1
|
Latorre-Rey LJ, Wintterle S, Dütting S, Kohlscheen S, Abel T, Schenk F, Wingert S, Rieger MA, Nieswandt B, Heinz N, Modlich U. Targeting expression to megakaryocytes and platelets by lineage-specific lentiviral vectors. J Thromb Haemost 2017; 15:341-355. [PMID: 27930847 DOI: 10.1111/jth.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Essentials Platelet phenotypes can be modified by lentiviral transduction of hematopoietic stem cells. Megakaryocyte-specific lentiviral vectors were tested in vitro and in vivo for restricted expression. The glycoprotein 6 vector expressed almost exclusively in megakaryocytes. The platelet factor 4 vector was the strongest but with activity in hematopoietic stem cells. SUMMARY Background Lentiviral transduction and transplantation of hematopoietic stem cells (HSCs) can be utilized to modify the phenotype of megakaryocytes and platelets. As the genetic modification in HSCs is transmitted onto all hematopoietic progenies, transgene expression from the vector should be restricted to megakaryocytes to avoid un-physiologic effects by ectopic transgene expression. This can be achieved by lentiviral vectors that control expression by lineage-specific promoters. Methods In this study, we introduced promoters of megakaryocyte/platelet-specific genes, namely human glycoprotein 6 (hGP6) and hGP9, into third generation lentiviral vectors and analyzed their functionality in vitro and in vivo in bone marrow transplantation assays. Their specificity and efficiency of expression was compared with lentiviral vectors utilizing the promoters of murine platelet factor 4 (mPf4) and hGP1BA, both with strong activity in megakaryocytes (MKs) used in earlier studies, and the ubiquitously expressing phosphoglycerate kinase (hPGK) and spleen focus forming virus (SFFV) enhancer/promoters. Results Expression from the mPf4 vector in MKs and platelets was the strongest similar to expression from the viral SFFV promoter, however, the mPf4 vector, also exhibited considerable off-target expression in hematopoietic stem and progenitor cells. In contrast, the newly generated hGP6 vector was highly specific to megakaryocytes and platelets. The specificity was also retained when reducing the promoter size to 350 bp, making it a valuable new tool for lentiviral expression in MKs/platelets. Conclusion MK-specific vectors express preferentially in the megakaryocyte lineage. These vectors can be applied to develop murine models to study megakaryocyte and platelet function, or for gene therapy targeting proteins to platelets.
Collapse
Affiliation(s)
- L J Latorre-Rey
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wintterle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Dütting
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - S Kohlscheen
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - T Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - F Schenk
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - M A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - B Nieswandt
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - N Heinz
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - U Modlich
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
2
|
Ikawa Y, Uchiyama T, Jagadeesh GJ, Candotti F. The long terminal repeat negative control region is a critical element for insertional oncogenesis after gene transfer into hematopoietic progenitors with Moloney murine leukemia viral vectors. Gene Ther 2016; 23:815-818. [PMID: 27487944 DOI: 10.1038/gt.2016.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/11/2016] [Accepted: 05/27/2016] [Indexed: 11/09/2022]
Abstract
Integrating vectors based on γ-retroviruses and containing full-length long terminal repeats (LTRs) have been associated with activation of oncogene expression and leukemogenesis in human gene therapy trials. Identification of the specific molecular elements of the LTRs that have a role in insertional oncogenesis events is important as it can lead to the development of safer gene transfer vectors. The negative control region (NCR) of the LTR is a particularly well-conserved sequence among mammalian γ-retroviruses with demonstrated regulatory activity of gene transcription in hematopoietic cells, which led us to hypothesize that this region may have a role in insertional oncogenesis after γ-retroviral vector (GV)-mediated gene transfer into hematopoietic progenitors. We used an in vitro assay of murine bone marrow cell immortalization to compare the immortalization capabilities of a series of GVs carrying murine leukemia virus (MLV) LTR deletion mutants. Compared with GV carrying the full-length MLV LTR, deletion of the complete LTR enhancer sequence showed significant reduction of immortalization rates. However, the use of a mutant LTR deleted of the enhancer sequence, with exception of the NCR, did not affect immortalization. Importantly, the inclusion of an LTR mutant devoid only of the NCR did show significant reduction of immortalization rates compared with the full LTR sequence. Therefore, our data point to the NCR as a key element for immortalization and justify additional studies to evaluate its specific role in MLV-mediated insertional oncogenesis.
