1
|
Nikolaitchik OA, Islam S, Kitzrow JP, Duchon A, Cheng Z, Liu Y, Rawson JMO, Shao W, Nikolaitchik M, Kearney MF, Maldarelli F, Musier-Forsyth K, Pathak VK, Hu WS. HIV-1 usurps transcription start site heterogeneity of host RNA polymerase II to maximize replication fitness. Proc Natl Acad Sci U S A 2023; 120:e2305103120. [PMID: 37252967 PMCID: PMC10266039 DOI: 10.1073/pnas.2305103120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.
Collapse
Affiliation(s)
- Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Jonathan P. Kitzrow
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Yang Liu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Maria Nikolaitchik
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Mary F. Kearney
- Translation Research Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Ohio State University, Columbus, OH43210
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
2
|
Beemon KL. Retroviral RNA Processing. Viruses 2022; 14:v14051113. [PMID: 35632854 PMCID: PMC9143442 DOI: 10.3390/v14051113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review is an accompaniment to a Special Issue on “Retroviral RNA Processing”. It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus. This review is not comprehensive. However, it tries to address some of the major questions in the field with examples of how different retroviruses express their genes. It is amazing that a single primary RNA transcript can have so many possible fates: genomic RNA, unspliced mRNA, and up to 50 different alternatively spliced mRNAs. This review will discuss the sorting of RNAs for packaging or translation, RNA nuclear export mechanisms, splicing, translation, RNA modifications, and avoidance of nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Karen L Beemon
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Pereira-Montecinos C, Toro-Ascuy D, Ananías-Sáez C, Gaete-Argel A, Rojas-Fuentes C, Riquelme-Barrios S, Rojas-Araya B, García-de-Gracia F, Aguilera-Cortés P, Chnaiderman J, Acevedo ML, Valiente-Echeverría F, Soto-Rifo R. Epitranscriptomic regulation of HIV-1 full-length RNA packaging. Nucleic Acids Res 2022; 50:2302-2318. [PMID: 35137199 PMCID: PMC8887480 DOI: 10.1093/nar/gkac062] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
During retroviral replication, the full-length RNA serves both as mRNA and genomic RNA. However, the mechanisms by which the HIV-1 Gag protein selects the two RNA molecules that will be packaged into nascent virions remain poorly understood. Here, we demonstrate that deposition of N6-methyladenosine (m6A) regulates full-length RNA packaging. While m6A deposition by METTL3/METTL14 onto the full-length RNA was associated with increased Gag synthesis and reduced packaging, FTO-mediated demethylation promoted the incorporation of the full-length RNA into viral particles. Interestingly, HIV-1 Gag associates with the RNA demethylase FTO in the nucleus and contributes to full-length RNA demethylation. We further identified two highly conserved adenosines within the 5'-UTR that have a crucial functional role in m6A methylation and packaging of the full-length RNA. Together, our data propose a novel epitranscriptomic mechanism allowing the selection of the HIV-1 full-length RNA molecules that will be used as viral genomes.
Collapse
Affiliation(s)
- Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catarina Ananías-Sáez
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Aguilera-Cortés
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jonás Chnaiderman
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica L Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
5
|
Chameettachal A, Vivet-Boudou V, Pitchai F, Pillai V, Ali L, Krishnan A, Bernacchi S, Mustafa F, Marquet R, Rizvi T. A purine loop and the primer binding site are critical for the selective encapsidation of mouse mammary tumor virus genomic RNA by Pr77Gag. Nucleic Acids Res 2021; 49:4668-4688. [PMID: 33836091 PMCID: PMC8096270 DOI: 10.1093/nar/gkab223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem-loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
6
|
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites. Viruses 2020; 12:v12111281. [PMID: 33182496 PMCID: PMC7696413 DOI: 10.3390/v12111281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus.
Collapse
|
7
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
8
|
Maldonado RJK, Rice B, Chen EC, Tuffy KM, Chiari EF, Fahrbach KM, Hope TJ, Parent LJ. Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus. mBio 2020; 11:e00524-20. [PMID: 32265329 PMCID: PMC7157774 DOI: 10.1128/mbio.00524-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944-3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790-6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.
Collapse
Affiliation(s)
| | - Breanna Rice
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Eunice C Chen
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kevin M Tuffy
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Estelle F Chiari
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kelly M Fahrbach
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Rao S, Hassine S, Monette A, Amorim R, DesGroseillers L, Mouland AJ. HIV-1 requires Staufen1 to dissociate stress granules and to produce infectious viral particles. RNA (NEW YORK, N.Y.) 2019; 25:727-736. [PMID: 30902835 PMCID: PMC6521601 DOI: 10.1261/rna.069351.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) has two major fates during viral replication: to serve as the template for the major structural and enzymatic proteins, or to be encapsidated and packaged into assembling virions to serve as the genomic vRNA in budding viruses. The dynamic balance between vRNA translation and encapsidation is mediated by numerous host proteins, including Staufen1. During HIV-1 infection, HIV-1 recruits Staufen1 to assemble a distinct ribonucleoprotein complex promoting vRNA encapsidation and viral assembly. Staufen1 also rescues vRNA translation and gene expression during conditions of cellular stress. In this work, we utilized novel Staufen1-/- gene-edited cells to further characterize the contribution of Staufen1 in HIV-1 replication. We observed a marked deficiency in the ability of HIV-1 to dissociate stress granules (SGs) in Staufen1-deficient cells and remarkably, the vRNA repositioned to SGs. These phenotypes were rescued by Staufen1 expression in trans or in cis, but not by a dsRBD-binding mutant, Staufen1F135A. The mistrafficking of the vRNA in these Staufen1-/- cells was also accompanied by a dramatic decrease in viral production and infectivity. This work provides novel insight into the mechanisms by which HIV-1 uses Staufen1 to ensure optimal vRNA translation and trafficking, supporting an integral role for Staufen1 in the HIV-1 life cycle, positioning it as an attractive target for next-generation antiretroviral agents.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| | - Sami Hassine
- Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
- Department of Medicine, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
- Department of Medicine, McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
10
|
Singh G, Rife BD, Seufzer B, Salemi M, Rendahl A, Boris-Lawrie K. Identification of conserved, primary sequence motifs that direct retrovirus RNA fate. Nucleic Acids Res 2018; 46:7366-7378. [PMID: 29846681 PMCID: PMC6101577 DOI: 10.1093/nar/gky369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Precise stoichiometry of genome-length transcripts and alternatively spliced mRNAs is a hallmark of retroviruses. We discovered short, guanosine and adenosine sequence motifs in the 5'untranslated region of several retroviruses and ascertained the reasons for their conservation using a representative lentivirus and genetically simpler retrovirus. We conducted site-directed mutagenesis of the GA-motifs in HIV molecular clones and observed steep replication delays in T-cells. Quantitative RNA analyses demonstrate the GA-motifs are necessary to retain unspliced viral transcripts from alternative splicing. Mutagenesis of the GA-motifs in a C-type retrovirus validate the similar downregulation of unspliced transcripts and virion structural protein. The evidence from cell-based co-precipitation studies shows the GA-motifs in the 5'untranslated region confer binding by SFPQ/PSF, a protein co-regulated with T-cell activation. Diminished SFPQ/PSF or mutation of either GA-motif attenuates the replication of HIV. The interaction of SFPQ/PSF with both GA-motifs is crucial for maintaining the stoichiometry of the viral transcripts and does not affect packaging of HIV RNA. Our results demonstrate the conserved GA-motifs direct the fate of retrovirus RNA. These findings have exposed an RNA-based molecular target to attenuate retrovirus replication.
