1
|
Juxtaposition of two distant, serine-arginine-rich protein-binding elements is required for optimal polyadenylation in Rous sarcoma virus. J Virol 2011; 85:11351-60. [PMID: 21849435 DOI: 10.1128/jvi.00721-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rous sarcoma virus (RSV) polyadenylation site (PAS) is very poorly used in vitro due to suboptimal upstream and downstream elements, and yet ∼85% of viral transcripts are polyadenylated in vivo. The mechanisms that orchestrate polyadenylation at the weak PAS are not completely understood. It was previously shown that serine-arginine (SR)-rich proteins stimulate RSV PAS use in vitro and in vivo. It has been proposed that viral RNA polyadenylation is stimulated through a nonproductive splice complex that forms between a pseudo 5' splice site (5'ss) within the negative regulator of splicing (NRS) and a downstream 3'ss, which repositions NRS-bound SR proteins closer to the viral PAS. This repositioning is thought to be important for long-distance poly(A) stimulation by the NRS. We report here that a 308-nucleotide deletion downstream of the env 3'ss decreased polyadenylation efficiency, suggesting the presence of an additional element required for optimal RSV polyadenylation. Mapping studies localized the poly(A) stimulating element to a region coincident with the Env splicing enhancer, which binds SR proteins, and inactivation of the enhancer and SR protein binding decreased polyadenylation efficiency. The positive effect of the Env enhancer on polyadenylation could be uncoupled from its role in splicing. As with the NRS, the Env enhancer also stimulated use of the viral PAS in vitro. These results suggest that a critical threshold of SR proteins, achieved by juxtaposition of SR protein binding sites within the NRS and Env enhancer, is required for long-range polyadenylation stimulation.
Collapse
|
2
|
Abstract
Upon integration into the host chromosome, retroviral gene expression requires transcription by the host RNA polymerase II, and viral messages are subject RNA processing events including 5'-end capping, pre-mRNA splicing, and polyadenylation. At a minimum, RNA splicing is required to generate the env mRNA, but viral replication requires substantial amounts of unspliced RNA to serve as mRNA and for incorporation into progeny virions as genomic RNA. Therefore, splicing has to be controlled to preserve the large unspliced RNA pool. Considering the current view that splicing and polyadenylation are coupled, the question arises as to how genome-length viral RNA is efficiently polyadenylated in the absence of splicing. Polyadenylation of many retroviral mRNAs is inefficient; in avian retroviruses, approximately 15 percent of viral transcripts extend into and are polyadenylated at downstream host genes, which often has profound biological consequences. Retroviruses have served as important models to study RNA processing and this review summarizes a body of work using avian retroviruses that has led to the discovery of novel RNA splicing and polyadenylation control mechanisms.
Collapse
Affiliation(s)
- Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
3
|
Wilusz JE, Beemon KL. The negative regulator of splicing element of Rous sarcoma virus promotes polyadenylation. J Virol 2006; 80:9634-40. [PMID: 16973567 PMCID: PMC1617230 DOI: 10.1128/jvi.00845-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Rous sarcoma virus gag gene contains a cis-acting negative regulator of splicing (NRS) element that is implicated in viral polyadenylation regulation. To study the mechanism of polyadenylation promotion at the viral poly(A) site located over 8 kb downstream, we performed in vitro polyadenylation analysis. RNA containing only the poly(A) site and flanking sequences in the 3' long terminal repeat (LTR) was not polyadenylated detectably in vitro; however, if the transcript contained the NRS upstream of the LTR, polyadenylation was observed. Insertion of the viral env 3' splice site sequence between the NRS and the LTR did not alter the level of polyadenylation appreciably. We conclude that the NRS promotes polyadenylation in vitro and can do so without formation of a splicing complex with a 3' splice site. We then explored the roles of several cellular factors in NRS-mediated polyadenylation. Mutation of the binding sites of U1 and U11 snRNPs to the NRS did not affect polyadenylation, whereas hnRNP H strongly inhibited polyadenylation. We propose a model in which hnRNP H and SR proteins compete for binding to the NRS. Bound SR proteins may bridge between the NRS and the 3' LTR and aid in the recruitment of the 3'-end processing machinery.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
4
|