Collapse
Affiliation(s)
- Y Ikawa
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA.,Department of Pediatrics, Kanazawa University Hospital, Kanazawa, Japan
| | - T Uchiyama
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA.,Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - G J Jagadeesh
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - F Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA.,Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Qin Q, Lee SH, Liang R, Kalejta RF. Insertion of myeloid-active elements into the human cytomegalovirus major immediate early promoter is not sufficient to drive its activation upon infection of undifferentiated myeloid cells. Virology 2013; 448:125-32. [PMID: 24314643 DOI: 10.1016/j.virol.2013.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/29/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
Abstract
The Major Immediate Early Promoter (MIEP) of human cytomegalovirus (HCMV) controls viral Immediate Early (IE) gene expression, which must be activated to initiate productive infection and repressed to establish latency. Regulation of the MIEP is critical for both viral spread and persistence. In addition to the Daxx-mediated intrinsic cellular defense that regulates the MIEP, the cell-type specific balance between cellular activators and repressors of the promoter may help dictate whether viral IE genes will be expressed or silenced. For example, in undifferentiated myeloid cells, transcriptional repressors of the MIEP may outnumber transcriptional activators, leading to promoter silencing and latency establishment. We created a recombinant viral genome in which a myeloid-active promoter replaced part of the MIEP. The viable virus generated failed to express the viral IE genes in an undifferentiated myeloid cell line. These observations have mechanistic implications regarding how viral IE gene expression is regulated during latency.
Collapse
Affiliation(s)
- Qingsong Qin
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
4
|
Wolf S, Rudolph C, Morgan M, Büsche G, Salguero G, Stripecke R, Schlegelberger B, Baum C, Modlich U. Selection for Evi1 activation in myelomonocytic leukemia induced by hyperactive signaling through wild-type NRas. Oncogene 2012; 32:3028-38. [PMID: 22847614 DOI: 10.1038/onc.2012.329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of NRas signaling is frequently found in human myeloid leukemia and can be induced by activating mutations as well as by mutations in receptors or signaling molecules upstream of NRas. To study NRas-induced leukemogenesis, we retrovirally overexpressed wild-type NRas in a murine bone marrow transplantation (BMT) model in C57BL/6J mice. Overexpression of wild-type NRas caused myelomonocytic leukemias ∼3 months after BMT in the majority of mice. A subset of mice (30%) developed malignant histiocytosis similar to mice that received mutationally activated NRas(G12D)-expressing bone marrow. Aberrant Ras signaling was demonstrated in cells expressing mutationally active or wild-type NRas, as increased activation of Erk and Akt was observed in both models. However, more NRas(G12D) were found to be in the activated, GTP-bound state in comparison with wild-type NRas. Consistent with observations reported for primary human myelomonocytic leukemia cells, Stat5 activation was also detected in murine leukemic cells. Furthermore, clonal evolution was detected in NRas wild-type-induced leukemias, including expansion of clones containing activating vector insertions in known oncogenes, such as Evi1 and Prdm16. In vitro cooperation of NRas and Evi1 improved long-term expansion of primary murine bone marrow cells. Evi1-positive cells upregulated Bcl-2 and may, therefore, provide anti-apoptotic signals that collaborate with the NRas-induced proliferative effects. As activation of Evi1 has been shown to coincide with NRAS mutations in human acute myeloid leukemia, our murine model recapitulates crucial events in human leukemogenesis.