Collapse
Affiliation(s)
- Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Brittany D Rife
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bradley Seufzer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
Barajas BC, Tanaka M, Robinson BA, Phuong DJ, Chutiraka K, Reed JC, Lingappa JR. Identifying the assembly intermediate in which Gag first associates with unspliced HIV-1 RNA suggests a novel model for HIV-1 RNA packaging. PLoS Pathog 2018; 14:e1006977. [PMID: 29664940 PMCID: PMC5940231 DOI: 10.1371/journal.ppat.1006977] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/08/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.
Collapse
Affiliation(s)
- Brook C. Barajas
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Motoko Tanaka
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Bridget A. Robinson
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Daryl J. Phuong
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Kasana Chutiraka
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Jonathan C. Reed
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Jaisri R. Lingappa
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
12
|
Riquelme-Barrios S, Pereira-Montecinos C, Valiente-Echeverría F, Soto-Rifo R. Emerging Roles of N 6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication. Front Microbiol 2018; 9:576. [PMID: 29643844 PMCID: PMC5882793 DOI: 10.3389/fmicb.2018.00576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification present in Eukaryotic mRNA. The functions of this chemical modification are mediated by m6A-binding proteins (m6A readers) and regulated by methyltransferases (m6A writers) and demethylases (m6A erasers), which together are proposed to be responsible of a new layer of post-transcriptional control of gene expression. Despite the presence of m6A in a retroviral genome was reported more than 40 years ago, the recent development of sequencing-based technologies allowing the mapping of m6A in a transcriptome-wide manner made it possible to identify the topology and dynamics of m6A during replication of HIV-1 as well as other viruses. As such, three independent groups recently reported the presence of m6A along the HIV-1 genomic RNA (gRNA) and described the impact of cellular m6A writers, erasers and readers on different steps of viral RNA metabolism and replication. Interestingly, while two groups reported a positive role of m6A at different steps of viral gene expression it was also proposed that the presence of m6A within the gRNA reduces viral infectivity by inducing the early degradation of the incoming viral genome. This review summarizes the recent advances in this emerging field and discusses the relevance of m6A during HIV-1 replication.
Collapse
Affiliation(s)
- Sebastián Riquelme-Barrios
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Rao S, Cinti A, Temzi A, Amorim R, You JC, Mouland AJ. HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. RNA (NEW YORK, N.Y.) 2018; 24:219-236. [PMID: 29127210 PMCID: PMC5769749 DOI: 10.1261/rna.064618.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The nucleocapsid (NC) is an N-terminal protein derived from the HIV-1 Gag precursor polyprotein, pr55Gag NC possesses key functions at several pivotal stages of viral replication. For example, an interaction between NC and the host double-stranded RNA-binding protein Staufen1 was shown to regulate several steps in the viral replication cycle, such as Gag multimerization and genomic RNA encapsidation. In this work, we observed that the overexpression of NC leads to the induction of stress granule (SG) assembly. NC-mediated SG assembly was unique as it was resistant to the SG blockade imposed by the HIV-1 capsid (CA), as shown in earlier work. NC also reduced host cell mRNA translation, as judged by a puromycylation assay of de novo synthesized proteins, and this was recapitulated in polysome profile analyses. Virus production was also found to be significantly reduced. Finally, Staufen1 expression completely rescued the blockade to NC-mediated SG assembly, global mRNA translation as well as virus production. NC expression also resulted in the phosphorylation of protein kinase R (PKR) and eIF2α, and this was inhibited with Staufen1 coexpression. This work sheds light on an unexpected function of NC in host cell translation. A comprehensive understanding of the molecular mechanisms by which a fine balance of the HIV-1 structural proteins NC and CA act in concert with host proteins such as Staufen1 to modulate the host stress response will aid in the development of new antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Abdelkrim Temzi
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| |
Collapse
|
14
|
Boeras I, Seufzer B, Brady S, Rendahl A, Heng X, Boris-Lawrie K. The basal translation rate of authentic HIV-1 RNA is regulated by 5'UTR nt-pairings at junction of R and U5. Sci Rep 2017; 7:6902. [PMID: 28761163 PMCID: PMC5537239 DOI: 10.1038/s41598-017-06883-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
The paradigm protein synthesis rate is regulated by structural complexity of the 5′untranslated region (UTR) derives from bacterial and other riboswitches. In-solution, HIV-1 5′UTR forms two interchangeable long-range nucleotide (nt) -pairings, one sequesters the gag start codon promoting dimerization while the other sequesters the dimer initiation signal preventing dimerization. While the effect of these nt-pairings on dimerization and packaging has been documented their effect on authentic HIV translation in cellulo has remained elusive until now. HIVNL4-3 5′UTR substitutions were designed to individually stabilize the dimer-prone or monomer-prone conformations, validated in-solution, and introduced to molecular clones. The effect of 5′UTR conformation on ribosome loading to HIV unspliced RNA and rate of Gag polypeptide synthesis was quantified in cellulo. Monomer- and dimer-prone 5′UTRs displayed equivalent, basal rate of translation. Gain-of-function substitution U103, in conjunction with previously defined nt-pairings that reorient AUG to flexible nt-pairing, significantly activated the translation rate, indicating the basal translation rate is under positive selection. The observed translation up-mutation focuses attention to nt-pairings at the junction of R and U5, a poorly characterized structure upstream of the characterized HIV riboswitch and demonstrates the basal translation rate of authentic HIV RNA is regulated independently of monomer:dimer equilibrium of the 5′UTR.
