domains used in osteoblast tissue engineering applications.
Collapse
Affiliation(s)
- Suh-Chin Wu
- Institute of Biotechnology, Department of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
35
|
McArthur MA, Xiao SY, Barrett ADT. Phenotypic and molecular characterization of a non-lethal, hamster-viscerotropic strain of yellow fever virus. Virus Res 2005; 110:65-71. [PMID: 15845256 DOI: 10.1016/j.virusres.2005.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 12/13/2004] [Accepted: 01/03/2005] [Indexed: 11/25/2022]
Abstract
Viscerotropic yellow fever virus (YFV) infection occurs primarily in humans and non-human primates. Lack of an appropriate small animal model of viscerotropic YFV infection has been a major deterrent to molecular studies of viscerotropism. A hamster model of viscerotropic YFV infection has recently been described; however, these studies have focused on hamster-viscerotropic strains of YFV (including Asibi hamster P7 virus) that caused outward clinical signs of infection and mortality. In order to map more closely the molecular determinants of viscerotropism in the hamster model, a second sequential series of seven liver-to-liver passages of Asibi virus was undertaken through hamsters to generate Asibi P7b virus. Asibi hamster P7b virus did not cause clinically detectable signs of YFV infection; however, high quantities of circulating virus were isolated from the serum, and microscopic evaluation of the liver and spleen demonstrated histopathological lesions consistent with YFV infection. The genomic sequence of Asibi P7b virus was determined and compared to wild-type Asibi virus and the lethal, hamster-viscerotropic Asibi P7 virus and found to differ by only two amino acids in the envelope protein, E-98 and E-331.
Collapse
Affiliation(s)
- Monica A McArthur
- Department of Microbiology, The University of Texas Medical Branch, Galveston TX 77555-0609, USA
| | | | | |
Collapse
|
36
|
Risatti GR, Holinka LG, Lu Z, Kutish GF, Tulman ER, French RA, Sur JH, Rock DL, Borca MV. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology 2005; 343:116-27. [PMID: 16168455 DOI: 10.1016/j.virol.2005.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/04/2005] [Accepted: 08/12/2005] [Indexed: 11/22/2022]
Abstract
Transposon linker insertion mutagenesis of a full-length infectious clone (IC) (pBIC) of the pathogenic classical swine fever virus (CSFV) strain Brescia was used to identify genetic determinants of CSFV virulence and host range. Here, we characterize a virus mutant, RB-C22v, possessing a 19-residue insertion at the carboxyl terminus of E1 glycoprotein. Although RB-C22v exhibited normal growth characteristics in primary porcine macrophage cell cultures, the major target cell of CSFV in vivo, it was markedly attenuated in swine. All RB-C22v-infected pigs survived infection remaining clinically normal in contrast to the 100% mortality observed for BICv-infected animals. Comparative pathogenesis studies demonstrated a delay in RB-C22v spread to, and decreased replication in the tonsils, a 10(2) to 10(7) log10 reduction in virus titers in lymphoid tissues and blood, and an overall delay in generalization of infection relative to BICv. Notably, RB-C22v-infected animals were protected from clinical disease when challenged with pathogenic BICv at 3, 5, 7, and 21 days post-RB-C22v inoculation. Viremia, viral replication in tissues, and oronasal shedding were reduced in animals challenged at 7 and 21 DPI. Notably BICv-specific RNA was not detected in tonsils of challenged animals. These results indicate that a carboxyl-terminal domain of E1 glycoprotein affects virulence of CSFV in swine, and they demonstrate that mutation of this domain provides the basis for a rationally designed and efficacious live-attenuated CSF vaccine.
