1
|
Tariq MH, Bhatti R, Ali NF, Ashfaq UA, Shahid F, Almatroudi A, Khurshid M. Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS One 2021; 16:e0258443. [PMID: 34705829 PMCID: PMC8550388 DOI: 10.1371/journal.pone.0258443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is an infectious virus that has been linked to adult T cell leukemia /lymphoma, aggressive CD4-T cell malignancy and many other immune-related medical illnesses. So far, no effective vaccine is known to combat HTLV-1, hence, the current research work was performed to design a potential multi-epitope-based subunit vaccine (MEBV) by adopting the latest methodology of reverse vaccinology. Briefly, three highly antigenic proteins (Glycoprotein, Accessory protein, and Tax protein) with no or minimal (<37%) similarity with human proteome were sorted out and potential B- and T-cell epitopes were forecasted from them. Highly antigenic, immunogenic, non-toxic, non-allergenic and overlapping epitopes were short-listed for vaccine development. The chosen T-cell epitopes displayed a strong binding affinity with their corresponding Human Leukocyte Antigen alleles and demonstrated 95.8% coverage of the world's population. Finally, nine Cytotoxic T Lymphocytes, six Helper T Lymphocytes and five Linear B Lymphocytes epitopes, joint through linkers and adjuvant, were exploited to design the final MEBV construct, comprising of 382 amino acids. The developed MEBV structure showed highly antigenic properties while being non-toxic, soluble, non-allergenic, and stable in nature. Moreover, disulphide engineering further enhanced the stability of the final vaccine protein. Additionally, Molecular docking analysis and Molecular Dynamics (MD) simulations confirmed the strong association between MEBV construct and human pathogenic immune receptor TLR-3. Repeated-exposure simulations and Immune simulations ensured the rapid antigen clearance and higher levels of cell-mediated immunity, respectively. Furthermore, MEBV codon optimization and in-silico cloning was carried out to confirm its augmented expression. Results of our experiments suggested that the proposed MEBV could be a potential immunogenic against HTLV-1; nevertheless, additional wet lab experiments are needed to elucidate our conclusion.
Collapse
Affiliation(s)
- Muhammad Hamza Tariq
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Rashid Bhatti
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nida Fatima Ali
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
D'Agostino DM, Cavallari I, Romanelli MG, Ciminale V. Post-transcriptional Regulation of HTLV Gene Expression: Rex to the Rescue. Front Microbiol 2019; 10:1958. [PMID: 31507567 PMCID: PMC6714889 DOI: 10.3389/fmicb.2019.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and other members of the Deltaretrovirus genus code for a regulatory protein named Rex that binds to the Rex-responsive element present on viral mRNAs. Rex rescues viral mRNAs from complete splicing or degradation and guides them to the cytoplasm for translation. The activity of Rex is essential for expression of viral transcripts coding for the virion components and thus represents a potential target for virus eradication. We present an overview of the functional properties of the HTLV-1 and HTLV-2 Rex proteins (Rex-1 and Rex-2), outline mechanisms controlling Rex function, and discuss similarities and differences in the sequences of Rex coded by HTLV-1, -2, -3, and -4 that may influence their molecular anatomy and functional properties.