Collapse
Affiliation(s)
- S Wolf
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity. Mol Ther 2012; 20:1022-32. [PMID: 22334016 DOI: 10.1038/mt.2011.309] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative integrome analyses have highlighted alpharetroviral vectors with a relatively neutral, and thus favorable, integration spectrum. However, previous studies used alpharetroviral vectors harboring viral coding sequences and intact long-terminal repeats (LTRs). We recently developed self-inactivating (SIN) alpharetroviral vectors with an advanced split-packaging design. In a murine bone marrow (BM) transplantation model we now compared alpharetroviral, gammaretroviral, and lentiviral SIN vectors and showed that all vectors transduced hematopoietic stem cells (HSCs), leading to comparable, sustained multilineage transgene expression in primary and secondary transplanted mice. Alpharetroviral integrations were decreased near transcription start sites, CpG islands, and potential cancer genes compared with gammaretroviral, and decreased in genes compared with lentiviral integrations. Analyzing the transcriptome and intragenic integrations in engrafting cells, we observed stronger correlations between in-gene integration targeting and transcriptional activity for gammaretroviral and lentiviral vectors than for alpharetroviral vectors. Importantly, the relatively "extragenic" alpharetroviral integration pattern still supported long-term transgene expression upon serial transplantation. Furthermore, sensitive genotoxicity studies revealed a decreased immortalization incidence compared with gammaretroviral and lentiviral SIN vectors. We conclude that alpharetroviral SIN vectors have a favorable integration pattern which lowers the risk of insertional mutagenesis while supporting long-term transgene expression in the progeny of transplanted HSCs.
Collapse
|
6
|
Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, Schambach A, Charrier S, Galy A, Thrasher AJ, Bueren J, Baum C. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17:1919-28. [PMID: 19672245 DOI: 10.1038/mt.2009.179] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer-promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott-Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.
Collapse
Affiliation(s)
- Ute Modlich
- Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The possible activation of cellular proto-oncogenes as a result of clonal transformation is a potential limitation in a therapeutic approach involving random integration of gene vectors. Given that enhancer promiscuity represents an important mechanism of insertional transformation, we assessed the enhancer activities of various cellular and retroviral promoters in transient transfection assays, and also in a novel experimental system designed to measure the activation of a minigene cassette contained in stably integrating retroviral vectors. Retroviral enhancer-promoters showed a significantly greater potential to activate neighboring promoters than did cellular promoters derived from human genes, elongation factor-1alpha (EF1alpha) and phosphoglycerate kinase (PGK). Self-inactivating (SIN) vector design reduced but did not abolish enhancer interactions. Using a recently established cell culture assay that detects insertional transformation by serial replating of primary hematopoietic cells, we found that SIN vectors containing the EF1alpha promoter greatly decrease the risk of insertional transformation. Despite integration of multiple copies per cell, activation of the crucial proto-oncogene Evi1 was not detectable when using SIN-EF1alpha vectors. On the basis of several quantitative indicators, the decrease in transforming activity was highly significant (more than tenfold, P < 0.01) when compared with similarly designed vectors containing a retroviral enhancer-promoter with or without a well-characterized genetic insulator core element. In this manner, the insertional biosafety of therapeutic gene vectors can be greatly enhanced and proactively evaluated in sensitive cell-based assays.
Collapse
|
8
|
|
9
|
Weber EL, Cannon PM. Promoter Choice for Retroviral Vectors: Transcriptional Strength Versus Trans-Activation Potential. Hum Gene Ther 2007; 18:849-60. [PMID: 17767401 DOI: 10.1089/hum.2007.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene expression from retroviral vectors can be driven by either the retroviral long terminal repeat (LTR) promoter or by cellular or viral promoters located internally in an LTR-deleted self-inactivating vector design. Adverse events in a gene therapy clinical trial for X-linked severe combined immune deficiency have led to the realization that the enhancer/promoter elements contained within integrated vectors may also act outside the vector genome to trans-activate host genes. Ideally, the gene expression system chosen for a vector should possess a low probability of trans-activation while still being able to support adequate levels of transgene expression. However, the parameters that define these specific characteristics are unknown. To gain insight into the mechanism of trans-activation, we compared a panel of commonly used retroviral LTRs and cellular and viral promoters for their ability to drive gene expression and to trans-activate a nearby minimal promoter in three different cell lines. These studies identified two elements, the cytomegalovirus enhancer/chicken beta-actin (CAG) and elongation factor (EF)-1alpha promoters, as being of potential value for use in vectors targeting lymphoid cells, as these elements exhibited both high levels of reporter gene expression and relatively low levels of trans-activation in T cells.