Collapse
Affiliation(s)
- I Boeras
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - B Seufzer
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - S Brady
- University of Missouri, Department of Biochemistry, 503 S. College Ave, Columbia, MO, 65211, USA
| | - A Rendahl
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - X Heng
- University of Missouri, Department of Biochemistry, 503 S. College Ave, Columbia, MO, 65211, USA.
| | - K Boris-Lawrie
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA.
| |
Collapse
|
15
|
Regulation of human immunodeficiency virus type 1 (HIV-1) mRNA translation. Biochem Soc Trans 2017; 45:353-364. [PMID: 28408475 DOI: 10.1042/bst20160357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) mRNA translation is a complex process that uses the host translation machinery to synthesise viral proteins. Several mechanisms for HIV-1 mRNA translation initiation have been proposed including (1) cap-dependent, eIF4E-dependent, (2) cap-dependent, cap-binding complex-dependent, (3) internal ribosome entry sites, and (4) ribosome shunting. While these mechanisms promote HIV-1 mRNA translation in the context of in vitro systems and subgenomic constructs, there are substantial knowledge gaps in understanding how they regulate viral protein production in the context of full-length virus infection. In this review, we will summarise the different translation mechanisms used by HIV-1 mRNAs and the challenges in understanding how they regulate protein synthesis during viral infection.
Collapse
|
16
|
Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly. J Virol 2017; 91:JVI.02315-16. [PMID: 28053097 DOI: 10.1128/jvi.02315-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM.IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins (gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy.
Collapse
|
17
|
Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 2017; 91:JVI.02107-16. [PMID: 27852860 DOI: 10.1128/jvi.02107-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.
Collapse
|
18
|
Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. Viruses 2016; 8:v8090257. [PMID: 27657110 PMCID: PMC5035971 DOI: 10.3390/v8090257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.
Collapse
|
19
|
Mekdad HE, Boutant E, Karnib H, Biedma ME, Sharma KK, Malytska I, Laumond G, Roy M, Réal E, Paillart JC, Moog C, Darlix JL, Mély Y, de Rocquigny H. Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling. Retrovirology 2016; 13:54. [PMID: 27515235 PMCID: PMC4982112 DOI: 10.1186/s12977-016-0287-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. Results Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. Conclusions Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hala El Mekdad
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Hassan Karnib
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Marina E Biedma
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Kamal Kant Sharma
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Iuliia Malytska
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Géraldine Laumond
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Marion Roy
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Eléonore Réal
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Christiane Moog
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Jean Luc Darlix
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France.
| |
Collapse
|
20
|
Molecular Studies of HTLV-1 Replication: An Update. Viruses 2016; 8:v8020031. [PMID: 26828513 PMCID: PMC4776186 DOI: 10.3390/v8020031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.
Collapse
|
21
|
Singh D, Boeras I, Singh G, Boris-Lawrie K. Isolation of Cognate Cellular and Viral Ribonucleoprotein Complexes of HIV-1 RNA Applicable to Proteomic Discovery and Molecular Investigations. Methods Mol Biol 2016; 1354:133-46. [PMID: 26714709 DOI: 10.1007/978-1-4939-3046-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
All decisions affecting the life cycle of human immunodeficiency virus (HIV-1) RNA are executed by ribonucleoprotein complexes (RNPs). HIV-1 RNA cycles through a progression of host RNPs composed of RNA-binding proteins regulating all stages of synthesis, processing, nuclear transport, translation, decay, and co-localization with assembling virions. RNA affinity chromatography is a versatile method to identify RNA-binding proteins to investigate the molecular basis of viral and cellular posttranscriptional control of gene expression. The bait is a HIV-1 RNA motif immobilized on a solid support, typically magnetic or Sepharose beads. The prey is pre-formed RNPs admixed in lysate from cells or concentrated virus particles. The methodology distinguishes high-affinity RNA-protein interactions from low-affinity complexes by increases in ionic strength during progressive elution cycles. Here, we describe RNA affinity chromatography of the 5' untranslated region of HIV-1, obtaining mixtures of high-affinity RNA binding proteins suitable for mass spectrometry and proteome identification.
Collapse
Affiliation(s)
- Deepali Singh
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.,Center for Retrovirus Research, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| | - Ioana Boeras
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.,Center for Retrovirus Research, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| | - Gatikrushna Singh
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.,Center for Retrovirus Research, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA. .,Center for Retrovirus Research, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA. .,Center for RNA Biology, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA.
| |
Collapse
|
22
|
Stake M, Singh D, Singh G, Marcela Hernandez J, Kaddis Maldonado R, Parent LJ, Boris-Lawrie K. HIV-1 and two avian retroviral 5' untranslated regions bind orthologous human and chicken RNA binding proteins. Virology 2015; 486:307-20. [PMID: 26584240 DOI: 10.1016/j.virol.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023]
Abstract
Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages.
