1
|
Zhang J, Yang Y, Wang B, Qiu W, Zhang H, Qiu Y, Yuan J, Dong R, Zha Y. Developing a universal multi-epitope protein vaccine candidate for enhanced borna virus pandemic preparedness. Front Immunol 2024; 15:1427677. [PMID: 39703502 PMCID: PMC11655343 DOI: 10.3389/fimmu.2024.1427677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development. Methods Immunoinformatics and antigenicity-focused protein screening were employed to predict B-cell linear epitopes, B-cell conformational epitopes, and cytotoxic T lymphocyte (CTL) epitopes. Only overlapping epitopes with antigenicity greater than 1 and non-toxic, non-allergenic properties were selected for subsequent vaccine construction. The epitopes were linked using GPGPG linkers, incorporating β-defensins at the N-terminus to enhance immune response, and incorporating Hit-6 at the C-terminus to improve protein solubility and aid in protein purification. Computational tools were used to predict the immunogenicity, physicochemical properties, and structural stability of the vaccine. Molecular docking was performed to predict the stability and dynamics of the vaccine in complex with Toll-like receptor 4 (TLR-4) and major histocompatibility complex I (MHC I) receptors. The vaccine construct was cloned through in silico restriction to create a plasmid for expression in a suitable host. Results Among the six BoDV-1 proteins analyzed, five exhibited high antigenicity scores. From these, eight non-toxic, non-allergenic overlapping epitopes with antigenicity scores greater than 1 were selected for vaccine development. Computational predictions indicated favorable immunogenicity, physicochemical properties, and structural stability. Molecular docking analysis showed that the vaccine remained stable in complex with TLR-4 and MHC I receptors, suggesting strong potential for immune recognition. A plasmid construct was successfully generated, providing a foundation for the experimental validation of vaccines in future pandemic scenarios. Discussion These findings demonstrate the potential of the immunoinformatics-designed multi-epitope vaccines for the prevention and treatment of BoDV-1. Relevant preparations were made in advance for possible future outbreaks and could be quickly utilized for experimental verification.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Youfang Yang
- Department of Nephrology, The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Binyu Wang
- School of Medicine, Guizhou University, Guiyang, China
| | - Wanting Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Helin Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rong Dong
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
2
|
Eidenschink L, Knoll G, Tappe D, Offner R, Drasch T, Ehrl Y, Banas B, Banas MC, Niller HH, Gessner A, Köstler J, Lampl BMJ, Pregler M, Völkl M, Kunkel J, Neumann B, Angstwurm K, Schmidt B, Bauswein M. IFN-γ-Based ELISpot as a New Tool to Detect Human Infections with Borna Disease Virus 1 (BoDV-1): A Pilot Study. Viruses 2023; 15:194. [PMID: 36680234 PMCID: PMC9864614 DOI: 10.3390/v15010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
More than 40 human infections with the zoonotic Borna disease virus 1 (BoDV-1) have been reported to German health authorities from endemic regions in southern and eastern Germany. Diagnosis of a confirmed case is based on the detection of BoDV-1 RNA or BoDV-1 antigen. In parallel, serological assays such as ELISA, immunoblots, and indirect immunofluorescence are in use to detect the seroconversion of Borna virus-reactive IgG in serum or cerebrospinal fluid (CSF). As immunopathogenesis in BoDV-1 encephalitis appears to be driven by T cells, we addressed the question of whether an IFN-γ-based ELISpot may further corroborate the diagnosis. For three of seven BoDV-1-infected patients, peripheral blood mononuclear cells (PBMC) with sufficient quantity and viability were retrieved. For all three patients, counts in the range from 12 to 20 spot forming units (SFU) per 250,000 cells were detected upon the stimulation of PBMC with a peptide pool covering the nucleocapsid protein of BoDV-1. Additionally, individual patients had elevated SFU upon stimulation with a peptide pool covering X or phosphoprotein. Healthy blood donors (n = 30) and transplant recipients (n = 27) were used as a control and validation cohort, respectively. In this pilot study, the BoDV-1 ELISpot detected cellular immune responses in human patients with BoDV-1 infection. Its role as a helpful diagnostic tool needs further investigation in patients with BoDV-1 encephalitis.
