1
|
Kubo Y, Hans MB, Nakamura T, Hayashi H. The Furin Protease Dependence and Antiviral GBP2 Sensitivity of Murine Leukemia Virus Infection Are Determined by the Amino Acid Sequence at the Envelope Glycoprotein Cleavage Site. Int J Mol Sci 2024; 25:9987. [PMID: 39337476 PMCID: PMC11432233 DOI: 10.3390/ijms25189987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance. Consistent with the sensitivity to GBP2, the amino acid sequences of the sensitive Envs at the SU-TM cleavage site were similar, as were the sequences of the resistant Envs. SU-TM cleavage of the GBP2-sensitive Env protein was inhibited by furin silencing, whereas that of GBP2-resistant Env was not. The substitution of the ecotropic Moloney cleavage site sequence with that of XMRV conferred resistance to both GBP2 and furin silencing. Reciprocally, the substitution of the XMRV cleavage site sequence with that of the ecotropic sequence conferred sensitivity to GBP2 and furin silencing. According to the SU-TM cleavage site sequence, there were sensitive and resistant variants among ecotropic, polytropic, and xenotropic MLVs. This study found that the dependence of MLV Env proteins on furin cleavage and GBP2-mediated restriction is determined by the amino acid sequences at the SU-TM cleavage site.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| |
Collapse
|
2
|
Zhang RZ, Mele V, Robben L, Kane M. Genetic Differences between 129S Substrains Affect Antiretroviral Immune Responses. J Virol 2023; 97:e0193022. [PMID: 37093008 PMCID: PMC10231236 DOI: 10.1128/jvi.01930-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Inbred mouse lines vary in their ability to mount protective antiretroviral immune responses, and even closely related strains can exhibit opposing phenotypes upon retroviral infection. Here, we found that 129S mice inherit a previously unknown mechanism for the production of anti-murine leukemia virus (MLV) antibodies and control of infection. The resistant phenotype in 129S1 mice is controlled by two dominant loci that are independent from known MLV resistance genes. We also show that production of anti-MLV antibodies in 129S7 mice, but not 129S1 mice, is independent of interferon gamma signaling. Thus, our data indicate that 129S mice inherit an unknown mechanism for control of MLV infection and demonstrate that there is genetic variability in 129S substrains that affects their ability to mount antiviral immune responses. IMPORTANCE Understanding the genetic basis for production of protective antiviral immune responses is crucial for the development of novel vaccines and adjuvants. Additionally, characterizing the genetic and phenotypic variability in inbred mice has implications for the selection of strains for targeted mutagenesis, choice of controls, and for broader understanding of the requirements for protective immunity.
Collapse
Affiliation(s)
- Robert Z. Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent Mele
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lia Robben
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- RK Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh Pennsylvania, USA
| |
Collapse
|
3
|
Spring J, Beilinson V, DeFelice BC, Sanchez JM, Fischbach M, Chervonsky A, Golovkina T. Retroviral Infection and Commensal Bacteria Dependently Alter the Metabolomic Profile in a Sterile Organ. Viruses 2023; 15:386. [PMID: 36851600 PMCID: PMC9967258 DOI: 10.3390/v15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Both viruses and bacteria produce "pathogen associated molecular patterns" that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites, while viruses could change the metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of murine leukemia virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus open a new avenue for future investigations.
Collapse
Affiliation(s)
- Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Michael Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Chervonsky
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Tatyana Golovkina
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Spring J, Beilinson V, DeFelice BC, Sanchez JM, Fischbach M, Chervonsky A, Golovkina T. Retroviral infection and commensal bacteria dependently alter the metabolomic profile in a sterile organ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523497. [PMID: 36711645 PMCID: PMC9882031 DOI: 10.1101/2023.01.10.523497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Both viruses and bacteria produce 'pathogen associated molecular patterns' that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites while viruses could change metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of Murine Leukemia Virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus, open a new avenue for future investigations.