Collapse
Affiliation(s)
| | | | - Maria Grazia Romanelli
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Ciminale
- Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Kheirabadi M, Taghdir M. Is unphosphorylated Rex, as multifunctional protein of HTLV-1, a fully intrinsically disordered protein? An in silico study. Biochem Biophys Rep 2016; 8:14-22. [PMID: 28955936 PMCID: PMC5613702 DOI: 10.1016/j.bbrep.2016.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023] Open
Abstract
Intracellularlocation of a viral unspliced mRNA in host cell is a crucial factor for normal life of the virus. Rex is a neucleo-cytoplasmic shuffling protein of Human T-cell Leukemia Virus-1(HTLV-1)which has important role in active transport of cargo-containing RNA from nucleus to cytoplasm. Therefore, it plays a crucial role in the disease development by the virus. In spite of its importance, the 3d-structurephosphorylated and unphosphorylated of this protein has not been determined. In this study, first we predicted whether Rex protein is an ordered or disordered protein. In second step protein 3Dstructure of Rex was obtained. The content of disorder-promoting amino acids, flexibility, hydrophobicity, short linear motifs (SLiMs) and protein binding regions and probability of Rex crystallization were calculated by various In Silico methods. The3D models of Rex protein were obtained by various In Silico methods, such as homology modeling, threading and ab initio, including; I-TASSER, LOMETS, SPARSKS, ROBBETA and QUARK servers. By comparing and analyzing Qmean, z-scores and energy levels of selected models, the best structures with highest favored region in Ramachandran plot (higher than 90%) was refined with MODREFINER software. In silico analysis of Rex physicochemical properties and also predicted SLiMs and binding regions sites confirms that unphosphorylated Rex protein in HTLV-1 as Rev protin in HIV is wholly disordered protein belongs to the class of intrinsically disordered proteins with extended disorder (native coils, native pre-molten globules). Physico-chemical properties of Rex protein were confirmed unphosphorilated Rex protein is a wholly intrinsically disordered protein. The 3d-structure model of Rex protein was determined.
Collapse
Affiliation(s)
- Mitra Kheirabadi
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, 9617976487 Sabzevar, Iran
| | - Majid Taghdir
- Departmentof Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Localization and sub-cellular shuttling of HTLV-1 tax with the miRNA machinery. PLoS One 2012; 7:e40662. [PMID: 22808228 PMCID: PMC3393700 DOI: 10.1371/journal.pone.0040662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022] Open
Abstract
The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus.
Collapse
|
5
|
Regulation of nucleocytoplasmic trafficking of viral proteins: an integral role in pathogenesis? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2176-90. [PMID: 21530593 PMCID: PMC7114211 DOI: 10.1016/j.bbamcr.2011.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/15/2011] [Accepted: 03/30/2011] [Indexed: 12/24/2022]
Abstract
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.
Collapse
|
6
|
Abe M, Suzuki H, Nishitsuji H, Shida H, Takaku H. Interaction of human T-cell lymphotropic virus type I Rex protein with Dicer suppresses RNAi silencing. FEBS Lett 2010; 584:4313-8. [PMID: 20869963 DOI: 10.1016/j.febslet.2010.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 01/23/2023]
Abstract
Double-stranded RNAs suppress the expression of homologous genes through an evolutionarily conserved process called RNA interference (RNAi) or post-transcriptional gene silencing. A bidentate nuclease called Dicer has been implicated as the protein responsible for the production of short interfering RNAs (siRNAs). In our experiments, Rex overexpression reduced the efficiency of short hairpin RNA (shRNA)-mediated RNAi. The interaction of Dicer with Rex inhibited the conversion of shRNA to siRNA. These results suggest that the interaction of Dicer with HTLV-I Rex inhibits Dicer activity and thereby reduces the efficiency of the conversion of shRNA to siRNA.
Collapse
Affiliation(s)
- Makoto Abe
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Narashino, Chiba, Japan
| | | | | | | | | |
Collapse
|
7
|
Kesic M, Doueiri R, Ward M, Semmes OJ, Green PL. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 2009; 6:105. [PMID: 19919707 PMCID: PMC2780990 DOI: 10.1186/1742-4690-6-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1) is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into the regulation of Rex-1 function.