Collapse
Affiliation(s)
- Lisa Eidenschink
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Robert Offner
- Department of Transfusion Medicine, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Drasch
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Yvonne Ehrl
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Miriam C Banas
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Josef Köstler
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt M J Lampl
- Regensburg Department of Public Health, 93059 Regensburg, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, 93053 Regensburg, Germany
| | - Matthias Pregler
- Regensburg Department of Public Health, 93059 Regensburg, Germany
| | - Melanie Völkl
- Department of Pediatrics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jürgen Kunkel
- Department of Pediatrics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Bernhard Neumann
- Department of Neurology, Donau-Isar-Klinikum Deggendorf, 94469 Deggendorf, Germany
- Department of Neurology, University of Regensburg, Bezirksklinikum, 93053 Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Bezirksklinikum, 93053 Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Dürrwald R, Kolodziejek J, Oh DY, Herzog S, Liebermann H, Osterrieder N, Nowotny N. Vaccination against Borna Disease: Overview, Vaccine Virus Characterization and Investigation of Live and Inactivated Vaccines. Viruses 2022; 14:2706. [PMID: 36560710 PMCID: PMC9788498 DOI: 10.3390/v14122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Vaccination of horses and sheep against Borna disease (BD) was common in endemic areas of Germany in the 20th century but was abandoned in the early 1990s. The recent occurrence of fatal cases of human encephalitis due to Borna disease virus 1 (BoDV-1) has rekindled the interest in vaccination. (2) Methods: The full genomes of the BD live vaccine viruses "Dessau" and "Giessen" were sequenced and analyzed for the first time. All vaccination experiments followed a proof-of-concept approach. Dose-titration infection experiments were performed in rabbits, based on both cell culture- and brain-derived viruses at various doses. Inactivated vaccines against BD were produced from concentrated cell culture supernatants and investigated in rabbits and horses. The BoDV-1 live vaccine "Dessau" was administered to horses and antibody profiles were determined. (3) Results: The BD live vaccine viruses "Dessau" and "Giessen" belong to clusters 3 and 4 of BoDV-1. Whereas the "Giessen" virus does not differ substantially from field viruses, the "Dessau" virus shows striking differences in the M gene and the N-terminal part of the G gene. Rabbits infected with high doses of cell-cultured virus developed neutralizing antibodies and were protected from disease, whereas rabbits infected with low doses of cell-cultured virus, or with brain-derived virus did not. Inactivated vaccines were administered to rabbits and horses, following pre-defined vaccination schemes consisting of three vaccine doses of either adjuvanted or nonadjuvanted inactivated virus. Their immunogenicity and protective efficacy were compared to the BD live vaccine "Dessau". Seventy per cent of horses vaccinated with the BD live vaccine "Dessau" developed neutralizing antibodies after vaccination. (4) Conclusion: Despite a complex evasion of immunological responses by bornaviruses, some vaccination approaches can protect against clinical disease. For optimal effectiveness, vaccines should be administered at high doses, following vaccination schemes consisting of three vaccine doses as basic immunization. Further investigations are necessary in order to investigate and improve protection against infection and to avoid side effects.
Collapse
Affiliation(s)
- Ralf Dürrwald
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Djin-Ye Oh
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Heinrich Liebermann
- retd., former Institute of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
4
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
5
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Overexpressed C14orf166 associates with disease progression and poor prognosis in non-small-cell lung cancer. Biosci Rep 2018; 38:BSR20180479. [PMID: 30126850 PMCID: PMC6137245 DOI: 10.1042/bsr20180479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/12/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023] Open
Abstract
Chromosome 14 ORF 166 (C14orf166), a protein involved in the regulation of RNA transcription and translation, has been reported to possess the potency to promote tumorigenesis; however, the role of C14orf166 in non-small-cell lung cancer (NSCLC) remains unknown. The purpose of the present study was to assess C14orf166 expression and its clinical significance in NSCLC. Immunohistochemical staining, quantitative real-time PCR (qRT-PCR), and Western blotting were used to detect the C14orf166 protein and mRNA expression levels in NSCLC tissues compared with adjacent normal tissues, as well as in NSCLC cells lines compared with normal human bronchial epithelial cells (HBE). Then, the correlations between the C14orf166 expression levels and the clinicopathological features of NSCLC were analyzed. Additionally, the Cox proportional hazard model was used to evaluate the prognostic significance of C14orf166. We found that C14orf166 expression increased in carcinoma tissues compared with their adjacent normal tissues at the protein (P<0.001) and mRNA levels (P<0.001). High expression of C14orf166 was significantly associated with the T stage (P=0.006), lymph node metastasis (P=0.001), advanced TNM stage (P<0.001), and chemotherapy (P<0.001). Moreover, according to the survival analysis, patients with overexpressed C14orf166 were inclined to experience a shorter overall survival and disease-free survival time (P<0.001). Multivariate COX analysis implied that C14orf166 was an independent prognostic biomarker. Taken together, our findings indicate that the overexpression of C14orf166 may contribute to the disease progression of NSCLC, represent a novel prognostic predictor and help high-risk patients make better decisions for subsequent therapy.
Collapse
|
7
|
Fujino K, Yamamoto Y, Daito T, Makino A, Honda T, Tomonaga K. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes. Microbiol Immunol 2018; 61:380-386. [PMID: 28776750 DOI: 10.1111/1348-0421.12505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 11/30/2022]
Abstract
Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.
