1
|
Molecular dynamics simulation and experimental verification of the interaction between cyclin T1 and HIV-1 Tat proteins. PLoS One 2015; 10:e0119451. [PMID: 25781978 PMCID: PMC4363469 DOI: 10.1371/journal.pone.0119451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
The viral encoded Tat protein is essential for the transcriptional activation of HIV proviral DNA. Interaction of Tat with a cellular transcription elongation factor P-TEFb containing CycT1 is critically required for its action. In this study, we performed MD simulation using the 3D data for wild-type and 4CycT1mutants3D data. We found that the dynamic structural change of CycT1 H2’ helix is indispensable for its activity for the Tat action. Moreover, we detected flexible structural changes of the Tat-recognition cavity in the WT CycT1 comprising of ten AAs that are in contact with Tat. These structural fluctuations in WT were lost in the CycT1 mutants. We also found the critical importance of the hydrogen bond network involving H1, H1’ and H2 helices of CycT1. Since similar AA substitutions of the Tat-CycT1 chimera retained the Tat-supporting activity, these interactions are considered primarily involved in interaction with Tat. These findings described in this paper should provide vital information for the development of effective anti-Tat compound.
Collapse
|
2
|
Functional Characterization of Human Cyclin T1 N-Terminal Region for Human Immunodeficiency Virus-1 Tat Transcriptional Activation. J Mol Biol 2011; 410:887-95. [DOI: 10.1016/j.jmb.2011.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
|
3
|
Formation of Tat-TAR containing ribonucleoprotein complexes for biochemical and structural analyses. Methods 2010; 53:78-84. [PMID: 20385237 DOI: 10.1016/j.ymeth.2010.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 01/27/2023] Open
Abstract
Viruses manipulate multiple processes of the host cell machinery in order to replicate successfully in the infected cell. Among these, stimulation of transcription of the viral genes is crucial for lentiviruses such as HIV for increased protein expression levels and generation of escape mutants. The transactivation response (TAR) element at the 5'-end of HIV, SIV, BIV, EIAV or JDV retroviruses forms a unique RNA based promoter element that together with the transcription activator protein Tat stimulates viral gene expression at the level of transcription elongation. TAR is a double stranded non-coding RNA of typically 24-40 nucleotides length. Together with Tat it interacts with the Cyclin T subunit of the positive transcription elongation factor P-TEFb to recruit Cyclin T and its corresponding Cyclin-dependent kinase Cdk9 to the RNA polymerase II. In vitro formations of these Tat-TAR containing ribonucleoprotein complexes are a key requisite for biochemical characterizations and interaction studies that eventually will allow structural analyses. Here, we describe purification methods of the different factors employed and chromatography techniques that yield highly specific complex assemblies suitable for crystallization.
Collapse
|
4
|
Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol 2008; 15:1287-92. [PMID: 19029897 DOI: 10.1038/nsmb.1513] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/14/2008] [Indexed: 11/08/2022]
Abstract
The replication of many retroviruses is mediated by a transcriptional activator protein, Tat, which activates RNA polymerase II at the level of transcription elongation. Tat interacts with Cyclin T1 of the positive transcription-elongation factor P-TEFb to recruit the transactivation-response TAR RNA, which acts as a promoter element in the transcribed 5' end of the viral long terminal repeat. Here we present the structure of the cyclin box domain of Cyclin T1 in complex with the Tat protein from the equine infectious anemia virus and its corresponding TAR RNA. The basic RNA-recognition motif of Tat adopts a helical structure whose flanking regions interact with a cyclin T-specific loop in the first cyclin box repeat. Together, both proteins coordinate the stem-loop structure of TAR. Our findings show that Tat binds to a surface on Cyclin T1 similar to where recognition motifs from substrate and inhibitor peptides were previously found to interact within Cdk-cyclin pairs.
Collapse
|
5
|
Jadlowsky JK, Nojima M, Schulte A, Geyer M, Okamoto T, Fujinaga K. Dominant negative mutant cyclin T1 proteins inhibit HIV transcription by specifically degrading Tat. Retrovirology 2008; 5:63. [PMID: 18620576 PMCID: PMC2492875 DOI: 10.1186/1742-4690-5-63] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/11/2008] [Indexed: 11/28/2022] Open
Abstract
Background The positive transcription elongation factor b (P-TEFb) is an essential cellular co-factor for the transcription of the human immunodeficiency virus type 1 (HIV-1). The cyclin T1 (CycT1) subunit of P-TEFb associates with a viral protein, Tat, at the transactivation response element (TAR). This represents a critical and necessary step for the stimulation of transcriptional elongation. Therefore, CycT1 may serve as a potential target for the development of anti-HIV therapies. Results To create effective inhibitors of HIV transcription, mutant CycT1 proteins were constructed based upon sequence similarities between CycT1 and other cyclin molecules, as well as the defined crystal structure of CycT1. One of these mutants, termed CycT1-U7, showed a potent dominant negative effect on Tat-dependent HIV transcription despite a remarkably low steady-state expression level. Surprisingly, the expression levels of Tat proteins co-expressed with CycT1-U7 were significantly lower than Tat co-expressed with wild type CycT1. However, the expression levels of CycT1-U7 and Tat were restored by treatment with proteasome inhibitors. Concomitantly, the dominant negative effect of CycT1-U7 was abolished by these inhibitors. Conclusion These results suggest that CycT1-U7 inhibits HIV transcription by promoting a rapid degradation of Tat. These mutant CycT1 proteins represent a novel class of specific inhibitors for HIV transcription that could potentially be used in the design of anti-viral therapy.