Collapse
Affiliation(s)
- Matthew Stake
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India.
| | - Gatikrushna Singh
- Department Veterinary & Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108.
| | - J Marcela Hernandez
- Department of Veterinary Biosciences, Center for Retrovirus Research, Center for RNA Biology, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| | - Rebecca Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Kathleen Boris-Lawrie
- Department Veterinary & Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108.
| |
Collapse
|
23
|
Rice BL, Kaddis RJ, Stake MS, Lochmann TL, Parent LJ. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus. Front Microbiol 2015; 6:925. [PMID: 26441864 PMCID: PMC4562304 DOI: 10.3389/fmicb.2015.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/21/2015] [Indexed: 01/27/2023] Open
Abstract
Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template.
Collapse
Affiliation(s)
- Breanna L Rice
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Rebecca J Kaddis
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Matthew S Stake
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA ; Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
24
|
Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly. J Virol 2015; 89:10832-40. [PMID: 26292321 DOI: 10.1128/jvi.01146-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. IMPORTANCE Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas most HIV-1 RNAs stayed at the plasma membrane for 15 to 60 min in the presence of Gag. Our results also demonstrated that only a small proportion of the HIV-1 RNAs, approximately 1/10 to 1/3 of the RNAs that reached the plasma membrane, was incorporated into viral protein complexes. These studies determined the dynamics of HIV-1 RNA on the plasma membrane and obtained temporal information on RNA-Gag interactions that lead to RNA encapsidation.
Collapse
|
25
|
Valiente-Echeverría F, Hermoso MA, Soto-Rifo R. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev Med Virol 2015; 25:286-99. [PMID: 26174373 DOI: 10.1002/rmv.1845] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022]
Abstract
Asp-Glu-Ala-Asp (DEAD)-box polypeptide 3, or DDX3, belongs to the DEAD-box family of ATP-dependent RNA helicases and is known to play different roles in RNA metabolism ranging from transcription to nuclear export, translation, and assembly of stress granules. In addition, there is growing evidence that DDX3 is a component of the innate immune response against viral infections. As such, DDX3 has been shown to play roles both upstream and downstream of I-kappa beta kinase ε (IKKε)/TANK-binding kinase 1, leading to IFN-β production. Interestingly, several RNA viruses, including human threats such as HIV-1 and hepatitis C virus, hijack DDX3 to accomplish various steps of their replication cycles. Thus, it seems that viruses have evolved to exploit DDX3's functions while threatening the innate immune response. Understanding this interesting dichotomy in DDX3 function will help us not only to improve our knowledge of virus-host interactions but also to develop novel antiviral drugs targeting the multifaceted roles of DDX3 in viral replication.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A Hermoso
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Soto-Rifo R, Valiente-Echeverria F, Rubilar PS, Garcia-de-Gracia F, Ricci EP, Limousin T, Décimo D, Mouland AJ, Ohlmann T. HIV-2 genomic RNA accumulates in stress granules in the absence of active translation. Nucleic Acids Res 2014; 42:12861-75. [PMID: 25352557 PMCID: PMC4227750 DOI: 10.1093/nar/gku1017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood. Here, we present evidence showing that HIV-2 expression induces stress granule assembly in cultured cells. This contrasts with HIV-1, which interferes with stress granules assembly even upon induced cellular stress. Moreover, we observed that the RNA-binding protein and stress granules assembly factor TIAR associates with the gRNA to form a TIAR-HIV-2 ribonucleoprotein (TH2RNP) complex localizing diffuse in the cytoplasm or aggregated in stress granules. Although the assembly of TH2RNP in stress granules did not require the binding of the Gag protein to the gRNA, we observed that increased levels of Gag promoted both translational arrest and stress granule assembly. Moreover, HIV-2 Gag also localizes to stress granules in the absence of a ‘packageable’ gRNA. Our results indicate that the HIV-2 gRNA is compartmentalized in stress granules in the absence of active translation prior to being selected for packaging by the Gag polyprotein.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 8389100, Santiago, Chile
| | - Fernando Valiente-Echeverria
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada Department of Medicine, Division of Experimental Medicine and Department of Microbiology & Immunology, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Paulina S Rubilar
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Francisco Garcia-de-Gracia
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 8389100, Santiago, Chile
| | - Emiliano P Ricci
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Taran Limousin
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Didier Décimo
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada Department of Medicine, Division of Experimental Medicine and Department of Microbiology & Immunology, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| |
Collapse
|
27
|
How HIV-1 Gag assembles in cells: Putting together pieces of the puzzle. Virus Res 2014; 193:89-107. [PMID: 25066606 DOI: 10.1016/j.virusres.2014.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 11/21/2022]
Abstract
During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly.
Collapse
|
28
|
Retrospective on the all-in-one retroviral nucleocapsid protein. Virus Res 2014; 193:2-15. [PMID: 24907482 PMCID: PMC7114435 DOI: 10.1016/j.virusres.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 01/08/2023]
Abstract
This retrospective reviews 30 years of research on the retroviral nucleocapsid protein (NC) focusing on HIV-1 NC. Originally considered as a non-specific nucleic-acid binding protein, NC has seminal functions in virus replication. Indeed NC turns out to be a all-in-one viral protein that chaperones viral DNA synthesis and integration, and virus formation. As a chaperone NC provides assistance to genetic recombination thus allowing the virus to escape the immune response and antiretroviral therapies against HIV-1.
This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.