Collapse
Affiliation(s)
- Matthew Kesic
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
8
|
Site-specific phosphorylation regulates human T-cell leukemia virus type 2 Rex function in vivo. J Virol 2009; 83:8859-68. [PMID: 19553333 DOI: 10.1128/jvi.00908-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 2 (HTLV-2) Rex is a transacting regulatory protein required for efficient cytoplasmic expression of the unspliced and incompletely spliced viral mRNA transcripts encoding the structural and enzymatic proteins. Previously, it was demonstrated that phosphorylation of Rex-2, predominantly on serine residues, is correlated with an altered conformation, as observed by a gel mobility shift and the detection of two related protein species (p24(Rex) and p26(Rex)). Rex-2 phosphorylation is required for specific binding to its viral-mRNA target sequence and inhibition of mRNA splicing and may be linked to subcellular compartmentalization. Thus, the phosphorylation-induced structural state of Rex in the infected cell may be a switch that determines whether HTLV exists in a latent or productive state. We conducted a phosphoryl and functional mapping of both structural forms of mammalian-cell-expressed Rex 2 using affinity purification, liquid chromatography-tandem mass spectrometry, and site-directed substitutional mutational analysis. We identified two phosphorylation sites in p24(Rex) at Ser-117 and Thr-164. We also identified six phosphorylation sites in p26(Rex) at Thr-19, Ser-117, Ser-125, Ser-151, Ser-153, and Thr-164. We evaluated the functional significance of these phosphorylation events and found that phosphorylation on Thr-164, Ser-151, and Ser-153 is critical for Rex-2 function in vivo and that phosphorylation of Ser-151 is correlated with nuclear/nucleolar subcellular localization. Overall, this work is the first to completely map the phosphorylation sites in Rex-2 and provides important insight into the phosphorylation continuum that tightly regulates Rex-2 structure, cellular localization, and function.
Collapse
|
9
|
Human T-cell leukemia virus type 2 Rex carboxy terminus is an inhibitory/stability domain that regulates Rex functional activity and viral replication. J Virol 2009; 83:5232-43. [PMID: 19279097 DOI: 10.1128/jvi.02271-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) regulatory protein, Rex, functions to increase the expression of the viral structural and enzymatic gene products. The phosphorylation of two serine residues (S151 and S153) at the C terminus is important for the function of HTLV-2 Rex (Rex-2). The Rex-2 phosphomimetic double mutant (S151D, S153D) is locked in a functionally active conformation. Since rex and tax genes overlap, Rex S151D and S153D mutants were found to alter the Tax oncoprotein coding sequence and transactivation activities. Therefore, additional Rex-2 mutants including P152D, A157D, S151Term, and S158Term were generated and characterized ("Term" indicates termination codon). All Rex-2 mutants and wild-type (wt) Rex-2 localized predominantly to the nucleus/nucleolus, but in contrast to the detection of phosphorylated and unphosphorylated forms of wt Rex-2 (p26 and p24), mutant proteins were detected as a single phosphoprotein species. We found that Rex P152D, A157D, and S158Term mutants are more functionally active than wt Rex-2 and that the Rex-2 C terminus and its specific phosphorylation state are required for stability and optimal expression. In the context of the provirus, the more active Rex mutants (A157D or S158Term) promoted increased viral protein production, increased viral infectious spread, and enhanced HTLV-2-mediated cellular proliferation. Moreover, these Rex mutant viruses replicated and persisted in inoculated rabbits despite higher antiviral antibody responses. Thus, we identified in Rex-2 a novel C-terminal inhibitory domain that regulates functional activity and is positively regulated through phosphorylation. The ability of this domain to modulate viral replication likely plays a key role in the infectious spread of the virus and in virus-induced cellular proliferation.
Collapse
|
10
|
Yamamoto B, Li M, Kesic M, Younis I, Lairmore MD, Green PL. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo. Retrovirology 2008; 5:38. [PMID: 18474092 PMCID: PMC2405800 DOI: 10.1186/1742-4690-5-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/12/2008] [Indexed: 11/30/2022] Open
Abstract
Background Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28) was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for viral replication and cellular immortalization of primary T-lymphocytes in cell culture. However, our data indicate that p28 function is critical for viral survival in vivo. Our results are consistent with the hypothesis that p28 repression of Tax and Rex-mediated viral gene expression may facilitate survival of these cells by down-modulating overall viral gene expression.