Collapse
Affiliation(s)
- Julie K Jadlowsky
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Anand K, Schulte A, Fujinaga K, Scheffzek K, Geyer M. Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. J Mol Biol 2007; 370:826-36. [PMID: 17540406 PMCID: PMC1987359 DOI: 10.1016/j.jmb.2007.04.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 01/05/2023]
Abstract
The positive transcription elongation factor b (P-TEFb) is an essential regulator of viral gene expression during the life cycle of human immunodeficiency virus type 1 (HIV-1). Its cyclin T1 subunit forms a ternary complex with the viral transcriptional transactivator (Tat) protein and the transactivation response (TAR) RNA element thereby activating cyclin dependent kinase 9 (Cdk9), which stimulates transcription at the level of chain elongation. We report the structure of the cyclin box domain of human cyclin T1 at a resolution of 2.67 A. The structure was obtained by crystallographic analysis of a fusion protein composed of cyclin T1 linked to the transactivator protein Tat from equine infectious anemia virus (EIAV), which is functionally and structurally related to HIV-1 Tat. The conserved cyclin box domain of cyclin T1 exhibits structural features for interaction with physiological binding partners such as Cdk9. A recognition site for Cdk/Cyclin substrates is partly covered by a cyclin T-specific insert, suggesting specific interactions with regulatory factors. The previously identified Tat/TAR recognition motif (TRM) forms a C-terminal helix that is partly occluded in the cyclin box repeat interface, while cysteine 261 is accessible to form an intermolecular zinc finger with Tat. Residues of the TRM contribute to a positively charged groove that may directly attract RNA molecules. The EIAV Tat protein instead appeared undefined from the electron density map suggesting that it is highly disordered. Functional experiments confirmed the TAR binding properties of the fusion protein and suggested residues on the second cyclin box repeat to contribute to Tat stimulated transcription.
Collapse
Affiliation(s)
- Kanchan Anand
- EMBL Heidelberg, Structural and Computational Biology Programme, 69117 Heidelberg, Germany
| | - Antje Schulte
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, 44227 Dortmund, Germany
| | - Koh Fujinaga
- Case Western Reserve University, Division of Infectious Diseases and the Department of Molecular Biology and Microbiology, Cleveland, OH 44116, USA
| | - Klaus Scheffzek
- EMBL Heidelberg, Structural and Computational Biology Programme, 69117 Heidelberg, Germany
- * Corresponding authors: E-mail addresses of the corresponding authors: ;
| | - Matthias Geyer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, 44227 Dortmund, Germany
- * Corresponding authors: E-mail addresses of the corresponding authors: ;
| |
Collapse
|
7
|
Schulte A, Czudnochowski N, Barboric M, Schönichen A, Blazek D, Peterlin BM, Geyer M. Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. J Biol Chem 2005; 280:24968-77. [PMID: 15855166 DOI: 10.1074/jbc.m501431200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active form of the positive transcription elongation factor b (P-TEFb) consists of cyclin T and the kinase Cdk9. P-TEFb stimulates transcription by phosphorylating the C-terminal domain of RNA polymerase II. It becomes inactivated when associated in a tetrameric complex with the abundant 7SK small nuclear RNA and the recently identified protein Hexim1. In this study, we identified a stable and soluble C-terminal domain (residues 255-359) in Hexim1 of 12.5-kDa size that binds the cyclin boxes of Cyclin T1. Functional assays in HeLa cells showed that this cyclin T-binding domain (TBD) is required for the binding of Hexim1 to P-TEFb and inhibition of transcriptional activity in vivo. Analytical gel filtration and GST pull-down experiments revealed that both full-length Hexim1 and the TBD are homodimers. Isothermal titration calorimetry yielded a weak multimer for the TBD with a multimerization constant of 1.3 x 10(3) m. The binding affinity between the TBD and cyclin T1 was analyzed with fluorescence spectroscopy methods, using a dansyl-based fluorescence label at position G257C. Equilibrium fluorescence titration and stopped flow fast kinetics yield a dissociation constant of 1.2 mum. Finally, we tested the effect of the HIV-1 Tat protein on the cyclin T1-TBD complex formation. GST pull-down experiments and size exclusion chromatography exhibit a mutually exclusive binding of the two effectors to cyclin T1. Our data suggest a model where HIV-1 Tat competes with Hexim1 for cyclin T1 binding, thus releasing P-TEFb from the inactive complex to stimulate the transcription of HIV-1 gene expression.