Kraunus J, Zychlinski D, Heise T, Galla M, Bohne J, Baum C. Murine leukemia virus regulates alternative splicing through sequences upstream of the 5' splice site. J Biol Chem 2006; 281:37381-90. [PMID: 17038324 DOI: 10.1074/jbc.m601537200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the primary transcript plays a key role in retroviral gene expression. In contrast to all known mechanisms that mediate alternative splicing in retroviruses, we found that in murine leukemia virus, distinct elements located upstream of the 5' splice site either inhibited or activated splicing of the genomic RNA. Detailed analysis of the first untranslated exon showed that the primer binding site (PBS) activates splicing, whereas flanking sequences either downstream or upstream of the PBS are inhibitory. This new function of the PBS was independent of its orientation and primer binding but associated with a particular destabilizing role in a proposed secondary structure. On the contrary, all sequences surrounding the PBS that are involved in stem formation of the first exon were found to suppress splicing. Targeted mutations that destabilized the central stem and compensatory mutations of the counter strand clearly validated the concept that murine leukemia virus attenuates its 5' splice site by forming an inhibitory stem-loop in its first exon. Importantly, this mode of splice regulation was conserved in a complete proviral clone. Some of the mutants that increase splicing revealed an opposite effect on translation, implying that the first exon also regulates this process. Together, these findings suggest that sequences upstream of the 5' splice site play an important role in splice regulation of simple retroviruses, directly or indirectly attenuating the efficiency of splicing.
Collapse
Affiliation(s)
- Janine Kraunus
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Cochrane AW, McNally MT, Mouland AJ. The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 2006; 3:18. [PMID: 16545126 PMCID: PMC1475878 DOI: 10.1186/1742-4690-3-18] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional events in the life of an RNA including RNA processing, transport, translation and metabolism are characterized by the regulated assembly of multiple ribonucleoprotein (RNP) complexes. At each of these steps, there is the engagement and disengagement of RNA-binding proteins until the RNA reaches its final destination. For retroviral genomic RNA, the final destination is the capsid. Numerous studies have provided crucial information about these processes and serve as the basis for studies on the intracellular fate of retroviral RNA. Retroviral RNAs are like cellular mRNAs but their processing is more tightly regulated by multiple cis-acting sequences and the activities of many trans-acting proteins. This review describes the viral and cellular partners that retroviral RNA encounters during its maturation that begins in the nucleus, focusing on important events including splicing, 3' end-processing, RNA trafficking from the nucleus to the cytoplasm and finally, mechanisms that lead to its compartmentalization into progeny virions.
Collapse
Affiliation(s)
- Alan W Cochrane
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital and McGill University, 3755 Côte-Ste-Catherine Road, H3T 1E2, Canada
| |
Collapse
|
6
|
|
7
|
Giles KE, Beemon KL. Retroviral splicing suppressor sequesters a 3' splice site in a 50S aberrant splicing complex. Mol Cell Biol 2005; 25:4397-405. [PMID: 15899846 PMCID: PMC1140646 DOI: 10.1128/mcb.25.11.4397-4405.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retroviral replication requires both spliced and unspliced mRNAs. Splicing suppression of avian retroviral RNA depends in part upon a cis-acting element within the gag gene called the negative regulator of splicing (NRS). The NRS, linked to a downstream intron and exon (NRS-Ad3'), was not capable of splicing in vitro. However, a double-point mutation in the NRS pseudo-5' splice site sequence converted it into a functional 5' splice site. The wild-type (WT) NRS-Ad3' transcript assembled an approximately 50S spliceosome-like complex in vitro; its sedimentation rate was similar to that of a functional spliceosome formed on the mutant NRS-Ad3' RNA. The five major spliceosomal snRNPs were observed in both complexes by affinity selection. In addition, U11 snRNP was present only in the WT NRS-Ad3' complex. Addition of heparin to these complexes destabilized the WT NRS-Ad3' complex; it was incapable of forming a B complex on a native gel. Furthermore, the U5 snRNP protein, hPrp8, did not cross-link to the NRS pseudo-5' splice site, suggesting that the tri-snRNP complex was not properly associated with it. We propose that this aberrant, stalled spliceosome, containing U1, U2, and U11 snRNPs and a loosely associated tri-snRNP, sequesters the 3' splice site and prevents its interaction with the authentic 5' splice site upstream of the NRS.