Collapse
|
29
|
Bann DV, Beyer AR, Parent LJ. A murine retrovirus co-Opts YB-1, a translational regulator and stress granule-associated protein, to facilitate virus assembly. J Virol 2014; 88:4434-50. [PMID: 24501406 PMCID: PMC3993753 DOI: 10.1128/jvi.02607-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/28/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Gag protein of the murine retrovirus mouse mammary tumor virus (MMTV) orchestrates the assembly of immature virus particles in the cytoplasm which are subsequently transported to the plasma membrane for release from the cell. The morphogenetic pathway of MMTV assembly is similar to that of Saccharomyces cerevisiae retrotransposons Ty1 and Ty3, which assemble virus-like particles (VLPs) in intracytoplasmic ribonucleoprotein (RNP) complexes. Assembly of Ty1 and Ty3 VLPs depends upon cellular mRNA processing factors, prompting us to examine whether MMTV utilizes a similar set of host proteins to facilitate viral capsid assembly. Our data revealed that MMTV Gag colocalized with YB-1, a translational regulator found in stress granules and P bodies, in intracytoplasmic foci. The association of MMTV Gag and YB-1 in cytoplasmic granules was not disrupted by cycloheximide treatment, suggesting that these sites were not typical stress granules. However, the association of MMTV Gag and YB-1 was RNA dependent, and an MMTV RNA reporter construct colocalized with Gag and YB-1 in cytoplasmic RNP complexes. Knockdown of YB-1 resulted in a significant decrease in MMTV particle production, indicating that YB-1 plays a role in MMTV capsid formation. Analysis by live-cell imaging with fluorescence recovery after photobleaching (FRAP) revealed that the population of Gag proteins localized within YB-1 complexes was relatively immobile, suggesting that Gag forms stable complexes in association with YB-1. Together, our data imply that the formation of intracytoplasmic Gag-RNA complexes is facilitated by YB-1, which promotes MMTV virus assembly. IMPORTANCE Cellular mRNA processing factors regulate the posttranscriptional fates of mRNAs, affecting localization and utilization of mRNAs under normal conditions and in response to stress. RNA viruses such as retroviruses interact with cellular mRNA processing factors that accumulate in ribonucleoprotein complexes known as P bodies and stress granules. This report shows for the first time that mouse mammary tumor virus (MMTV), a mammalian retrovirus that assembles intracytoplasmic virus particles, commandeers the cellular factor YB-1, a key regulator of translation involved in the cellular stress response. YB-1 is essential for the efficient production of MMTV particles, a process directed by the viral Gag protein. We found that Gag and YB-1 localize together in cytoplasmic granules. Functional studies of Gag/YB-1 granules suggest that they may be sites where virus particles assemble. These studies provide significant insights into the interplay between mRNA processing factors and retroviruses.
Collapse
Affiliation(s)
- Darrin V. Bann
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Andrea R. Beyer
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
30
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
31
|
Durney MA, D'Souza VM. HIV-1: packaging a shifty genome? Cell Host Microbe 2013; 13:123-5. [PMID: 23414752 DOI: 10.1016/j.chom.2013.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this issue of Cell Host & Microbe, Chamanian et al. (2013) show that the frameshifting region in the HIV-1 genome influences the efficiency of genome packaging. This study may provide insights into mechanisms that constrain retroviruses into packaging only two copies of the genome during retroviral assembly.
Collapse
Affiliation(s)
- Michael A Durney
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
32
|
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ. Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1. Front Microbiol 2012; 3:367. [PMID: 23125841 PMCID: PMC3486646 DOI: 10.3389/fmicb.2012.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) unspliced, 9 kb genomic RNA (vRNA) is exported from the nucleus for the synthesis of viral structural proteins and enzymes (Gag and Gag/Pol) and is then transported to sites of virus assembly where it is packaged into progeny virions. vRNA co-exists in the cytoplasm in the context of the HIV-1 ribonucleoprotein (RNP) that is currently defined by the presence of Gag and several host proteins including the double-stranded RNA-binding protein, Staufen1. In this study we isolated Staufen1 RNP complexes derived from HIV-1-expressing cells using tandem affinity purification and have identified multiple host protein components by mass spectrometry. Four viral proteins, including Gag, Gag/Pol, Env and Nef as well as >200 host proteins were identified in these RNPs. Moreover, HIV-1 induces both qualitative and quantitative differences in host protein content in these RNPs. 22% of Staufen1-associated factors are virion-associated suggesting that the RNP could be a vehicle to achieve this. In addition, we provide evidence on how HIV-1 modulates the composition of cytoplasmic Staufen1 RNPs. Biochemical fractionation by density gradient analyses revealed new facets on the assembly of Staufen1 RNPs. The assembly of dense Staufen1 RNPs that contain Gag and several host proteins were found to be entirely RNA-dependent but their assembly appeared to be independent of Gag expression. Gag-containing complexes fractionated into a lighter and another, more dense pool. Lastly, Staufen1 depletion studies demonstrated that the previously characterized Staufen1 HIV-1-dependent RNPs are most likely aggregates of smaller RNPs that accumulate at juxtanuclear domains. The molecular characterization of Staufen1 HIV-1 RNPs will offer important information on virus-host cell interactions and on the elucidation of the function of these RNPs for the transport of Gag and the fate of the unspliced vRNA in HIV-1-producing cells.