Collapse
MESH Headings
- Calorimetry
- Chromatography, Gel
- Cyclin T
- Cyclins/chemistry
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Gene Products, tat/chemistry
- Glutathione Transferase/metabolism
- HeLa Cells
- Humans
- Kinetics
- Microscopy, Fluorescence
- Models, Genetic
- Positive Transcriptional Elongation Factor B/chemistry
- Positive Transcriptional Elongation Factor B/metabolism
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Small Nuclear/chemistry
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Software
- Spectrometry, Fluorescence
- Thermodynamics
- Time Factors
- Transcription Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Antje Schulte
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Building-Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
9
|
Das C, Edgcomb SP, Peteranderl R, Chen L, Frankel AD. Evidence for conformational flexibility in the Tat-TAR recognition motif of cyclin T1. Virology 2004; 318:306-17. [PMID: 14972556 DOI: 10.1016/j.virol.2003.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/08/2003] [Accepted: 10/08/2003] [Indexed: 11/16/2022]
Abstract
Cyclin T1 (CycT1) is a cellular transcription elongation factor that also participates in Tat-mediated activation of several lentiviral promoters. In human immunodeficiency virus (HIV), CycT1 is required for Tat to bind tightly to TAR and interacts in the ternary complex via its Tat-TAR recognition motif (TRM). In the related bovine immunodeficiency virus (BIV), Tat recognizes its cognate TAR element with high affinity and specificity in the absence of CycT1. At both promoters, CycT1 recruits the Cdk9 kinase, which phosphorylates RNA polymerase II to generate processive transcription complexes. To examine the physical properties of CycT1, we purified a functional domain corresponding to residues 1-272 and found that it possesses a stably folded core, as judged by partial proteolysis and circular dichroism experiments. Interestingly, the C-terminal 20 residues corresponding to the TRM appear conformationally flexible or disordered. The TRM of the bovine CycT1 (bCycT1) is similarly sensitive to proteolysis yet differs in sequence from the human protein. In particular, bCycT1 lacks a cysteine at residue 261 known to be critical for HIV but not BIV ternary complex formation, and mutagenesis data are consistent with a proposed role for this cysteine in metal binding. The apparent flexibility of the TRM suggests that conformational rearrangements may accompany formation of CycT1-Tat-TAR ternary complexes and may contribute to different TAR recognition strategies in different lentiviruses.
Collapse
Affiliation(s)
- Chandreyee Das
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2280, USA
| | | | | | | | | |
Collapse
|
10
|
Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 2004; 24:787-95. [PMID: 14701750 PMCID: PMC343783 DOI: 10.1128/mcb.24.2.787-795.2004] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The elongation of transcription is a highly regulated process that requires negative and positive effectors. By binding the double-stranded stem in the transactivation response (TAR) element, RD protein from the negative transcription elongation factor (NELF) inhibits basal transcription from the long terminal repeat of the human immunodeficiency virus type 1 (HIVLTR). Tat and its cellular cofactor, the positive transcription elongation factor b (P-TEFb), overcome this negative effect. Cdk9 in P-TEFb also phosphorylates RD at sites next to its RNA recognition motif. A mutant RD protein that mimics its phosphorylated form no longer binds TAR nor represses HIV transcription. In sharp contrast, a mutant RD protein that cannot be phosphorylated by P-TEFb functions as a dominant-negative effector and inhibits Tat transactivation. These results better define the transition from abortive to productive transcription and thus replication of HIV.
Collapse
Affiliation(s)
- Koh Fujinaga
- Department of Medicine, Rosalind Russell Medical Research Center, University of California at San Francisco, 3rd and Parnassus Avenue, San Francisco, CA 94143-0703, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Lin X, Irwin D, Kanazawa S, Huang L, Romeo J, Yen TSB, Peterlin BM. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J Virol 2003; 77:8227-36. [PMID: 12857891 PMCID: PMC165222 DOI: 10.1128/jvi.77.15.8227-8236.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The persistence of human immunodeficiency virus (HIV) in optimally treated infected individuals poses a major therapeutic problem. In latently infected cells, one of the observed phenotypes is absent elongation of viral transcription. Thus, the positive elongation factor b (P-TEFb), which is usually recruited by NF-kappaB or Tat, is not present on the HIV long terminal repeat (LTR). Although most attempts to activate these proviruses centered on NF-kappaB, we investigated effects of Tat. To this end, we generated transgenic mice, which secreted a chimera between Tat and the green fluorescent protein from beta cells of the pancreas. This extracellular Tat distributed widely, entered nuclei of resting cells, and specifically transactivated the HIV LTR. No deleterious side effects of Tat were found. Next, we determined that Tat can activate latent proviruses in optimally treated infected individuals. In their cells, T-cell activation or exogenous Tat could induce viral replication equivalently. Thus, P-TEFb could activate the majority of the latent HIV, in this case by Tat.
Collapse
Affiliation(s)
- Xin Lin
- Department of Medicine, San Francisco General Hospital, Center for AIDS Research and Department of Pathology, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|