Collapse
Affiliation(s)
- Erin L Weber
- Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | |
Collapse
|
10
|
Cammenga J, Niebuhr B, Horn S, Bergholz U, Putz G, Buchholz F, Löhler J, Stocking C. RUNX1 DNA-Binding Mutants, Associated with Minimally Differentiated Acute Myelogenous Leukemia, Disrupt Myeloid Differentiation. Cancer Res 2007; 67:537-45. [PMID: 17234761 DOI: 10.1158/0008-5472.can-06-1903] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the RUNX1 gene are found at high frequencies in minimally differentiated acute myelogenous leukemia. In addition to null mutations, many of the mutations generate Runx1 DNA-binding (RDB) mutants. To determine if these mutants antagonize wild-type protein activity, cDNAs were transduced into murine bone marrow or human cord blood cells using retroviral vectors. Significantly, the RDB mutants did not act in a transdominant fashion in vivo to disrupt Runx1 activity in either T-cell or platelet development, which are highly sensitive to Runx1 dosage. However, RDB mutant expression impaired expansion and differentiation of the erythroid compartment in which Runx1 expression is normally down-regulated, showing that a RDB-independent function is incompatible with erythroid differentiation. Significantly, both bone marrow progenitors expressing RDB mutants or deficient for Runx1 showed increased replating efficiencies in vitro, accompanied by the accumulation of myeloblasts and dysplastic progenitors, but the effect was more pronounced in RDB cultures. Disruption of the interface that binds CBFbeta, an important cofactor of Runx1, did not impair RDB mutant replating activity, arguing against inactivation of Runx1 function by CBFbeta sequestration. We propose that RDB mutants antagonize Runx1 function in early progenitors by disrupting a critical balance between DNA-binding-independent and DNA-binding-dependent signaling.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Core Binding Factor Alpha 2 Subunit/deficiency
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor beta Subunit/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- Erythropoiesis/genetics
- Genetic Vectors/genetics
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Mutagenesis, Site-Directed
- Retroviridae/genetics
- Transduction, Genetic
Collapse
|
11
|
Lorico A, Bratbak D, Meyer J, Kunke D, Krauss S, Plott WE, Solodushko V, Baum C, Fodstad O, Rappa G. γ-Glutamylcysteine Synthetase and L-Buthionine-(S,R)-Sulfoximine: A New Selection Strategy for Gene-Transduced Neural and Hematopoietic Stem/Progenitor Cells. Hum Gene Ther 2005; 16:711-24. [PMID: 15960602 DOI: 10.1089/hum.2005.16.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In most experimental gene therapy protocols involving stem/progenitor cells, only a small fraction of cells, often therapeutically inadequate, can be transduced and made to express the therapeutic gene. A promising strategy for overcoming this problem is the use of a dominant selection marker, such as a drug resistance gene. In this paper, we explore the potential of the heavy subunit of gamma-glutamylcysteine synthetase (gamma-GCSh) to act as a selection marker. We found that 3T3 fibroblasts transduced with the bicistronic retroviral vector SF91/GCSh-eGFP, encoding gamma-GCSh and the enhanced green fluorescent protein (eGFP), were highly resistant to L-buthionine-(S,R)-sulfoximine (BSO), a gamma-GCS inhibitor with a low clinical toxicity profile. The level of resistance was not proportional to the increase in intracellular glutathione. In fact, cells overexpressing both heavy and light gamma-GCS subunits had higher intracellular GSH levels, and a lower level of resistance to the cytotoxic activity of BSO, compared with cells overexpressing gamma-GCSh alone. 3T3 fibroblasts overexpressing gamma-GCSh could be selected from cultures containing both naive and gene-modified cells by application of exogenous BSO selection pressure for 4 days. Also, primary neural stem/progenitor cells derived from the lateral ventricles of mouse neonatal brains and primary hematopoietic stem/progenitor cells (HSCs/HPCs) from mouse bone marrow, transduced with the gamma-GCSh-eGFP vector, could be selected by BSO treatment in vitro. On ex vivo BSO selection and reimplantation into a syngeneic myeloablated host, donor HSCs/HPCs repopulated the marrow and continued to express the transgene(s). These results provide proof of principle that somatic stem/progenitor cells, transduced simultaneously with a potentially curative gene and gamma-GCSh, can be selected by treatment with BSO before in vivo transplantation.