Collapse
Affiliation(s)
- Brenda Yamamoto
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Younis I, Yamamoto B, Phipps A, Green PL. Human T-cell leukemia virus type 1 expressing nonoverlapping tax and rex genes replicates and immortalizes primary human T lymphocytes but fails to replicate and persist in vivo. J Virol 2006; 79:14473-81. [PMID: 16282446 PMCID: PMC1287553 DOI: 10.1128/jvi.79.23.14473-14481.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus associated primarily with adult T-cell leukemia and neurological disease. HTLV-1 encodes the positive trans-regulatory proteins Tax and Rex, both of which are essential for viral replication. Tax activates transcription initiation from the viral long terminal repeat and modulates the transcription or activity of a number of cellular genes. Rex regulates gene expression posttranscriptionally by facilitating the cytoplasmic expression of incompletely spliced viral mRNAs. Tax and Rex mutants have been identified that have defective activities or impaired biochemical properties associated with their function. To ultimately determine the contribution of specific protein activities on viral replication and cellular transformation of primary T cells, mutants need to be characterized in the context of an infectious molecular clone. Since the tax and rex genes are in partially overlapping reading frames, mutation in one gene frequently disrupts the other, confounding interpretation of mutational analyses in the context of the virus. Here we generated and characterized a unique proviral clone (H1IT) in which the tax and rex genes were separated by expressing Tax from an internal ribosome entry site. We showed that H1IT expresses both functional Tax and Rex. In short- and long-term coculture assays, H1IT was competent to infect and immortalize primary human T cells similar to wild-type HTLV-1. In contrast, H1IT failed to efficiently replicate and persist in inoculated rabbits, thus emphasizing the importance of temporal and quantitative regulation of specific mRNA for viral survival in vivo.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
12
|
Stork J, Panaviene Z, Nagy PD. Inhibition of in vitro RNA binding and replicase activity by phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus. Virology 2005; 343:79-92. [PMID: 16154612 DOI: 10.1016/j.virol.2005.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/10/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Tombusviruses, which are small plus-strand RNA viruses of plants, require the viral-coded p33 replication co-factor for template selection and recruitment into replication in infected cells. As presented in the accompanying paper [Shapka, N., Stork, J., Nagy, P.D., 2005. Phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus adjacent to the RNA binding site affects viral RNA replication. J. Virol. 343, 65-78.], p33 can be phosphorylated in vitro at serine and threonine residues adjacent to its arginine-proline-rich RNA binding site. To test the effect of phosphorylation on p33 function, in this paper, we used phosphorylation-mimicking aspartic acid mutants of Cucumber necrosis virus (CNV) p33 and in-vitro-phosphorylated p33 in gel mobility shift experiments. We found that phosphorylation inhibited the ability of p33 to bind to the viral RNA. In contrast, the nonphosphorylation-mimicking alanine mutants of p33 bound to viral RNA as efficiently as the nonphosphorylated wild type p33 did. In vitro assays with purified CNV replicase preparations revealed that phosphorylation-mimicking mutants of p33 did not support the assembly of functional CNV replicase complexes in yeast, a model host. Based on these results, we propose that the primary function of reversible phosphorylation of p33 is to regulate the RNA binding capacity of p33, which could affect the assembly of new viral replicase complexes, recruitment of the viral RNA template into replication and/or release of viral RNA from replication. Thus, phosphorylation of p33 might help in switching the role of the viral RNA from replication to other processes, such as viral RNA encapsidation and cell-to-cell movement in infected hosts.