Collapse
Affiliation(s)
- G R Risatti
- Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY 11944-0848, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhao Z, Date T, Li Y, Kato T, Miyamoto M, Yasui K, Wakita T. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 2005; 86:2209-2220. [PMID: 16033968 DOI: 10.1099/vir.0.80638-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A stable plasmid DNA, pMWJEAT, was constructed by using full-length Japanese encephalitis virus (JEV) cDNA isolated from the wild-type strain JEV AT31. Recombinant JEV was obtained by synthetic RNA transfection into Vero cells and designated rAT virus. JEV rAT exhibited similar large-plaque morphology and antigenicity to the parental AT31 strain. Mutant clone pMWJEAT-E138K, containing a single Glu-to-Lys mutation at aa 138 of the envelope (E) protein, was also constructed to analyse the mechanisms of viral attenuation arising from this mutation. Recombinant JEV rAT-E138K was also recovered and displayed a smaller-plaque morphology and lower neurovirulence and neuroinvasiveness than either AT31 virus or rAT virus. JEV rAT-E138K exhibited greater plaque formation than rAT virus in virus-cell interactions under acidic conditions. Heparin or heparinase III treatment inhibited binding to Vero cells more efficiently for JEV rAT-E138K than for rAT virus. Inhibition of virus-cell interactions by using wheatgerm agglutinin was more effective for JEV rAT than for rAT-E138K on Vero cells. About 20 % of macropinoendocytosis of JEV rAT for Vero cells was inhibited by cytochalasin D treatment, but no such inhibition occurred for rAT-E138K virus. Furthermore, JEV rAT was predominantly secreted from infected cells, whereas rAT-E138K was more likely to be retained in infected cells. This study demonstrates clearly that a single Glu-to-Lys mutation at aa 138 of the envelope protein affects multiple steps of the viral life cycle. These multiple changes may induce substantial attenuation of JEV.
Collapse
Affiliation(s)
- Zijiang Zhao
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Tomoko Date
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Yuhua Li
- Chengdu Institute of Biological Products, Chengdu 610063, Sichuan Province, PR China
| | - Takanobu Kato
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Michiko Miyamoto
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Kotaro Yasui
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Takaji Wakita
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| |
Collapse
|
38
|
Vlaycheva L, Nickells M, Droll DA, Chambers TJ. Neuroblastoma cell-adapted yellow fever virus: mutagenesis of the E protein locus involved in persistent infection and its effects on virus penetration and spread. J Gen Virol 2005; 86:413-421. [PMID: 15659761 DOI: 10.1099/vir.0.80314-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Persistent infection of mouse neuroblastoma NB41A3 cells with yellow fever 17D virus generates viral variants which exhibit defective cell penetration, poor cell-to-cell spread, small plaque size and reduced growth efficiency, caused by substitution of glycine for aspartic acid or glutamic acid at positions 360 and 362 in the envelope protein. These positions occur within a charge cluster, Asp360-Asp361-Glu362, located in domain III, near its interface with domain I. To characterize further the molecular basis for the variant phenotype, a series of mutant viruses containing substitutions at position 360, 361 and 362, were studied for effects on the cell culture properties typical of the neuroblastoma-adapted variant. Most substitutions at position 360 gave rise to viruses that were very defective in cell penetration, growth efficiency and cell-to-cell spread, whereas substitution with glutamic acid yielded a virus indistinguishable from parental yellow fever 17D. Substitution with lysine was not tolerated and substitution with asparagine resulted in frequent wild-type revertants. A glycine residue was not tolerated at position 361, but substitution at 362 yielded a small plaque virus, similar to the effect of substitution at position 360. These data indicate that the yellow fever virus E protein contains a locus within domain III where a negative-charge cluster is important for optimal function of this domain in virus-cell interactions beyond the stage of virus attachment. Modelling predictions suggest that the mutations alter the local properties of the loop within domain III, and may compromise interactions of this domain with an adjacent region of domain I during conformational changes that occur in the E protein in association with virus entry.