Collapse
Affiliation(s)
- Aurelio Lorico
- Department of Tumor Biology, Norwegian Radium Hospital, Montebello, Oslo 0310, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kraunus J, Schaumann DHS, Meyer J, Modlich U, Fehse B, Brandenburg G, von Laer D, Klump H, Schambach A, Bohne J, Baum C. Self-inactivating retroviral vectors with improved RNA processing. Gene Ther 2005; 11:1568-78. [PMID: 15372067 DOI: 10.1038/sj.gt.3302309] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three RNA features have been identified that elevate retroviral transgene expression: an intron in the 5' untranslated region (5'UTR), the absence of aberrant translational start codons and the presence of the post-transcriptional regulatory element (PRE) of the woodchuck hepatitis virus in the 3'UTR. To include such elements into self-inactivating (SIN) vectors with potentially improved safety, we excised the strong retroviral promoter from the U3 region of the 3' long terminal repeat (LTR) and inserted it either downstream or upstream of the retroviral RNA packaging signal (Psi). The latter concept is new and allows the use of an intron in the 5'UTR, taking advantage of retroviral splice sites surrounding Psi. Three LTR and four SIN vectors were compared to address the impact of RNA elements on titer, splice regulation and transgene expression. Although titers of SIN vectors were about 20-fold lower than those of their LTR counterparts, inclusion of the PRE allowed production of more than 10(6) infectious units per ml without further vector optimizations. In comparison with state-of-the-art LTR vectors, the intron-containing SIN vectors showed greatly improved splicing. With regard to transgene expression, the intron-containing SIN vectors largely matched or even exceeded the LTR counterparts in all cell types investigated (embryonic carcinoma cells, fibroblasts, primary T cells and hematopoietic progenitor cells).
Collapse
Affiliation(s)
- J Kraunus
- Department of Cell & Virus Genetics, Heinrich-Pette-Institute, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Takase-Yoden S, Watanabe R. Unique three-repeat sequences containing FVa, LVb/C4, and CORE motifs in LTR-U3 of Friend murine leukemia virus clone A8 accelerate the induction of thymoma in rat. Virology 2004; 326:29-40. [PMID: 15262492 DOI: 10.1016/j.virol.2004.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/13/2004] [Accepted: 04/30/2004] [Indexed: 11/19/2022]
Abstract
Friend murine leukemia virus (Fr-MLV) clone A8 causes thymoma 7 weeks postinfection in rats with a more rapid progression than clone 57. The U3 region of A8-LTR contains a unique structure of enhancer motifs consisting of three repeats of a 38-bp sequence containing FVa, LVb/C4, and CORE motifs. Replacement or deletion of the 38-bp sequence in the A8-U3 resulted in a marked reduction in tumorigenicity. Furthermore, the virus with 57-U3 gained high tumorigenicity after construction of the three 38-bp repeats in the U3 region. These findings indicated that the repeats of the 38-bp sequence of A8-LTR are essential for the rapid induction of thymoma. Interestingly, the repeat of the 38-bp sequence did not accelerate the amount of integrated viral DNA in the thymus during the early phase of infection, although it contributed to higher production of infectious virus. Thus, it was demonstrated that the ability to induce thymoma, which correlates with virus titer in the thymus, is not determined by the rate of viral DNA integration into the host genome.
Collapse
Affiliation(s)
- Sayaka Takase-Yoden
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
14
|
Ma SL, Lovmand J, Sørensen AB, Luz A, Schmidt J, Pedersen FS. Triple basepair changes within and adjacent to the conserved YY1 motif upstream of the U3 enhancer repeats of SL3-3 murine leukemia virus cause a small but significant shortening of latency of T-lymphoma induction. Virology 2003; 313:638-44. [PMID: 12954229 DOI: 10.1016/s0042-6822(03)00379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly conserved sequence upstream of the transcriptional enhancer in the U3 of murine leukemia viruses (MLVs) was reported to mediate negative regulation of their expression. In transient expression studies, negative regulation was reported to be conferred by coexpression of the transcription factor YY1, which binds to a motif in the upstream conserved region (UCR). To address the function of the UCR and its YY1-motif in an in vivo model of MLV-host interactions we introduced six consecutive triple basepair mutations into this region of the potent T-lymphomagenic SL3-3 MLV. We report that all mutants have retained their replication competence and that they all, like the SL3-3 wild type (wt), induce T-cell lymphomas when injected into newborn mice of the SWR strain. However, all mutants induced disease with slightly shorter latency periods than the wt SL3-3, suggesting that the YY1 motif as well as its immediate context in the UCR have a negative effect on the pathogenicity of the virus. This result may have implications for the design of retroviral vectors.