Collapse
Affiliation(s)
- Miroslav P Milev
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital Montréal, QC, Canada ; Division of Experimental Medicine, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
33
|
Clemens K, Bilanchone V, Beliakova-Bethell N, Larsen LSZ, Nguyen K, Sandmeyer S. Sequence requirements for localization and packaging of Ty3 retroelement RNA. Virus Res 2012; 171:319-31. [PMID: 23073180 DOI: 10.1016/j.virusres.2012.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 12/22/2022]
Abstract
Retroviruses and retrotransposons package genomic RNA into virus-like particles (VLPs) in a poorly understood process. Expression of the budding yeast retrotransposon Ty3 results in the formation of cytoplasmic Ty3 VLP assembly foci comprised of Ty3 RNA and proteins, and cellular factors associated with RNA processing body (PB) components, which modulate translation and effect nonsense-mediated decay (NMD). A series of Ty3 RNA variants were tested to understand the effects of read-through translation via programmed frameshifting on RNA localization and packaging into VLPs, and to identify the roles of coding and non-coding sequences in those processes. These experiments showed that a low level of read-through translation of the downstream open reading frame (as opposed to no translation or translation without frameshifting) is important for localization of full-length Ty3 RNA to foci. Ty3 RNA variants associated with PB components via independent determinants in the native Ty3 untranslated regions (UTRs) and in GAG3-POL3 sequences flanked by UTRs adapted from non-Ty3 transcripts. However, despite localization, RNAs containing GAG3-POL3 but lacking Ty3 UTRs were not packaged efficiently. Surprisingly, sequences within Ty3 UTRs, which bind the initiator tRNA(Met) proposed to provide the dimerization interface, were not required for packaging of full-length Ty3 RNA into VLPs. In summary, our results demonstrate that Gag3 is sufficient and required for localization and packaging of RNAs containing Ty3 UTRs and support a role for POL3 sequences, translation of which is attenuated by programmed frameshifting, in both localization and packaging of the Ty3 full-length gRNA.
Collapse
Affiliation(s)
- Kristina Clemens
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
34
|
Application of live-cell RNA imaging techniques to the study of retroviral RNA trafficking. Viruses 2012; 4:963-79. [PMID: 22816035 PMCID: PMC3397357 DOI: 10.3390/v4060963] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 01/16/2023] Open
Abstract
Retroviruses produce full-length RNA that serves both as a genomic RNA (gRNA), which is encapsidated into virus particles, and as an mRNA, which directs the synthesis of viral structural proteins. However, we are only beginning to understand the cellular and viral factors that influence trafficking of retroviral RNA and the selection of the RNA for encapsidation or translation. Live cell imaging studies of retroviral RNA trafficking have provided important insight into many aspects of the retrovirus life cycle including transcription dynamics, nuclear export of viral RNA, translational regulation, membrane targeting, and condensation of the gRNA during virion assembly. Here, we review cutting-edge techniques to visualize single RNA molecules in live cells and discuss the application of these systems to studying retroviral RNA trafficking.
Collapse
|
35
|
Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag. J Virol 2012; 86:2990-3002. [PMID: 22258250 DOI: 10.1128/jvi.06874-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.
Collapse
|
36
|
Abstract
Eukaryotic cells possess highly sophisticated membrane trafficking pathways that define specific membrane domains and provide a means for moving vesicles between them (Mostov, Su, and ter Beest, 2003, Nat. Cell Biol. 5, 287-293). Here, I review recent data that indicate a role for membrane trafficking in mRNA localization. Specifically, I review evidence that some localized mRNAs are anchored to specific membrane domains and/or transported on membranous organelles or vesicles to specific subcellular sites. This review is not intended as a discussion on indirect influences of membrane trafficking on mRNA localization. I will not, for example, discuss the role of membrane trafficking in the regulation of extracellular signalling events that could indirectly influence mRNA localization through polarization of the actin or microtubule cytoskeleton (for examples, see reviews by Drubin and Nelson, 1996, Cell 84, 335-344; Shulman and St Johnston, 1999, Trends Cell Biol. 9, M60-M64).
Collapse
Affiliation(s)
- Robert S Cohen
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Dr, Lawrence, KS 66045, USA.
| |
Collapse
|
37
|
Soto-Rifo R, Limousin T, Rubilar PS, Ricci EP, Décimo D, Moncorgé O, Trabaud MA, André P, Cimarelli A, Ohlmann T. Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Res 2011; 40:2653-67. [PMID: 22121214 PMCID: PMC3315320 DOI: 10.1093/nar/gkr1093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 5′-untranslated region (5′-UTR) of the genomic RNA of human immunodeficiency viruses type-1 (HIV-1) and type-2 (HIV-2) is composed of highly structured RNA motifs essential for viral replication that are expected to interfere with Gag and Gag-Pol translation. Here, we have analyzed and compared the properties by which the viral 5′-UTR drives translation from the genomic RNA of both human immunodeficiency viruses. Our results showed that translation from the HIV-2 gRNA was very poor compared to that of HIV-1. This was rather due to the intrinsic structural motifs in their respective 5′-UTR without involvement of any viral protein. Further investigation pointed to a different role of TAR RNA, which was much inhibitory for HIV-2 translation. Altogether, these data highlight important structural and functional differences between these two human pathogens.
Collapse
|
38
|
Mechanisms of human immunodeficiency virus type 2 RNA packaging: efficient trans packaging and selection of RNA copackaging partners. J Virol 2011; 85:7603-12. [PMID: 21613401 DOI: 10.1128/jvi.00562-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2 proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins that specifically recognize stem-loop motifs in the viral genomes, an assay termed single virion analysis. These studies revealed that >90% of the HIV-2 particles contained viral RNAs and that RNAs derived from different viruses were copackaged frequently. Furthermore, the frequencies of heterozygous particles in the viral population could be altered by changing a 6-nucleotide palindromic sequence at the 5'-untranslated region of the HIV-2 genome. This finding indicates that selection of copackaging RNA partners occurs prior to encapsidation and that HIV-2 Gag proteins primarily package one dimeric RNA rather than two monomeric RNAs. Additionally, single virion analyses demonstrated a similar RNA distribution in viral particles regardless of whether both viruses had a functional gag or one of the viruses had a nonfunctional gag, providing further support for the trans-packaging hypothesis. Together, these results revealed mechanisms of HIV-2 RNA packaging that are, contrary to previous studies, in many respects surprisingly similar to those of HIV-1.