Collapse
Affiliation(s)
- Kan Fujino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Yusuke Yamamoto
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Japan
| | - Takuji Daito
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Tomoyuki Honda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Zhou YW, Li R, Duan CJ, Gao Y, Cheng YD, He ZW, Zeng JX, Zhang CF. Expression and clinical significance of C14orf166 in esophageal squamous cell carcinoma. Mol Med Rep 2016; 15:605-612. [PMID: 28000881 PMCID: PMC5364856 DOI: 10.3892/mmr.2016.6056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
C14orf166, a 28 kD protein regulating RNA transcription and translation, may serve a critical role in oncogenesis. The aim of the current study was to explore the association between C14orf166 expression and esophageal squamous cell carcinoma (ESCC) and to draw attention to the association between C14orf166 and the initiation, progression and prognosis of ESCC. C14orf166 expression in ESCC and paired normal tissues was detected by immunohistochemical staining, western blotting and reverse transcription-quantitative polymerase chain reaction, and the association between C14orf166 expression and clinicopathological characters of ESCC was analyzed. Survival analysis was used to assess the prognostic significance of C14orf166 and it was observed that C14orf166 expression was higher in the ESCC tissues when compared with adjacent non-cancerous tissues at protein (P<0.001) and mRNA levels (P<0.001). There was a significant difference in T stage, lymph node metastasis and TNM stage in patients categorized according to different C14orf166 expression levels. The overexpression of C14orf166 was associated with a shorter overall survival and disease-free survival, and multivariate analysis indicated that C14orf166 was an independent prognostic indicator. The present study indicates that the expression of C14orf166 is elevated in ESCC, and is potentially a valuable prognostic predictor for ESCC.
Collapse
Affiliation(s)
- Yan-Wu Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong Li
- Department of Gastroenterology, Xiangya Third Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chao-Jun Duan
- Institute of Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan-Da Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhi-Wei He
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun-Xian Zeng
- Department of Clinical Medicine, Hunan Xiangnan College, Chenzhou, Hunan 423043, P.R. China
| | - Chun-Fang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Kinnunen PM, Palva A, Vaheri A, Vapalahti O. Epidemiology and host spectrum of Borna disease virus infections. J Gen Virol 2012; 94:247-262. [PMID: 23223618 DOI: 10.1099/vir.0.046961-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Borna disease virus (BDV) has gained lot of interest because of its zoonotic potential, ability to introduce cDNA of its RNA transcripts into host genomes, and ability to cause severe neurobehavioural diseases. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep, known in central Europe for centuries. According to current knowledge, BDV or a close relative also infects several other species, including humans at least occasionally, in central Europe and elsewhere, but the existence of potential 'human Borna disease' with its suspected neuropsychiatric symptoms is highly controversial. The recent detection of endogenized BDV-like genes in primate and various other vertebrate genomes confirms that at least ancient bornaviruses did infect our ancestors. The epidemiology of BDV is largely unknown, but accumulating evidence indicates vectors and reservoirs among small wild mammals. The aim of this review is to bring together the current knowledge on epidemiology of BDV infections. Specifically, geographical and host distribution are addressed and assessed in the critical light of the detection methods used. We also review some salient clinical aspects.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Antti Vaheri
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland
| | - Olli Vapalahti
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
10
|
Campbell IL, Hofer MJ, Pagenstecher A. Transgenic models for cytokine-induced neurological disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:903-17. [PMID: 19835956 DOI: 10.1016/j.bbadis.2009.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/22/2022]
Abstract
Considerable evidence supports the idea that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in a variety of neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. One approach to address this problem that has been used widely employs transgenic mice with CNS-targeted production of different cytokines. Transgenic production of cytokines in the CNS of mice allows not only for the investigation of complex cellular responses at a localized level in the intact brain but also more closely recapitulates the expression of these mediators as found in disease states. As discussed in this review, the findings show that these transgenic animals exhibit wide-ranging structural and functional deficits that are linked to the development of distinct neuroinflammatory responses which are relatively specific for each cytokine. These cytokine-induced alterations often recapitulate those found in various human neurological disorders not only underscoring the relevance of these models but also reinforcing the clinicopathogenetic significance of cytokines in diseases of the CNS.
Collapse
Affiliation(s)
- Iain L Campbell
- School of Molecular and Microbial Biosciences and Bosch Institute, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
11
|
Richter K, Hausmann J, Staeheli P. Interferon-gamma prevents death of bystander neurons during CD8 T cell responses in the brain. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1799-807. [PMID: 19359516 DOI: 10.2353/ajpath.2009.080897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T cells restricted to neurotropic viruses are potentially harmful as their activity may result in the destruction of neurons. In the Borna disease virus (BDV) model, antiviral CD8 T cells entering the brain of infected mice cause neurological disease but no substantial loss of neurons unless the animals lack interferon-gamma (IFN-gamma). We show here that glutamate receptor antagonists failed to prevent BDV-induced neuronal loss in IFN-gamma-deficient mice, suggesting that excitotoxicity resulting from glutamate receptor overstimulation is an unlikely explanation for the neuronal damage. Experiments with IFN-gamma-deficient mice lacking eosinophils indicated that these cells, which specifically accumulate in the infected brains of IFN-gamma-deficient mice, are not responsible for CA1 neuronal death. Interestingly, BDV-induced damage of CA1 neurons was reduced significantly in IFN-gamma-deficient mice lacking perforin, suggesting a key role for CD8 T cells in this pathological process. Specific death of hippocampal CA1 neurons could be triggered by adoptive transfer of BDV-specific CD8 T cells from IFN-gamma-deficient mice into uninfected mice that express transgene-encoded BDV antigen at high level in astrocytes. These results indicate that attack by CD8 T cells that cause the death of CA1 neurons might be directed toward regional astrocytes and that IFN-gamma protects vulnerable CA1 neurons from collateral damage resulting from exposure to potentially toxic substances generated as a result of CD8 T cell-mediated impairment of astrocyte function.