Collapse
|
5
|
Gut commensal bacteria enhance pathogenesis of a tumorigenic murine retrovirus. Cell Rep 2022; 40:111341. [PMID: 36103821 DOI: 10.1016/j.celrep.2022.111341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The influence of the microbiota on viral transmission and replication is well appreciated. However, its impact on retroviral pathogenesis outside of transmission/replication control remains unknown. Using murine leukemia virus (MuLV), we found that some commensal bacteria promoted the development of leukemia induced by this retrovirus. The promotion of leukemia development by commensals is due to suppression of the adaptive immune response through upregulation of several negative regulators of immunity. These negative regulators include Serpinb9b and Rnf128, which are associated with a poor prognosis of some spontaneous human cancers. Upregulation of Serpinb9b is mediated by sensing of bacteria by the NOD1/NOD2/RIPK2 pathway. This work describes a mechanism by which the microbiota enhances tumorigenesis within gut-distant organs and points at potential targets for cancer therapy.
Collapse
|
6
|
A Single Locus Controls Interferon Gamma-Independent Antiretroviral Neutralizing Antibody Responses. J Virol 2018; 92:JVI.00725-18. [PMID: 29875252 DOI: 10.1128/jvi.00725-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
An essential step in the development of effective antiviral humoral responses is cytokine-triggered class switch recombination resulting in the production of antibodies of a specific isotype. Most viral and parasitic infections in mice induce predominantly IgG2a-specific antibody responses that are stimulated by interferon gamma (IFN-γ). However, in some mice deficient in IFN-γ, class switching to IgG2a antibodies is relatively unaffected, indicating that another signal(s) can be generated upon viral or parasitic infections that trigger this response. Here, we found that a single recessive locus, provisionally called IFN-γ-independent IgG2a (Igii), confers the ability to produce IFN-γ-independent production of IgG2a antibodies upon retroviral infection. The Igii locus was mapped to chromosome 9 and was found to function in the radiation-resistant compartment. Thus, our data implicate nonhematopoietic cells in activation of antiviral antibody responses in the absence of IFN-γ.IMPORTANCE Understanding the signals that stimulate antibody production and class switch recombination to specific antibody isotypes is crucial for the development of novel vaccines and adjuvants. While an interferon gamma-mediated switch to the IgG2a isotype upon viral infection in mice has been well established, this investigation reveals a noncanonical, interferon gamma-independent pathway for antiretroviral antibody production and IgG2a class switch recombination that is controlled by a single recessive locus. Furthermore, this study indicates that the radiation-resistant compartment can direct antiviral antibody responses, suggesting that detection of infection by nonhematopoietic cells is involved is stimulating adaptive immunity.
Collapse
|
7
|
Denzin LK, Khan AA, Virdis F, Wilks J, Kane M, Beilinson HA, Dikiy S, Case LK, Roopenian D, Witkowski M, Chervonsky AV, Golovkina TV. Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-classical MHC Class II Gene H2-Ob. Immunity 2017; 47:310-322.e7. [PMID: 28813660 PMCID: PMC5568092 DOI: 10.1016/j.immuni.2017.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/23/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.
Collapse
Affiliation(s)
- Lisa K Denzin
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Aly A Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Francesca Virdis
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Jessica Wilks
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Melissa Kane
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Helen A Beilinson
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Stanislav Dikiy
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Laure K Case
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Michele Witkowski
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | - Tatyana V Golovkina
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Abstract
Commensal microbes are often required to control viral infection by facilitating host immune defenses. However, we found that this does not hold true for retroviral infection. We report that retrovirus-resistant mice control the pathogen with virus-neutralizing antibodies independently of commensal microbiota. This is in contrast to orthomyxoviruses and arenaviruses, where resistance is ablated in animals depleted of microbiota. Clearly, when it comes to antiviral immunity, the role of the microbiota cannot be generalized.