Collapse
|
39
|
Renault N, Tobaly-Tapiero J, Paris J, Giron ML, Coiffic A, Roingeard P, Saïb A. A nuclear export signal within the structural Gag protein is required for prototype foamy virus replication. Retrovirology 2011; 8:6. [PMID: 21255441 PMCID: PMC3033328 DOI: 10.1186/1742-4690-8-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/21/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Gag polyproteins play distinct roles during the replication cycle of retroviruses, hijacking many cellular machineries to fulfill them. In the case of the prototype foamy virus (PFV), Gag structural proteins undergo transient nuclear trafficking after their synthesis, returning back to the cytoplasm for capsid assembly and virus egress. The functional role of this nuclear stage as well as the molecular mechanism(s) responsible for Gag nuclear export are not understood. RESULTS We have identified a leptomycin B (LMB)-sensitive nuclear export sequence (NES) within the N-terminus of PFV Gag that is absolutely required for the completion of late stages of virus replication. Point mutations of conserved residues within this motif lead to nuclear redistribution of Gag, preventing subsequent virus egress. We have shown that a NES-defective PFV Gag acts as a dominant negative mutant by sequestrating its wild-type counterpart in the nucleus. Trans-complementation experiments with the heterologous NES of HIV-1 Rev allow the cytoplasmic redistribution of FV Gag, but fail to restore infectivity. CONCLUSIONS PFV Gag-Gag interactions are finely tuned in the cytoplasm to regulate their functions, capsid assembly, and virus release. In the nucleus, we have shown Gag-Gag interactions which could be involved in the nuclear export of Gag and viral RNA. We propose that nuclear export of unspliced and partially spliced PFV RNAs relies on two complementary mechanisms, which take place successively during the replication cycle.
Collapse
Affiliation(s)
- Noémie Renault
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Mai Y, Gao G. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging. PLoS One 2010; 5:e15881. [PMID: 21209918 PMCID: PMC3012120 DOI: 10.1371/journal.pone.0015881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022] Open
Abstract
Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.
Collapse
Affiliation(s)
- Yun Mai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangxia Gao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Locker N, Chamond N, Sargueil B. A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Res 2010; 39:2367-77. [PMID: 21071421 PMCID: PMC3064776 DOI: 10.1093/nar/gkq1118] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target.
Collapse
Affiliation(s)
- Nicolas Locker
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey - Guildford, Surrey GU2 7HX, UK
| | | | | |
Collapse
|
42
|
Abstract
Long terminal repeat (LTR) retrotransposons are not only the ancient predecessors of retroviruses, but they constitute significant fractions of the genomes of many eukaryotic species. Studies of their structure and function are motivated by opportunities to gain insight into common functions of retroviruses and retrotransposons, diverse mechanisms of intracellular genomic mobility, and host factors that diminish or enhance retrotransposition. This review focuses on the nucleocapsid (NC) protein of a Saccharomyces cerevisiae LTR retrotransposon, the metavirus, Ty3. Retrovirus NC promotes genomic (g)RNA dimerization and packaging, tRNA primer annealing, reverse transcription strand transfers, and host protein interactions with gRNA. Studies of Ty3 NC have revealed key roles for Ty3 NC in formation of retroelement assembly sites (retrosomes), and in chaperoning primer tRNA to both dimerize and circularize Ty3 gRNA. We speculate that Ty3 NC, together with P-body and stress-granule proteins, plays a role in transitioning Ty3 RNA from translation template to gRNA, and that interactions between the acidic spacer domain of Ty3 Gag3 and the adjacent basic NC domain control condensation of the virus-like particle.
Collapse
Affiliation(s)
- Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA USA.
| | | |
Collapse
|
43
|
Affiliation(s)
- Silas F. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
44
|
Maurel S, Mougel M. Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes. Retrovirology 2010; 7:64. [PMID: 20687923 PMCID: PMC2925334 DOI: 10.1186/1742-4690-7-64] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/05/2010] [Indexed: 11/16/2022] Open
Abstract
Most of the cell biological aspects of retroviral genome dimerization remain unknown. Murine leukemia virus (MLV) constitutes a useful model to study when and where dimerization occurs within the cell. For instance, MLV produces a subgenomic RNA (called SD') that is co-packaged with the genomic RNA predominantly as FLSD' heterodimers. This SD' RNA is generated by splicing of the genomic RNA and also by direct transcription of a splice-associated retroelement of MLV (SDARE). We took advantage of these two SD' origins to study the effects of transcription and splicing events on RNA dimerization. Using genetic approaches coupled to capture of RNA heterodimer in virions, we determined heterodimerization frequencies in different cellular contexts. Several cell lines were stably established in which SD' RNA was produced by either splicing or transcription from SDARE. Moreover, SDARE was integrated into the host chromosome either concomitantly or sequentially with the genomic provirus. Our results showed that transcribed genomic and SD' RNAs preferentially formed heterodimers when their respective proviruses were integrated together. In contrast, heterodimerization was strongly affected when the two proviruses were integrated independently. Finally, dimerization was enhanced when the transcription sites were expected to be physically close. For the first time, we report that splicing and RNA dimerization appear to be coupled. Indeed, when the RNAs underwent splicing, the FLSD' dimerization reached a frequency similar to co-transcriptional heterodimerization. Altogether, our results indicate that randomness of heterodimerization increases when RNAs are co-expressed during either transcription or splicing. Our results strongly support the notion that dimerization occurs in the nucleus, at or near the transcription and splicing sites, at areas of high viral RNA concentration.