Collapse
Affiliation(s)
- Leonssia Vlaycheva
- Department of Molecular Microbiology and Immunology, St Louis University Health Sciences Center, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Michael Nickells
- Department of Molecular Microbiology and Immunology, St Louis University Health Sciences Center, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Deborah A Droll
- Department of Molecular Microbiology and Immunology, St Louis University Health Sciences Center, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St Louis University Health Sciences Center, 1402 South Grand Avenue, St Louis, MO 63104, USA
| |
Collapse
|
39
|
Chu JJH, Ng ML. Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem 2004; 279:54533-41. [PMID: 15475343 DOI: 10.1074/jbc.m410208200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The functional receptor for the flavivirus West Nile (WNV) infection has been characterized in this study with a combination of biochemical and molecular approaches. A 105-kDa protease-sensitive glycoprotein that binds WNV was isolated from the plasma membrane of cells permissive to WNV infection. The protein was subjected to peptide sequencing, and this glycoprotein was identified as a member of the integrin superfamily. Infection of WNV was shown to be markedly inhibited in Vero cells pretreated with blocking antibodies against alpha(v)beta(3) integrin and its subunits by receptor competition assay. It was also noted that cells pretreated with antibodies against alpha(v)beta(3) integrin can effectively inhibit flavivirus Japanese encephalitis but to a lesser extent flavivirus dengue infections. West Nile virus entry is independent of divalent cations and is not highly blocked by arginine-glycine-aspartic acid (RGD) peptides, suggesting that the interaction between the virus and alpha(v)beta(3) integrin is not highly dependent on the classical RGD binding motif. In addition, gene silencing of the beta(3) integrin subunit in cells has resulted in cells largely resistant to WNV infection. In contrast, expression of recombinant human beta(3) integrin substantially increased the permissiveness of CS-1 melanoma cells for WNV infection. Soluble alpha(v)beta(3) integrin can also effectively block WNV infection in a dose-dependent manner. Furthermore, WNV infection also triggered the outside-in signaling pathway via the activation of integrin-associated focal adhesion kinase. The identification of alpha(v)beta(3) integrin as a receptor for WNV provides insight into virus-receptor interaction, hence creating opportunities in the development of anti-viral strategies against WNV infection.
Collapse
Affiliation(s)
- Justin Jang-Hann Chu
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | | |
Collapse
|
40
|
Vlaycheva L, Nickells M, Droll DA, Chambers TJ. Yellow fever 17D virus: pseudo-revertant suppression of defective virus penetration and spread by mutations in domains II and III of the E protein. Virology 2004; 327:41-9. [PMID: 15327896 DOI: 10.1016/j.virol.2004.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 04/22/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
A yellow fever (YFV) 17D virus variant, which causes persistent infection of mouse neuroblastoma cells associated with defective cell penetration and small plaque size, yielded plaque-revertant viruses from cells transfected with viral transcripts encoding the adaptive mutation (Gly360 in the E protein). Reconstruction of a plaque-purified revertant which contained Gly360 and additional substitutions (Asn for Lys303 and Val for Ala261) yielded a virus whose infectious center size, growth efficiency, and cell penetration rate similar to the parental YF5.2iv virus, whereas viruses with Asn303 or Val261 alone with Gly360 yielded either a small-plaque virus or a parental revertant. These data indicate that the YFV E protein is subject to suppression of mutations in domain III that are deleterious for viral entry and spread by a second-site mutation in domain II. Position 261 lies within the hydrophobic ligand-binding pocket at the domain I-II interface, a site believed to be involved in the hinge-like conformational change of domain II during activation of membrane fusion-activity. Results of this study provide genetic data consistent with findings on flavivirus structure and implicate domain III in functions beyond simply cell surface attachment.
Collapse
Affiliation(s)
- Leonssia Vlaycheva
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
41
|