Collapse
Affiliation(s)
- Kirsten Richter
- Department of Virology, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
12
|
Antiviral CD8 T cells recognize borna disease virus antigen transgenically expressed in either neurons or astrocytes. J Virol 2008; 82:3099-108. [PMID: 18184705 DOI: 10.1128/jvi.02479-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) can persistently infect the central nervous system (CNS) of mice. The infection remains nonsymptomatic as long as antiviral CD8 T cells do not infiltrate the infected brain. BDV mainly infects neurons which reportedly carry few, if any, major histocompatibility complex class I molecules on the surface. Therefore, it remains unclear whether T cells can recognize replicating virus in these cells or whether cross-presentation of viral antigen by other cell types is important for immune recognition of BDV. To distinguish between these possibilities, we used two lines of transgenic mice that strongly express the N protein of BDV in either neurons (Neuro-N) or astrocytes (Astro-N). Since these animals are tolerant to the neo-self-antigen, we adoptively transferred T cells with specificity for BDV N. In nontransgenic mice persistently infected with BDV, the transferred cells accumulated in the brain parenchyma along with immune cells of host origin and efficiently induced neurological disease. Neurological disease was also observed if antiviral T cells were injected into the brains of Astro-N or Neuro-N but not nontransgenic control mice. Our results demonstrate that CD8 T cells can recognize foreign antigen on neurons and astrocytes even in the absence of infection or inflammation, indicating that these CNS cell types are playing an active role in immune recognition of viruses.
Collapse
|
13
|
Richter K, Baur K, Ackermann A, Schneider U, Hausmann J, Staeheli P. Pathogenic potential of borna disease virus lacking the immunodominant CD8 T-cell epitope. J Virol 2007; 81:11187-94. [PMID: 17686872 PMCID: PMC2045572 DOI: 10.1128/jvi.00742-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a highly neurotropic, noncytolytic virus. Experimentally infected B10.BR mice remain healthy unless specific antiviral T cells that infiltrate the infected brain are triggered by immunization. In contrast, infected MRL mice spontaneously mount an antiviral T-cell response that can result in meningoencephalitis and neurological disease. The antiviral T cells may, alternatively, eliminate the virus without inducing disease if they are present in sufficient numbers before the virus replicates to high titers. Since the immune response of H-2(k) mice is directed mainly against the epitope TELEISSI located in the viral nucleoprotein N, we generated BDV mutants that feature TQLEISSI in place of TELEISSI. We show that adoptive transfer of BDV N-specific CD8 T cells induced neurological disease in B10.BR mice persistently infected with wild-type BDV but not with the mutant virus expressing TQLEISSI. Surprisingly, the mutant virus replicated less well in adult MRL wild-type mice than in mutant mice lacking mature CD8 T cells. Furthermore, when MRL mice were infected with the TQLEISSI-expressing BDV mutant as newborns, neurological disease was observed, although at a lower rate and with slower kinetics than in mice infected with wild-type virus. These results confirm that TELEISSI is the major CD8 T-cell epitope in H-2(k) mice and suggest that unidentified minor epitopes are present in the BDV proteome which are recognized rather efficiently by antiviral T cells if the dominant epitope is absent.
Collapse
Affiliation(s)
- Kirsten Richter
- Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Hausmann J, Pagenstecher A, Baur K, Richter K, Rziha HJ, Staeheli P. CD8 T cells require gamma interferon to clear borna disease virus from the brain and prevent immune system-mediated neuronal damage. J Virol 2005; 79:13509-18. [PMID: 16227271 PMCID: PMC1262614 DOI: 10.1128/jvi.79.21.13509-13518.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Borna disease virus (BDV) frequently causes meningoencephalitis and fatal neurological disease in young but not old mice of strain MRL. Disease does not result from the virus-induced destruction of infected neurons. Rather, it is mediated by H-2(k)-restricted antiviral CD8 T cells that recognize a peptide derived from the BDV nucleoprotein N. Persistent BDV infection in mice is not spontaneously cleared. We report here that N-specific vaccination can protect wild-type MRL mice but not mutant MRL mice lacking gamma interferon (IFN-gamma) from persistent infection with BDV. Furthermore, we observed a significant degree of resistance of old MRL mice to persistent BDV infection that depended on the presence of CD8 T cells. We found that virus initially infected hippocampal neurons around 2 weeks after intracerebral infection but was eventually cleared in most wild-type MRL mice. Unexpectedly, young as well as old IFN-gamma-deficient MRL mice were completely susceptible to infection with BDV. Moreover, neurons in the CA1 region of the hippocampus were severely damaged in most diseased IFN-gamma-deficient mice but not in wild-type mice. Furthermore, large numbers of eosinophils were present in the inflamed brains of IFN-gamma-deficient mice but not in those of wild-type mice, presumably because of increased intracerebral synthesis of interleukin-13 and the chemokines CCL1 and CCL11, which can attract eosinophils. These results demonstrate that IFN-gamma plays a central role in host resistance against infection of the central nervous system with BDV and in clearance of BDV from neurons. They further indicate that IFN-gamma may function as a neuroprotective factor that can limit the loss of neurons in the course of antiviral immune responses in the brain.