Collapse
Affiliation(s)
- Stéphan Maurel
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS, UMR 5236, 4 Bd Henri IV, 34965 Montpellier, France
| | | |
Collapse
|
45
|
Witzany G. Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann N Y Acad Sci 2009; 1178:244-67. [PMID: 19845641 DOI: 10.1111/j.1749-6632.2009.04989.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It appears that all the detailed steps of evolution stored in DNA that are read, transcribed, and translated in every developmental and growth process of each individual cell depend on RNA-mediated processes, in most cases interconnected with other RNAs and their associated protein complexes and functions in a strict hierarchy of temporal and spatial steps. Life could not function without the key agents of DNA replication, namely mRNA, tRNA, and rRNA. Not only rRNA, but also tRNA and the processing of the primary transcript into the pre-mRNA and the mature mRNA are clearly descended from retro-"elements" with obvious retroviral ancestry. They seem to be remnants of viral infection events that did not kill their host but transferred phenotypic competences to their host and changed both the genetic identity of the host organism and the identity of the former infectious viral swarms. In this respect, noncoding RNAs may represent a great variety of modular tools for cellular needs that are derived from persistent nonlytic viral settlers.
Collapse
|
46
|
Bolinger C, Sharma A, Singh D, Yu L, Boris-Lawrie K. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res 2009; 38:1686-96. [PMID: 20007598 PMCID: PMC2836548 DOI: 10.1093/nar/gkp1075] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism.
Collapse
Affiliation(s)
- Cheryl Bolinger
- Department of Veterinary Biosciences, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1093, USA
| | | | | | | | | |
Collapse
|
47
|
Weill L, James L, Ulryck N, Chamond N, Herbreteau CH, Ohlmann T, Sargueil B. A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA. Nucleic Acids Res 2009; 38:1367-81. [PMID: 19969542 PMCID: PMC2831325 DOI: 10.1093/nar/gkp1109] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genomic RNA of primate lentiviruses serves both as an mRNA that encodes Gag and Gag-Pol polyproteins and as a propagated genome. Translation of this RNA is initiated by standard cap dependant mechanism or by internal entry of the ribosome. Two regions of the genomic RNA are able to attract initiation complexes, the 5′ untranslated region and the gag coding region itself. Relying on probing data and a phylogenetic study, we have modelled the secondary structure of HIV-1, HIV-2 and SIVMac coding region. This approach brings to light conserved secondary-structure elements that were shown by mutations to be required for internal entry of the ribosome. No structural homologies with other described viral or cellular IRES can be identified and lentiviral IRESes show many peculiar properties. Most notably, the IRES present in HIV-2 gag coding region is endowed with the unique ability to recruit up to three initiation complexes on a single RNA molecule. The structural and functional properties of gag coding sequence define a new type of IRES. Although its precise role is unknown, the conservation of the IRES among fast evolving lentiviruses suggests an important physiological role.
Collapse
Affiliation(s)
- Laure Weill
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologique, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
48
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
49
|
Strong CL, Lanchy JM, Dieng-Sarr A, Kanki PJ, Lodmell JS. A 5'UTR-spliced mRNA isoform is specialized for enhanced HIV-2 gag translation. J Mol Biol 2009; 391:426-37. [PMID: 19559029 PMCID: PMC2750851 DOI: 10.1016/j.jmb.2009.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 01/01/2023]
Abstract
Full-length unspliced genomic RNA plays critical roles in HIV replication, serving both as mRNA for the synthesis of the key viral polyproteins Gag and Gag-Pol and as genomic RNA for encapsidation into assembling viral particles. We show that a second gag mRNA species that differs from the genomic RNA molecule by the absence of an intron in the 5' untranslated region (5'UTR) is produced during HIV-2 replication in cell culture and in infected patients. We developed a cotransfection system in which epitopically tagged Gag proteins can be traced back to their mRNA origins in the translation pool. We show that a disproportionate amount of Gag is translated from 5'UTR intron-spliced mRNAs, demonstrating a role for the 5'UTR intron in the regulation of gag translation. To further characterize the effects of the HIV-2 5'UTR on translation, we fused wild-type, spliced, or mutant leader RNA constructs to a luciferase reporter gene and assayed their translation in reticulocyte lysates. These assays confirmed that leaders lacking the 5'UTR intron increased translational efficiency compared to that of the unspliced leader. In addition, we found that removal or mutagenesis of the C-box, a pyrimidine-rich sequence located in the 5'UTR intron and previously shown to affect RNA dimerization, also strongly influenced translational efficiency. These results suggest that the splicing of both the 5'UTR intron and the C-box element have key roles in regulation of HIV-2 gag translation in vitro and in vivo.
Collapse
Affiliation(s)
- Christy L. Strong
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Abdoulaye Dieng-Sarr
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Phyllis J. Kanki
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - J. Stephen Lodmell
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
- Corresponding author: J. Stephen Lodmell Tel: +(1) 406 243 6393 Fax: +(1) 406 243 4304
| |
Collapse
|
50
|
Balvay L, Soto Rifo R, Ricci EP, Decimo D, Ohlmann T. Structural and functional diversity of viral IRESes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:542-57. [PMID: 19632368 DOI: 10.1016/j.bbagrm.2009.07.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/17/2009] [Accepted: 07/19/2009] [Indexed: 01/06/2023]
Abstract
Some 20 years ago, the study of picornaviral RNA translation led to the characterization of an alternative mechanism of initiation by direct ribosome binding to the 5' UTR. By using a bicistronic vector, it was shown that the 5' UTR of the poliovirus (PV) or the Encephalomyelitis virus (EMCV) had the ability to bind the 43S preinitiation complex in a 5' and cap-independent manner. This is rendered possible by an RNA domain called IRES for Internal Ribosome Entry Site which enables efficient translation of an mRNA lacking a 5' cap structure. IRES elements have now been found in many different viral families where they often confer a selective advantage to allow ribosome recruitment under conditions where cap-dependent protein synthesis is severely repressed. In this review, we compare and contrast the structure and function of IRESes that are found within 4 distinct family of RNA positive stranded viruses which are the (i) Picornaviruses; (ii) Flaviviruses; (iii) Dicistroviruses; and (iv) Lentiviruses.
Collapse
Affiliation(s)
- Laurent Balvay
- Unité de Virologie Humaine, Ecole Normale Supérieure de Lyon, Lyon F-693643, France
| | | | | | | | | |
Collapse
|