Hayasaka D, Gritsun TS, Yoshii K, Ueki T, Goto A, Mizutani T, Kariwa H, Iwasaki T, Gould EA, Takashima I. Amino acid changes responsible for attenuation of virus neurovirulence in an infectious cDNA clone of the Oshima strain of Tick-borne encephalitis virus. J Gen Virol 2004; 85:1007-1018. [PMID: 15039543 DOI: 10.1099/vir.0.19668-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A stable full-length infectious cDNA clone of the Oshima strain of Tick-borne encephalitis virus (Far-Eastern subtype) was developed by a long high-fidelity RT-PCR and one-step cloning procedure. The infectious clone (O-IC) had four amino acid substitutions and produced smaller plaques when compared with the parent Oshima 5-10 strain. Using site-directed mutagenesis, the substitutions were reverted to restore the parent virus sequence (O-IC-pt). Although genetically identical, parent virus Oshima 5-10 and virus recovered from O-IC-pt demonstrated some biological differences that are possibly explained by the presence of quasispecies with differing virulence characteristics within the original virus population. These observations may have implications for vaccines based on modified infectious clones. It was also demonstrated that the amino acid substitution E-S40→P at position 40 in the envelope (E) glycoprotein was responsible for plaque size reduction, reduced infectious virus yields in cell culture and reduced mouse neurovirulence. Additionally, two amino acid substitutions in the non-structural (NS)5 protein (virus RNA-dependent RNA polymerase) NS5-V378→A and NS5-R674→K also contributed to attenuation of virulence in mice, but did not demonstrate a noticeable biological effect in baby hamster kidney cell culture. Comparative neurovirulence tests revealed how the accumulation of individual mutations (E-S40→P, NS5-V378→A and NS5-R674→K) can result in the attenuation of a virus.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Kentarou Yoshii
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomotaka Ueki
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akiko Goto
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Mizutani
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Iwasaki
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | - Ikuo Takashima
- Laboratory of Public Health, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Affiliation(s)
- Franz X Heinz
- Institute of Virology, University of Vienna, A-1095 Vienna, Austria
| | | |
Collapse
|
43
|
Abstract
Cell surface macromolecules play a crucial role in the biology and pathobiology of flaviviruses, both as receptors for virus entry and as signaling molecules for cell–cell interactions in the processes of vascular permeability and inflammation. This review examines the cell tropism and pathogenesis of flaviviruses from the standpoint of cell surface molecules, which have been implicated as receptors in both virus–cell as well as cell–cell interactions. The emerging picture is one that encompasses extensive regulation and interplay among the invading virus, viral immune complexes, Fc receptors, major histocompatibility complex antigens, and adhesion molecules.
Collapse
Affiliation(s)
- Robert Anderson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| |
Collapse
|
44
|
Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 2003; 100:6986-91. [PMID: 12759475 PMCID: PMC165817 DOI: 10.1073/pnas.0832193100] [Citation(s) in RCA: 787] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus is an emerging global health threat. Its major envelope glycoprotein, E, mediates viral attachment and entry by membrane fusion. A crystal structure of the soluble ectodomain of E from dengue virus type 2 reveals a hydrophobic pocket lined by residues that influence the pH threshold for fusion. The pocket, which accepts a hydrophobic ligand, opens and closes through a conformational shift in a beta-hairpin at the interface between two domains. These features point to a structural pathway for the fusion-activating transition and suggest a strategy for finding small-molecule inhibitors of dengue and other flaviviruses.
Collapse
Affiliation(s)
- Yorgo Modis
- Howard Hughes Medical Institute, Children's Hospital and Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Lai CJ, Monath TP. Chimeric Flaviviruses: Novel Vaccines against Dengue Fever, Tick-borne Encephalitis, and Japanese Encephalitis. Adv Virus Res 2003; 61:469-509. [PMID: 14714441 DOI: 10.1016/s0065-3527(03)61013-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many arthropod-borne flaviviruses are important human pathogens responsible for diverse illnesses, including YF, JE, TBE, and dengue. Live, attenuated vaccines have afforded the most effective and economical means of prevention and control, as illustrated by YF 17D and JE SA14-14-2 vaccines. Recent advances in recombinant DNA technology have made it possible to explore a novel approach for developing live attenuated flavivirus vaccines against other flaviviruses. Full-length cDNA clones allow construction of infectious virus bearing attenuating mutations or deletions incorporated in the viral genome. It is also possible to create chimeric flaviviruses in which the structural protein genes for the target antigens of a flavivirus are replaced by the corresponding genes of another flavivirus. By combining these molecular techniques, the DNA sequences of DEN4 strain 814669, DEN2 PDK-53 candidate vaccine and YF 17D vaccine have been used as the genetic backbone to construct chimeric flaviviruses with the required attenuation phenotype and expression of the target antigens. Encouraging results from preclinical and clinical studies have shown that several chimeric flavivirus vaccines have the safety profile and satisfactory immunogenicity and protective efficacy to warrant further evaluation in humans. The chimeric flavivirus strategy has led to the rapid development of novel live-attenuated vaccines against dengue, TBE, JE, and West Nile viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chimera/genetics