Collapse
Affiliation(s)
- Jozsef Stork
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
13
|
Younis I, Green PL. The human T-cell leukemia virus Rex protein. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:431-45. [PMID: 15574380 PMCID: PMC2659543 DOI: 10.2741/1539] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A critical step in the life cycle of complex retroviruses, including HTLV-1 and HTLV-2 is the ability of these viruses to adopt a mechanism by which the genome-length unspliced mRNA as well as the partially spliced mRNAs are exported from the nucleus instead of being subjected to splicing or degradation. In HTLV, this is accomplished through the expression of the viral Rex, which recognizes a specific response element on the incompletely spliced mRNAs, stabilizes them, inhibits their splicing, and utilizes the CRM1-dependent cellular pathway for transporting them from the nucleus to the cytoplasm. Rex itself is regulated by phosphorylation, which implies that proper activation of the protein in response to certain cellular cues is an important tool for the virus to ensure that specific viral gene expression is allowed only when the host cell can provide the best conditions for virion production. Having such a critical role in HTLV life cycle, Rex is indispensable for efficient viral replication, infection and spread. Indeed, Rex is considered to regulate the switch between the latent and productive phases of the HTLV life cycle. Without a functional Rex, the virus would still produce regulatory and some accessory gene products; however, structural and enzymatic post-transcriptional gene expression would be severely repressed, essentially leading to non-productive viral replication. More detailed understanding of the exact molecular mechanism of action of Rex will thus allow for better design of therapeutic drugs against Rex function and ultimately HTLV replication. Herein we summarize the progress made towards understanding Rex function and its role in the HTLV life cycle.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Younis I, Khair L, Dundr M, Lairmore MD, Franchini G, Green PL. Repression of human T-cell leukemia virus type 1 and type 2 replication by a viral mRNA-encoded posttranscriptional regulator. J Virol 2004; 78:11077-83. [PMID: 15452228 PMCID: PMC521841 DOI: 10.1128/jvi.78.20.11077-11083.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are complex retroviruses that persist in the host, eventually causing leukemia and neurological disease in a small percentage of infected individuals. In addition to structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory (open reading frame I and II) proteins. The viral Tax and Rex proteins positively regulate virus production. Tax activates viral and cellular transcription to promote T-cell growth and, ultimately, malignant transformation. Rex acts posttranscriptionally to facilitate cytoplasmic expression of viral mRNAs that encode the structural and enzymatic gene products, thus positively controlling virion expression. Here, we report that both HTLV-1 and HTLV-2 have evolved accessory genes to encode proteins that act as negative regulators of both Tax and Rex. HTLV-1 p30(II) and the related HTLV-2 p28(II) inhibit virion production by binding to and retaining tax/rex mRNA in the nucleus. Reduction of viral replication in a cell carrying the provirus may allow escape from immune recognition in an infected individual. These data are consistent with the critical role of these proteins in viral persistence and pathogenesis in animal models of HTLV-1 and HTLV-2 infection.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Michael B, Nair A, Lairmore MD. Role of accessory proteins of HTLV-1 in viral replication, T cell activation, and cellular gene expression. FRONT BIOSCI-LANDMRK 2004; 9:2556-76. [PMID: 15358581 PMCID: PMC2829751 DOI: 10.2741/1417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1), causes adult T cell leukemia/lymphoma (ATLL), and initiates a variety of immune mediated disorders. The viral genome encodes common structural and enzymatic proteins characteristic of all retroviruses and utilizes alternative splicing and alternate codon usage to make several regulatory and accessory proteins encoded in the pX region (pX ORF I to IV). Recent studies indicate that the accessory proteins p12I, p27I, p13II, and p30II, encoded by pX ORF I and II, contribute to viral replication and the ability of the virus to maintain typical in vivo expression levels. Proviral clones that are mutated in either pX ORF I or II, while fully competent in cell culture, are severely limited in their replicative capacity in a rabbit model. These HTLV-1 accessory proteins are critical for establishment of viral infectivity, enhance T-lymphocyte activation and potentially alter gene transcription and mitochondrial function. HTLV-1 pX ORF I expression is critical to the viral infectivity in resting primary lymphocytes suggesting a role for the calcineurin-binding protein p12I in lymphocyte activation. The endoplasmic reticulum and cis-Golgi localizing p12I activates NFAT, a key T cell transcription factor, through calcium-mediated signaling pathways and may lower the threshold of lymphocyte activation via the JAK/STAT pathway. In contrast p30II localizes to the nucleus and represses viral promoter activity, but may regulate cellular gene expression through p300/CBP or related co-activators of transcription. The mitochondrial localizing p13II induces morphologic changes in the organelle and may influence energy metabolism infected cells. Future studies of the molecular details HTLV-1 "accessory" proteins interactions will provide important new directions for investigations of HTLV-1 and related viruses associated with lymphoproliferative diseases. Thus, the accessory proteins of HTLV-1, once thought to be dispensable for viral replication, have proven to be directly involved in viral spread in vivo and represent potential targets for therapeutic intervention against HTLV-1 infection and disease.