Collapse
|
9
|
Kane M, Case LK, Wang C, Yurkovetskiy L, Dikiy S, Golovkina TV. Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry. Immunity 2011; 35:135-45. [PMID: 21723157 PMCID: PMC3519935 DOI: 10.1016/j.immuni.2011.05.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/02/2011] [Accepted: 03/30/2011] [Indexed: 12/21/2022]
Abstract
Innate immune sensors are required for induction of pathogen-specific immune responses. Retroviruses are notorious for their ability to evade immune defenses and establish long-term persistence in susceptible hosts. However, some infected animals are able to develop efficient virus-specific immune responses, and thus can be employed for identification of critical innate virus-sensing mechanisms. With mice from two inbred strains that control retroviruses via adaptive immune mechanisms, we found that of all steps in viral replication, the ability to enter the host cell was sufficient to induce antivirus humoral immune responses. Virus sensing occurred in endosomes via a MyD88-Toll-like receptor 7-dependent mechanism and stimulated virus-neutralizing immunity independently of type I interferons. Thus, efficient adaptive immunity to retroviruses is induced in vivo by innate sensing of the early stages of retroviral infection.
Collapse
Affiliation(s)
- Melissa Kane
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Laure K. Case
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Christine Wang
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Leonid Yurkovetskiy
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Stanislav Dikiy
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Tatyana V. Golovkina
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Abstract
Antiviral adaptive immune defenses consist of humoral and cell-mediated responses, which together eliminate extracellular and intracellular virus. As most retrovirus-infected individuals do not raise efficient protective antivirus immune responses, the relative importance of humoral and cell-mediated responses in restraining retroviral infection is not well understood. We utilized retrovirus-resistant I/LnJ mice, which control infection with mouse mammary tumor virus (MMTV) and murine leukemia virus (MuLV) via an adaptive immune mechanism, to assess the contribution of cellular responses and virus-neutralizing antibodies (Abs) to the control of retroviral infection. We found that in retrovirus-infected CD8-deficient I/LnJ mice, viral titers exceed the neutralizing capability of antiviral Abs, resulting in augmented virus spread and disease induction. Thus, even in the presence of robust neutralizing Ab responses, CD8-mediated responses are essential for full protection against retroviral infection.
Collapse
|
11
|
Replication of beta- and gammaretroviruses is restricted in I/LnJ mice via the same genetic mechanism. J Virol 2007; 82:1438-47. [PMID: 18057254 DOI: 10.1128/jvi.01991-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mice of the I/LnJ inbred strain are unique in their ability to mount a robust and sustained humoral immune response capable of neutralizing infection with a betaretrovirus, mouse mammary tumor virus (MMTV). Virus-neutralizing antibodies (Abs) coat MMTV virions secreted by infected cells, preventing virus spread and hence the formation of mammary tumors. To investigate whether I/LnJ mice resist infection with other retroviruses besides MMTV, the animals were infected with murine leukemia virus (MuLV), a gammaretrovirus. MuLV-infected I/LnJ mice produced virus-neutralizing Abs that block virus transmission and virally induced disease. Generation of virus-neutralizing Abs required gamma interferon but was independent of interleukin-12. This unique mechanism of retrovirus resistance is governed by a single recessive gene, virus infectivity controller 1 (vic1), mapped to chromosome 17. In addition to controlling the antivirus humoral immune response, vic1 is also required for an antiviral cytotoxic response. Both types of responses were maintained in mice of the susceptible genetic background but congenic for the I/LnJ vic1 locus. Although the vic1-mediated resistance to MuLV resembles the mechanism of retroviral recovery controlled by the resistance to Friend virus 3 (rfv3) gene, the rfv3 gene has been mapped to chromosome 15 and confers resistance to MuLV but not to MMTV. Thus, we have identified a unique virus resistance mechanism that controls immunity against two distinct retroviruses.
Collapse
|