Collapse
Affiliation(s)
- Jürgen Hausmann
- Department of Virology, Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Bourteele S, Oesterle K, Pleschka S, Unterstab G, Ehrhardt C, Wolff T, Ludwig S, Planz O. Constitutive activation of the transcription factor NF-kappaB results in impaired borna disease virus replication. J Virol 2005; 79:6043-51. [PMID: 15857990 PMCID: PMC1091684 DOI: 10.1128/jvi.79.10.6043-6051.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inducible transcription factor NF-kappaB is commonly activated upon RNA virus infection and is a key player in the induction and regulation of the innate immune response. Borna disease virus (BDV) is a neurotropic negative-strand RNA virus, which replicates in the nucleus of the infected cell and causes a persistent infection that can lead to severe neurological disorders. To investigate the activation and function of NF-kappaB in BDV-infected cells, we stably transfected the highly susceptible neuronal guinea pig cell line CRL with a constitutively active (IKK EE) or dominant-negative (IKK KD) regulator of the IKK/NF-kappaB signaling pathway. While BDV titers were not affected in cells with impaired NF-kappaB signaling, the expression of an activated mutant of IkappaB kinase (IKK) resulted in a strong reduction in the intracellular viral titer in CRL cells. Electrophoretic mobility shift assays and luciferase reporter gene assays revealed that neither NF-kappaB nor interferon regulatory factors (IRFs) were activated upon acute BDV infection of wild-type or vector-transfected CRL cells. However, when IKK EE-transfected cells were used as target cells for BDV infection, DNA binding to an IRF3/7-responsive DNA element was detectable. Since IRF3/7 is a key player in the antiviral interferon response, our data indicate that enhanced NF-kappaB activity in the presence of BDV leads to the induction of antiviral pathways resulting in reduced virus titers. Consistent with this observation, the anti-BDV activity of NF-kappaB preferentially spread to areas of the brains of infected rats where activated NF-kappaB was not detectable.
Collapse
Affiliation(s)
- Soizic Bourteele
- Institut für Immunologie, Friedrich Loeffler Institut, Bundesforschungsinstitut für Tiergesundheit, Paul Ehrlich Str. 28, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hausmann J, Baur K, Engelhardt KR, Fischer T, Rziha HJ, Staeheli P. Vaccine-induced protection against Borna disease in wild-type and perforin-deficient mice. J Gen Virol 2005; 86:399-403. [PMID: 15659759 DOI: 10.1099/vir.0.80566-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) can persistently infect the central nervous system and induce CD8+ T-cell-mediated neurological disease in MRL mice. To determine whether specific immune priming would prevent disease, a prime-boost immunization protocol was established in which intramuscular injection of a recombinant parapoxvirus expressing BDV nucleoprotein (BDV-N) was followed by intraperitoneal infection with vaccinia virus expressing BDV-N. Immunized wild-type and perforin-deficient mice remained healthy after intracerebral infection with BDV and contained almost no virus in the brain at 5 weeks post-challenge. Immunization failed to induce resistance against BDV in mice lacking mature CD8+ T cells. Immunization of perforin-deficient mice with a poxvirus vector expressing mutant BDV-N lacking the known CD8+ T-cell epitope did not efficiently block multiplication of BDV in the brain and did not prevent neurological disease, indicating that vaccine-induced immunity to BDV in wild-type and perforin-deficient mice resulted from the action of CD8+ T cells.