Collapse
Affiliation(s)
- Bindhu Michael
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Amithraj Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Michael D. Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
- Corresponding Author: Dr. Michael D. Lairmore, The Ohio State University, Department of Veterinary Biosciences, 1925 Coffey Road, Columbus, OH 43210-1093, Phone: (614) 292-4489. Fax: (614) 292-6473.
| |
Collapse
|
16
|
Narayan M, Younis I, D'Agostino DM, Green PL. Functional domain structure of human T-cell leukemia virus type 2 rex. J Virol 2004; 77:12829-40. [PMID: 14610204 PMCID: PMC262564 DOI: 10.1128/jvi.77.23.12829-12840.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex protein of human T-cell leukemia virus (HTLV) acts posttranscriptionally to induce the cytoplasmic expression of the unspliced and incompletely spliced viral RNAs encoding the viral structural and enzymatic proteins and is therefore essential for efficient viral replication. Rex function requires nuclear import, RNA binding, multimerization, and nuclear export. In addition, it has been demonstrated that the phosphorylation status of HTLV-2 Rex (Rex-2) correlates with RNA binding and inhibition of splicing in vitro. Recent mutational analyses of Rex-2 revealed that the phosphorylation of serine residues 151 and 153 within a novel carboxy-terminal domain is critical for function in vivo. To further define the functional domain structure of Rex-2, we evaluated a panel of Rex-2 mutants for subcellular localization, RNA binding capacity, multimerization and trans-dominant properties, and the ability to shuttle between the nucleus and the cytoplasm. Rex-2 mutant S151A,S153A, which is defective in phosphorylation and function, showed diffuse cytoplasmic staining, whereas mutant S151D,S153D, previously shown to be functional and in a conformation corresponding to constitutive phosphorylation, displayed increased intense speckled staining in the nucleoli. In vivo RNA binding analyses indicated that mutant S151A,S153A failed to efficiently bind target RNA, while its phosphomimetic counterpart, S151D,S153D, bound twofold more RNA than wild-type Rex-2. Taken together, these findings provide direct evidence that the phosphorylation status of Rex-2 is linked to cellular trafficking and RNA binding capacity. Mutants with substitutions in either of the two putative multimerization domains or in the putative activation domain-nuclear export signal displayed a dominant negative phenotype as well as defects in multimerization and nucleocytoplasmic shuttling. Several carboxy-terminal mutants that displayed wild-type levels of phosphorylation and localized to the nucleolus were also partially impaired in shuttling. This is consistent with the hypothesis that the carboxy terminus of Rex-2 contains a novel domain that is required for efficient shuttling. This work thus provides a more detailed functional domain map of Rex-2 and further insight into its regulation of HTLV replication.
Collapse
Affiliation(s)
- Murli Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
17
|
Ye J, Silverman L, Lairmore MD, Green PL. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro. Blood 2003; 102:3963-9. [PMID: 12907436 PMCID: PMC2852248 DOI: 10.1182/blood-2003-05-1490] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex-) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex- proviral clone produced low detectable levels of p19 Gag. 729HTLVRex- stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex- cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)-dependent growth of primary T lymphocytes. These cells carried the HTLVRex- genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex- cells or 729HTLVRex- cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo.
Collapse
Affiliation(s)
- Jianxin Ye
- The Ohio State University, 1925 Coffey Rd, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|