Collapse
Affiliation(s)
- Keith E Giles
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
8
|
Cabello-Villegas J, Giles KE, Soto AM, Yu P, Mougin A, Beemon KL, Wang YX. Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor. RNA (NEW YORK, N.Y.) 2004; 10:1388-1398. [PMID: 15317975 PMCID: PMC1370626 DOI: 10.1261/rna.7020804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 06/09/2004] [Indexed: 05/24/2023]
Abstract
Control of Rous sarcoma virus RNA splicing depends in part on the interaction of U1 and U11 snRNPs with an intronic RNA element called the negative regulator of splicing (NRS). A 23mer RNA hairpin (NRS23) of the NRS directly binds U1 and U11 snRNPs. Mutations that disrupt base-pairing between the loop of NRS23 and U1 snRNA abolish its negative control of splicing. We have determined the solution structure of NRS23 using NOEs, torsion angles, and residual dipolar couplings that were extracted from multidimensional heteronuclear NMR spectra. Our structure showed that the 6-bp stem of NRS23 adopts a nearly A-form duplex conformation. The loop, which consists of 11 residues according to secondary structure probing, was in a closed conformation. U913, the first residue in the loop, was bulged out or dynamic, and loop residues G914-C923, G915-U922, and U916-A921 were base-paired. The remaining UUGU tetraloop sequence did not adopt a stable structure and appears flexible in solution. This tetraloop differs from the well-known classes of tetraloops (GNRA, CUYG, UNCG) in terms of its stability, structure, and function. Deletion of the bulged U913, which is not complementary to U1 snRNA, increased the melting temperature of the RNA hairpin. This hyperstable hairpin exhibited a significant decrease in binding to U1 snRNP. Thus, the structure of the NRS RNA, as well as its sequence, is important for interaction with U1 snRNP and for splicing suppression.
Collapse
Affiliation(s)
- Javier Cabello-Villegas
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, CCR, National Cancer Institute-Frederick, National Institutes of Health, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
McNally LM, Yee L, McNally MT. Two regions promote U11 small nuclear ribonucleoprotein particle binding to a retroviral splicing inhibitor element (negative regulator of splicing). J Biol Chem 2004; 279:38201-8. [PMID: 15252020 DOI: 10.1074/jbc.m407073200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rous sarcoma virus (RSV) negative regulator of splicing (NRS) is an RNA element that represses splicing and promotes polyadenylation of viral RNA. The NRS acts as a pseudo 5' splice site (ss), and serine-arginine (SR) proteins, U1snRNP, and U6 small nuclear ribonucleoproteins (snRNPs) are implicated in its function. The NRS also efficiently binds U11 snRNP of the U12-dependent splicing pathway, which is interesting, because U11 binds only poorly to authentic substrates that lack a U12-type 3' splice site. It is of considerable interest to understand how the low abundance U11 snRNP binds the NRS so well. Here we show that U11 can bind the NRS as a mono-snRNP in vitro and that a G-rich element located downstream of the U11 site is required for efficient binding. Mutational analyses indicated that two of four G tracts in this region were important for optimal U11 binding and that the G-rich region did not function indirectly by promoting U1 snRNP binding to an overlapping site. Surprisingly, inactivation of U2 snRNP also decreased U11 binding to the NRS. The NRS harbors a branch point-like/pyrimidine tract sequence (BP/Py) just upstream of the U1/U11 site that is characteristic of 3' splice sites. Deletion of this region decreased U2 and U11 binding, and deletion of the G-rich region also reduced U2 binding. The G element, but not the BP/Py sequence, was also required for U11 binding to the NRS in vivo as assessed by minor class splicing from the NRS to a minor class 3'ss from the P120 gene. These results indicate that efficient U11 binding to the isolated NRS involves at least two elements in addition to the U11 consensus sequence and may have implications for U11 binding to authentic splicing substrates.