Collapse
Affiliation(s)
- Jürgen Hausmann
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Karen Baur
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Karin R Engelhardt
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Timo Fischer
- Federal Research Center for Virus Diseases of Animals, Institute for Immunology, D-72076 Tuebingen, Germany
| | - Hanns-Joachim Rziha
- Federal Research Center for Virus Diseases of Animals, Institute for Immunology, D-72076 Tuebingen, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
17
|
Engelhardt KR, Richter K, Baur K, Staeheli P, Hausmann J. The functional avidity of virus-specific CD8+ T?cells is down-modulated in Borna disease virus-induced immunopathology of the central nervous system. Eur J Immunol 2005; 35:487-97. [PMID: 15627979 DOI: 10.1002/eji.200425232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Borna disease virus (BDV) infection of the central nervous system (CNS) leads to severe neurological symptoms in susceptible MRL mice. The disease is mainly mediated by CD8+ T cells specific for the immunodominant epitope TELEISSI in the BDV nucleoprotein. In this study, TELEISSI/MHC class I tetramers were used to directly visualize antigen-specific CD8+ T cells. We found that on average approximately 30% of the ex vivo analyzed CD8+ T cells in the CNS of diseased mice were specific for TELEISSI. Unexpectedly, the frequency of tetramer-reactive brain-derived CD8+ T cells doubled following overnight culture in the absence of antigen. The majority of CD8+ T cells showed enhanced tetramer binding without up-regulation of T cell receptor surface expression. The frequency of IFN-gamma-secreting CD8+ T cells after antigen-specific stimulation was higher in overnight cultures than in freshly isolated BDV-specific brain lymphocytes, and enhanced tetramer binding correlated with elevated sensitivity to lower levels of peptide antigen in cytotoxicity assays. These results indicate that the functional avidity of virus-specific CD8+ T cells was down-modulated in vivo. Thus, quantification of tissue-infiltrating CD8+ T cells by the tetramer technique must be interpreted with caution as it may underestimate the real frequency of antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Karin R Engelhardt
- Department of Virology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Hofer M, Hausmann J, Staeheli P, Pagenstecher A. Cerebral expression of interleukin-12 induces neurological disease via differential pathways and recruits antigen-specific T cells in virus-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:949-58. [PMID: 15331418 PMCID: PMC1618590 DOI: 10.1016/s0002-9440(10)63356-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transgenic expression of interleukin-12 (IL-12) in astrocytes causes a spontaneous inflammatory central nervous system disorder in aged mice. Here we show that spontaneous disorder developed only when both mature lymphocytes and interferon (IFN)-gamma were present. Infection with noncytolytic Borna disease virus (BDV) did not affect wild-type mice but accelerated disease of IL-12 transgenic mice. Infection of transgenic mice lacking lymphocytes did not result in neurological symptoms. In contrast, BDV infection of transgenic mice lacking IFN-gamma induced neurological disease with delayed onset of symptoms that resembled those in infected transgenic mice with a functional IFN-gamma gene. In BDV-infected transgenic mice devoid of IFN-gamma no cerebellar calcification was observed, and multiplication of BDV was not inhibited. To determine the antigen specificity of lymphocytes in brains of diseased animals, the IL-12 transgene was introduced into an H-2k genetic background. Infection of IL-12 transgenic H-2k mice resulted in extensive lymphocytic infiltration into the cerebellum but not into other brain regions that also contained viral antigen but expressed the transgene at lower levels. Tetramer analysis revealed that most CD8 T cells in the cerebellum of such mice were BDV-specific. Our results thus demonstrate that IFN-gamma secreting lymphocytes are responsible for disease of IL-12 transgenic mice. They further suggest that expression of IL-12 in the central nervous system may lead to localized recruitment of T cells that recognize antigens expressed in the brain.
Collapse
Affiliation(s)
- Markus Hofer
- Abteilung Neuropathologie, Institut für Medizinische and Hygiene, Universität Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
19
|
Fassnacht U, Ackermann A, Staeheli P, Hausmann J. Immunization with dendritic cells can break immunological ignorance toward a persisting virus in the central nervous system and induce partial protection against intracerebral viral challenge. J Gen Virol 2004; 85:2379-2387. [PMID: 15269380 DOI: 10.1099/vir.0.80115-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) have been used successfully to induce CD8 T cells that control virus infections and growth of tumours. The efficacy of DC-mediated immunization for the control of neurotropic Borna disease virus (BDV) in mice was evaluated. Certain strains of mice only rarely develop spontaneous neurological disease, despite massive BDV replication in the brain. Resistance to disease is due to immunological ignorance toward BDV antigen in the central nervous system. Ignorance in mice can be broken by immunization with DCs coated with TELEISSI, a peptide derived from the N protein of BDV, which represents the immunodominant cytotoxic T lymphocyte epitope in H-2(k) mice. Immunization with TELEISSI-coated DCs further induced solid protective immunity against intravenous challenge with a recombinant vaccinia virus expressing BDV-N. Interestingly, however, this immunization scheme induced only moderate protection against intracerebral challenge with BDV, suggesting that immune memory raised against a shared antigen may be sufficient to control a peripherally replicating virus, but not a highly neurotropic virus that is able to avoid activation of T cells. This difference might be due to the lack of BDV-specific CD4 T cells and/or inefficient reactivation of DC-primed, BDV-specific CD8 T cells by the locally restricted BDV infection. Thus, a successful vaccine against persistent viruses with strong neurotropism should probably induce antiviral CD8 (as well as CD4) T-cell responses and should favour the accumulation of virus-specific memory T cells in cervical lymph nodes.