- Chimera/immunology
- DNA, Viral/genetics
- Dengue/immunology
- Dengue/prevention & control
- Dengue Virus/genetics
- Dengue Virus/immunology
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Flavivirus/genetics
- Flavivirus/immunology
- Genetic Engineering
- Humans
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/isolation & purification
- Molecular Sequence Data
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/isolation & purification
- Viral Vaccines/genetics
- Viral Vaccines/isolation & purification
Collapse
Affiliation(s)
- Ching-Juh Lai
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Abstract
It will be apparent to the reader that there is much to learn about the pathogenesis of YF. The role of specific genes and molecular determinants of neurotropism and viscerotropism has been defined only partially. The availability of infectious clones and a small animal (hamster) model should allow dissection of virulence factors, which can then be tested in the more difficult monkey model. The marked differences between wild-type YF strains should be evaluated by evaluating the relationships between virulence and genome sequence. The role of cytokine dysregulation and endothelial injury in YF will be elucidated as access to patients and of patients to more sophisticated medical care improves. The number of cases of YF in unvaccinated travelers hospitalized after return from the tropics has unfortunately increased, but such cases afford unique opportunities to study the pathogenesis of renal failure, coagulopathy, vascular instability, and shock, as well as new treatment modalities. At the cellular level, there are also important opportunities for research on YF virus-cell receptor interactions, the control of apoptotic cell death, and the predilection for cells of the midzone of the liver lobule. The role of dendritic cells in the early stage of YF infection is deserving of study. Finally, the role of the immune response to infection, particularly cellular immunity, is poorly characterized, and the suggestion that immune clearance may aggravate the condition of the host during the period of intoxication should be evaluated in appropriate animal models.
Collapse
Affiliation(s)
- Thomas P Monath
- Acambis Inc. and Department of Microbiology and Immunology, Harvard School of Public Health, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
47
|
Hurrelbrink RJ, McMinn PC. Molecular Determinants of Virulence: The Structural and Functional Basis for Flavivirus Attenuation. Adv Virus Res 2003; 60:1-42. [PMID: 14689690 DOI: 10.1016/s0065-3527(03)60001-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Robert J Hurrelbrink
- Department of Virology, Telethon Institute for Child Health Research, University of Western Australia, Perth, WA 6008, Australia
| | | |
Collapse
|
48
|
Monath TP, Arroyo J, Levenbook I, Zhang ZX, Catalan J, Draper K, Guirakhoo F. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J Virol 2002; 76:1932-43. [PMID: 11799188 PMCID: PMC135909 DOI: 10.1128/jvi.76.4.1932-1943.2002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 11/06/2001] [Indexed: 01/09/2023] Open
Abstract
A chimeric yellow fever (YF) virus/Japanese encephalitis (JE) virus vaccine (ChimeriVax-JE) was constructed by insertion of the prM-E genes from the attenuated JE virus SA14-14-2 vaccine strain into a full-length cDNA clone of YF 17D virus. Passage in fetal rhesus lung (FRhL) cells led to the emergence of a small-plaque virus containing a single Met-->Lys amino acid mutation at E279, reverting this residue from the SA14-14-2 to the wild-type amino acid. A similar virus was also constructed by site-directed mutagenesis (J. Arroyo, F. Guirakhoo, S. Fenner, Z.-X. Zhang, T. P. Monath, and T. J. Chambers, J. Virol. 75:934-942, 2001). The E279 mutation is located in a beta-sheet in the hinge region of the E protein that is responsible for a pH-dependent conformational change during virus penetration from the endosome into the cytoplasm of the infected cell. In independent transfection-passage studies with FRhL or Vero cells, mutations appeared most frequently in hinge 4 (bounded by amino acids E266 to E284), reflecting genomic instability in this functionally important region. The E279 reversion caused a significant increase in neurovirulence as determined by the 50% lethal dose and survival distribution in suckling mice and by histopathology in rhesus monkeys. Based on sensitivity and comparability of results with those for monkeys, the suckling mouse is an appropriate host for safety testing of flavivirus vaccine candidates for neurotropism. After intracerebral inoculation, the E279 Lys virus was restricted with respect to extraneural replication in monkeys, as viremia and antibody levels (markers of viscerotropism) were significantly reduced compared to those for the E279 Met virus. These results are consistent with the observation that empirically derived vaccines developed by mouse brain passage of dengue and YF viruses have increased neurovirulence for mice but reduced viscerotropism for humans.
Collapse
|