Collapse
Affiliation(s)
- Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
10
|
Wang Y, McNally MT. Position dependence of the Rous sarcoma virus negative regulator of splicing element reflects proximity to a 5' splice site. Virology 2003; 313:629-37. [PMID: 12954228 DOI: 10.1016/s0042-6822(03)00378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rous sarcoma virus (RSV) requires incomplete splicing of its viral transcripts to maintain efficient replication. A splicing inhibitor element, the negative regulator of splicing (NRS), is located near the 5' end of the RNA but the significance of this positioning is not known. In a heterologous intron the NRS functions optimally when positioned close to the authentic 5' splice site. This observation led us to investigate the basis of the position dependence. Four explanations were put forth and stressed the role of three major elements involved in splicing, the 3' splice site, the 5' splice site, and the 5' end cap structure. NRS function was unrelated to its position relative to the 3' splice site or the cap structure and appeared to depend on its position relative to the authentic 5' splice site. We conclude that position dependence may reflect distance constraints necessary for competition of the NRS with the authentic 5' splice site for pairing with the 3' splice sites.
Collapse
Affiliation(s)
- Yuedi Wang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
11
|
Chabot B, LeBel C, Hutchison S, Nasim FH, Simard MJ. Heterogeneous nuclear ribonucleoprotein particle A/B proteins and the control of alternative splicing of the mammalian heterogeneous nuclear ribonucleoprotein particle A1 pre-mRNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:59-88. [PMID: 12494763 DOI: 10.1007/978-3-662-09728-1_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- B Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
12
|
O'Sullivan CT, Polony TS, Paca RE, Beemon KL. Rous sarcoma virus negative regulator of splicing selectively suppresses SRC mRNA splicing and promotes polyadenylation. Virology 2002; 302:405-12. [PMID: 12441084 DOI: 10.1006/viro.2002.1616] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses require a balance of spliced and unspliced RNA for efficient replication. Here, we examined the effect of mutations in a splicing suppressor sequence called the negative regulator of splicing (NRS), located within the gag gene of Rous sarcoma virus. While the NRS mutant viruses showed only small changes in the levels of spliced env mRNAs, they had significant increases in src mRNA levels and transformed cells more efficiently than wild-type virus. None of these mutations prevented viral replication; however, some of the mutant viruses replicated more slowly than wild-type virus. In addition, increased transcriptional readthrough of the poly(A) site in the 3' LTR was observed with the NRS mutant viruses, suggesting that the wild-type NRS sequence promotes polyadenylation.
Collapse
|
13
|
Simard MJ, Chabot B. SRp30c is a repressor of 3' splice site utilization. Mol Cell Biol 2002; 22:4001-10. [PMID: 12024014 PMCID: PMC133842 DOI: 10.1128/mcb.22.12.4001-4010.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 02/21/2002] [Accepted: 03/11/2002] [Indexed: 01/04/2023] Open
Abstract
Several intron elements influence exon 7B skipping in the mammalian hnRNP A1 pre-mRNA. We have shown previously that the 38-nucleotide CE9 element located in the intron separating alternative exon 7B from exon 8 can repress the use of a downstream 3' splice site. The ability of CE9 to act on heterologous substrates, combined with the results of competition and gel shift assays, indicates that the activity of CE9 is mediated by a trans-acting factor. UV cross-linking analysis revealed the specific association of a 25-kDa nuclear protein with CE9. Using RNA affinity chromatography, we isolated a 25-kDa protein that binds to CE9 RNA. This protein corresponds to SRp30c. Consistent with a role for SRp30c in the activity of CE9, recombinant SRp30c interacts specifically with CE9 and can promote splicing repression in vitro in a CE9-dependent manner. The closest homologue of SRp30c, ASF/SF2, does not bind to CE9 and does not repress splicing even when the intronic SRp30c binding sites are replaced with high-affinity ASF/SF2 binding sites. Only the first 7 nucleotides of CE9 are sufficient for binding to SRp30c, and mutations that abolish binding also prevent repression. Our results indicate that SRp30c can function as a repressor of 3' splice site utilization and suggest that the SRp30c-CE9 interaction may contribute to the control of hnRNP A1 alternative splicing.
Collapse
Affiliation(s)
- Martin J Simard
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|