Collapse
Affiliation(s)
- Ulrike Fassnacht
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| | - Andreas Ackermann
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| | - Jürgen Hausmann
- Department of Virology, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany
| |
Collapse
|
20
|
Rauer M, Götz J, Schuppli D, Staeheli P, Hausmann J. Transgenic mice expressing the nucleoprotein of Borna disease virus in either neurons or astrocytes: decreased susceptibility to homotypic infection and disease. J Virol 2004; 78:3621-32. [PMID: 15016883 PMCID: PMC371057 DOI: 10.1128/jvi.78.7.3621-3632.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoprotein (N) of Borna disease virus (BDV) is the major target of the disease-inducing antiviral CD8 T-cell response in the central nervous system of mice. We established two transgenic mouse lines which express BDV-N in either neurons (Neuro-N) or astrocytes (Astro-N). Despite strong transgene expression, neurological disease or gross behavioral abnormalities were not observed in these animals. When Neuro-N mice were infected as adults, replication of BDV was severely impaired and was restricted to brain areas with a low density of transgene-expressing cells. Notably, the virus failed to replicate in the transgene-expressing granular and pyramidal neurons of the hippocampus (which are usually the preferred host cells of BDV). When Neuro-N mice were infected within the first 5 days of life, replication of BDV was not suppressed in most neurons, presumably because the onset of transgene expression in the brain occurred after these cells became infected with BDV. Astro-N mice remained susceptible to BDV infection, but they were resistant to BDV-induced neurological disorder. Unlike their nontransgenic littermates, Neuro-N mice with persistent BDV infection did not develop neurological disease after immunization with a vaccinia virus vector expressing BDV-N. In contrast to the situation in wild-type mice, this treatment also failed to induce N-specific CD8 T cells in the spleens of both transgenic mouse lines. Thus, while resistance to BDV infection in N-expressing neurons appeared to result from untimely expression of a viral nucleocapsid component, the resistance to BDV-induced neuropathology probably resulted from immunological tolerance.
Collapse
Affiliation(s)
- Mathias Rauer
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Hausmann J, Sauder C, Wasmer M, Lu B, Staeheli P. Neurological Disorder after Borna Disease Virus Infection in the Absence of Either Interferon-γ, Fas, Inducible NO Synthase, or Chemokine Receptor CXCR3. Viral Immunol 2004; 17:79-85. [PMID: 15018664 DOI: 10.1089/088282404322875476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Borna disease virus (BDV) can induce severe neurological disorder in Lewis rats and MRL mice. Antiviral CD8 T cells have been shown to be the mediators of disease in these animals. To define molecules involved in the disease process, we performed infection studies in MRL mice lacking either interferon-gamma, a functional Fas/FasL system, chemokine receptor CXCR3, or inducible NO synthase. We further used transgenic MRL mice expressing interferon-gamma-inducible, T cell-attracting chemokine CXCL10 in brain astrocytes. After intracerebral infection with BDV, wild-type and mutant mice developed CD8 T cell responses and neurological disease at similar frequency and with similar kinetics, suggesting that these factors are not required for initiation and maintenance of the immunopathological process. Similarly, the course of disease could not be altered by treating infected MRL mice or Lewis rats with the drug L-N(6)-(1-iminoethyl)-lysine (L-NIL) that specifically blocks the activity of the inducible NO synthase. We therefore have excluded a number of important factors that have been demonstrated to be crucial in the pathogenesis of a broad number of pathologic conditions. Thus, BDV-induced disease may not result from the action of a single dominant T cell-dependent effector molecule. Disease rather reflects a combined influence of several as yet undefined factors from CD8 T cells.
Collapse
Affiliation(s)
- Jürgen Hausmann
- Department of Virology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Friedl G, Hofer M, Auber B, Sauder C, Hausmann J, Staeheli P, Pagenstecher A. Borna disease virus multiplication in mouse organotypic slice cultures is site-specifically inhibited by gamma interferon but not by interleukin-12. J Virol 2004; 78:1212-8. [PMID: 14722276 PMCID: PMC321400 DOI: 10.1128/jvi.78.3.1212-1218.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Borna disease virus (BDV) induces a nonpurulent CD4- and CD8-T-cell-dependent meningoencephalitis in susceptible animals. Upon intracerebral infection, BDV replicates in the mouse central nervous system (CNS), but only a few mouse strains develop neurological disorder. The antiviral T cells appear to suppress BDV replication by a noncytolytic mechanism. Since BDV does not replicate in standard mouse cell cultures, the putative role of gamma interferon (IFN-gamma) in virus control could not be tested experimentally. Here, we report that mouse organotypic slice cultures can be used to elucidate the complex interactions of BDV, the CNS, and the immune system. We show that BDV replicated in various cell types of mouse cerebellar slice cultures in vitro. In infected slice cultures, a moderate upregulation of the chemokine genes CCL5 and CXCL10 was observed, while expression of various neural genes as well as other chemokine and cytokine genes was not altered. IFN-gamma inhibited the multiplication of BDV in cerebellar and hippocampal slice cultures in a dose-dependent manner. However, while complete suppression of BDV was observed in cerebellar slice cultures, inhibition was incomplete in hippocampal slice cultures. Kinetic studies indicated that IFN-gamma protects noninfected cells from infection rather than clearing the virus from infected cells. These results demonstrate that BDV can replicate in cultured neural cells of the mouse if organ integrity is well preserved. They further show that IFN-gamma is a powerful inhibitor of BDV in the absence of blood-borne leukocytes in mouse cerebellar slice cultures.