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Wahlers A, Kustikova O, Zipfel PF, Itoh K, Koester M, Heberlein C, Li Z, Schiedlmeier B, Skerka C, Fehse B, Baum C. Upstream conserved sequences of mouse leukemia viruses are important for high transgene expression in lymphoid and hematopoietic cells. Mol Ther 2002; 6:313-20. [PMID: 12231166 DOI: 10.1006/mthe.2002.0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly conserved enhancer sequences located in the upstream part of the long terminal repeat (LTR) of murine leukemia retroviruses (MLV) were reported to compromise viral gene expression in multipotent embryonic cells in vitro and to reduce the likelihood for maintenance of retroviral gene expression in hematopoietic cells in vivo. We show that deletion of these sequences (nucleotides +37 to +95) attenuates rather than increases the transcriptional activity of retroviral vectors in hematopoietic cells almost independently of the developmental lineage (erythroid, myeloid, or lymphoid). Expression rates of modified vectors were reduced by as much as 34-65%, although the strong enhancer array located in the direct repeat of the LTR was preserved. Sequence analysis and electrophoretic mobility shift assays revealed the presence of a highly conserved binding site for NFAT (nuclear factor of activated T cells) proteins that immediately neighbors a known binding site for the transcription factor Yin-Yang1 (YY1) [corrected]. Specific inactivation of the NFAT site reduced transgene expression in all cell types investigated and had a similar effect as the destruction of a neighboring SP1 motif. Combined destruction of individual motifs for NFAT, SP1, and E twenty-six transcription factors (ETS) resulted in a severe attenuation (by 40-60%) of the retroviral enhancer. These results provide novel clues for the manipulation of retrovirus replication and vector tropism.
Collapse
Affiliation(s)
- Anke Wahlers
- Heinrich-Pette-Institute, Department of Cell and Virus Genetics, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Z, Fehse B, Schiedlmeier B, Düllmann J, Frank O, Zander AR, Ostertag W, Baum C. Persisting multilineage transgene expression in the clonal progeny of a hematopoietic stem cell. Leukemia 2002; 16:1655-63. [PMID: 12200677 DOI: 10.1038/sj.leu.2402619] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 04/23/2002] [Indexed: 11/08/2022]
Abstract
Many applications of hematopoietic gene therapy require selection for clones with active transgene expression. However, it was unclear whether the clonal progeny of a retrovirally transduced hematopoietic stem cell would be capable of maintaining transgene expression through serial repopulation and multilineage differentiation. Such investigations require simultaneous analyses of clonality, multilineage activity and transgene copy numbers. Using a mouse model, the present study demonstrates that a single hematopoietic stem cell expressing a marker gene from one or two insertions of a simple retroviral vector actively maintains multilineage transgene expression in the vast majority (80-99%) of bone marrow and peripheral blood cells. Gene expression persisted through serial transplantations for at least 97 weeks post gene transfer and was observed in the lymphoid (B, T and NK cells), myeloid (CD11b(+), Gr-1(+)), erythroid (Ter119(+), mature red blood cells) and megakaryocytic (as indicated by platelets) progeny. Therefore, a single immunoselection for hematopoietic stem cells expressing the transgene in vivo was sufficient to establish a completely chimeric hematopoiesis. These observations imply that the retroviral vectors used in this study contain cis-elements that mediate expression through massive clonal expansion and multilineage differentiation, provided the insertion occurred in genetic loci permissive for expression in hematopoietic stem cells.
Collapse
Affiliation(s)
- Z Li
- Experimental Cell Therapy, Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|