Collapse
Affiliation(s)
- Gregor Friedl
- Abteilung Neuropathologie, Pathologisches Institut, Universität Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee BJ, Watanabe M, Kamitani W, Baba S, Yamashita M, Kobayashi T, Tomonaga K, Ikuta K. Age- and host-dependent control of Borna disease virus spread in the developing brains of gerbils and rats. Microbes Infect 2003; 5:1195-204. [PMID: 14623015 DOI: 10.1016/j.micinf.2003.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, we have demonstrated that the neonatal gerbil is a unique model for analyzing BDV-induced acute neurological disease. In this report, to understand the effects of the brain development of gerbils in BDV-induced neuropathogenesis, as well as to investigate the host-dependent differences in BDV propagation and pathogenesis in the brains, we performed experimental infection of BDV using two different infant rodent models, gerbils and rats. We demonstrated here that most of the gerbils infected with BDV on postnatal days (PD) 14, but not on PD1 and PD7, could survive neurological disorders during the observation period of PD85. Interestingly, the levels of BDV RNA and antigen in surviving PD14 inoculated gerbil brains were extremely low, whereas diseased gerbils and both PD7 and PD14 inoculated rats contained significant amounts of BDV antigen in the central nervous system, suggesting that PD14 gerbils successfully controlled BDV spread in the brain. Furthermore, the viral distribution, as well as the expression levels of cytokine and CD8 mRNAs, in the brains was markedly different between the rodent models and between diseased and non-diseased statuses of the gerbils. These results demonstrated that developmentally regulated and host-specific factors could contribute to the prevention of BDV spread in developing animal brains. Studies using different animal systems would provide novel insights into the mechanisms of host defense responses to neurotropic virus infections.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ostler T, Schamel K, Hussell T, Openshaw P, Hausmann J, Ehl S. An improved protocol for measuring cytotoxic T cell activity in anatomic compartments with low cell numbers. J Immunol Methods 2001; 257:155-61. [PMID: 11687249 DOI: 10.1016/s0022-1759(01)00455-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study of target cell lysis and cytokine production are valuable tools to characterize antigen-specific T and NK cell function during virus infections. After localized infections in compartments such as the lung or the brain, however, cell numbers isolated from these organs are too low to perform standard assays with individual mice. Here, we report a few simple modifications of the classical 51Cr release assay allowing reduction of the number of required effector cells by a factor of 10 without loosing sensitivity or specificity. Using not more than 4x10(5) effector cells, we were able to study ex vivo virus-specific CTL or NK activity from the lungs of individual mice after infection with respiratory syncytial virus (RSV) and from the brains of mice infected with Borna disease virus (BDV). Flow cytometric analysis of interferon-gamma production by virus-specific T cells including appropriate controls was achieved with as few as 10(5) effector cells.
Collapse
Affiliation(s)
- T Ostler
- Children's Hospital, University of Freiburg, Mathildenstrasse 1, D-79106, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Hausmann J, Schamel K, Staeheli P. CD8(+) T lymphocytes mediate Borna disease virus-induced immunopathology independently of perforin. J Virol 2001; 75:10460-6. [PMID: 11581414 PMCID: PMC114620 DOI: 10.1128/jvi.75.21.10460-10466.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perforin-mediated lysis of target cells is the major antiviral effector mechanism of CD8(+) T lymphocytes. We have analyzed the role of perforin in a mouse model for CD8(+) T-cell-mediated central nervous system (CNS) immunopathology induced by Borna disease virus. When a defective perforin gene was introduced into the genetic background of the Borna disease-susceptible mouse strain MRL, the resulting perforin-deficient mice developed strong neurological disease in response to infection indistinguishable from that of their perforin-expressing littermates. The onset of disease was slightly delayed. Brains of diseased perforin-deficient mice showed similar amounts and a similar distribution of CD8(+) T cells as wild-type animals. Perforin deficiency had no impact on the kinetics of viral spread through the CNS. Unlike brain lymphocytes from diseased wild-type mice, lymphocytes from perforin-deficient MRL mice showed no in vitro cytolytic activity towards target cells expressing the nucleoprotein of Borna disease virus. Taken together, these results demonstrate that CD8(+) T cells mediate Borna disease independent of perforin. They further suggest that the pathogenic potential of CNS-infiltrating CD8(+) T cells does not primarily reside in their lytic activity but rather in other functions.
Collapse
Affiliation(s)
- J Hausmann
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|