1
|
Chu B, Anane RF, Li S, Gao L, Zi S, Yan K, Ji K, Chen Z, Zhao M. Complete genome sequence analysis of Valeriana jatamansi tymovirus 1: a novel member of the genus Tymovirus infecting Valeriana jatamansi Jones. Arch Virol 2023; 168:245. [PMID: 37676512 DOI: 10.1007/s00705-023-05876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
A new positive-sense, single-stranded RNA virus, tentatively named "Valeriana jatamansi tymovirus 1" (VaJV1, OQ730267), was isolated from Valeriana jatamansi Jones displaying symptoms of vein-clearing in Yunnan Province, China. The complete genome of VaJV1 consists of 6,215 nucleotides and contains three open reading frames (ORFs). The genome structure of VaJV1 is typical of members of the genus Tymovirus. BLASTn analysis and multiple sequence alignments showed that the complete genome and coat protein of VaJV1 shared the most sequence similarity (65.5% nucleotides and 50.5% amino acid sequence identity) with an isolate of the tymovirus okra mosaic virus (NC_009532). Phylogenetic analysis confirmed that VaJV1 clustered most closely with other tymoviruses. We propose that Valeriana jatamansi tymovirus 1 represents a new species within the genus Tymovirus.
Collapse
Affiliation(s)
- Bifan Chu
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
| | - Rex Frimpong Anane
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, 23 Innovation Walk, 3800, Clayton, VIC, Australia
| | - Shangyun Li
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
| | - Like Gao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
| | - Shaomei Zi
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
| | - Kai Yan
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
| | - Kaifei Ji
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China
| | - Zeli Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China.
- College of Agronomy and Biotechnology, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China.
- Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, 650205, Kunming, Yunnan, China.
| | - Mingfu Zhao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China.
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, 650201, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Ranjan T, Ranjan Kumar R, Ansar M, Kumar J, Mohanty A, Kumari A, Jain K, Rajani K, Dei S, Ahmad MF. The curious case of genome packaging and assembly in RNA viruses infecting plants. Front Genet 2023; 14:1198647. [PMID: 37359368 PMCID: PMC10285054 DOI: 10.3389/fgene.2023.1198647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Genome packaging is the crucial step for maturation of plant viruses containing an RNA genome. Viruses exhibit a remarkable degree of packaging specificity, despite the probability of co-packaging cellular RNAs. Three different types of viral genome packaging systems are reported so far. The recently upgraded type I genome packaging system involves nucleation and encapsidation of RNA genomes in an energy-dependent manner, which have been observed in most of the plant RNA viruses with a smaller genome size, while type II and III packaging systems, majorly discovered in bacteriophages and large eukaryotic DNA viruses, involve genome translocation and packaging inside the prohead in an energy-dependent manner, i.e., utilizing ATP. Although ATP is essential for all three packaging systems, each machinery system employs a unique mode of ATP hydrolysis and genome packaging mechanism. Plant RNA viruses are serious threats to agricultural and horticultural crops and account for huge economic losses. Developing control strategies against plant RNA viruses requires a deep understanding of their genome assembly and packaging mechanism. On the basis of our previous studies and meticulously planned experiments, we have revealed their molecular mechanisms and proposed a hypothetical model for the type I packaging system with an emphasis on smaller plant RNA viruses. Here, in this review, we apprise researchers the technical breakthroughs that have facilitated the dissection of genome packaging and virion assembly processes in plant RNA viruses.
Collapse
Affiliation(s)
- Tushar Ranjan
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Ravi Ranjan Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Mohammad Ansar
- Department of Plant Pathology, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Jitesh Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Auroshikha Mohanty
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Anamika Kumari
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Khushbu Jain
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Kumari Rajani
- Department of Seed Science and Technology, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Sailabala Dei
- Deputy Director Research, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Mohammad Feza Ahmad
- Department of Horticulture, Bihar Agricultural University, Bhagalpur, Bihar, India
| |
Collapse
|
3
|
Prakash DL, Gosavi S. The diversity of protein-protein interaction interfaces within T=3 icosahedral viral capsids. Front Mol Biosci 2022; 9:967877. [PMID: 36339706 PMCID: PMC9631432 DOI: 10.3389/fmolb.2022.967877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Some non-enveloped virus capsids assemble from multiple copies of a single type of coat-protein (CP). The comparative energetics of the diverse CP-CP interfaces present in such capsids likely govern virus assembly-disassembly mechanisms. The T = 3 icosahedral capsids comprise 180 CP copies arranged about two-, three-, five- and six-fold axes of (quasi-)rotation symmetry. Structurally diverse CPs can assemble into T = 3 capsids. Specifically, the Leviviridae CPs are structurally distinct from the Bromoviridae, Tombusviridae and Tymoviridae CPs which fold into the classic “jelly-roll” fold. However, capsids from across the four families are known to disassemble into dimers. To understand whether the overall symmetry of the capsid or the structural details of the CP determine virus assembly-disassembly mechanisms, we analyze the different CP-CP interfaces that occur in the four virus families. Previous work studied protein homodimer interfaces using interface size (relative to the monomer) and hydrophobicity. Here, we analyze all CP-CP interfaces using these two parameters and find that the dimerization interface (present between two CPs congruent through a two-fold axis of rotation) has a larger relative size in the Leviviridae than in the other viruses. The relative sizes of the other Leviviridae interfaces and all the jelly-roll interfaces are similar. However, the dimerization interfaces across families have slightly higher hydrophobicity, potentially making them stronger than other interfaces. Finally, although the CP-monomers of the jelly-roll viruses are structurally similar, differences in their dimerization interfaces leads to varied dimer flexibility. Overall, differences in CP-structures may induce different modes of swelling and assembly-disassembly in the T = 3 viruses.
Collapse
|
4
|
Shrestha N, Weber PH, Burke SV, Wysocki WP, Duvall MR, Bujarski JJ. Next generation sequencing reveals packaging of host RNAs by brome mosaic virus. Virus Res 2018; 252:82-90. [PMID: 29753892 DOI: 10.1016/j.virusres.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Although RNA viruses evolved the mechanisms of specific encapsidation, miss-packaging of cellular RNAs has been reported in such RNA virus systems as flock house virus or cucumber necrosis virus. To find out if brome mosaic virus (BMV), a tripartite RNA virus, can package cellular RNAs, BMV was propagated in barley and in Nicotiana benthamiana hosts, purified by cesium chloride (CsCl) gradient ultracentrifugation followed by nuclease treatment to remove any contaminating cellular (host) RNAs. The extracted virion RNA was then sequenced by using next-generation sequencing (NGS RNA-Seq) with the Illumina protocol. Bioinformatic analysis revealed the content of host RNAs ranging from 0.07% for BMV extracted from barley to 0.10% for the virus extracted from N. benthamiana. The viruses from two sources appeared to co-encapsidate different patterns of host-RNAs, including ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) but also mitochondrial and plastid RNAs and, interestingly, transposable elements, both transposons and retrotransposons. Our data reveal that BMV virions can carry host RNAs, having a potential to mediate horizontal gene transfer (HGT) in plants.
Collapse
Affiliation(s)
- N Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - P H Weber
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA.
| | - S V Burke
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - W P Wysocki
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA.
| | - M R Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - J J Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
5
|
Alam SB, Reade R, Theilmann J, Rochon D. Evidence for the role of basic amino acids in the coat protein arm region of Cucumber necrosis virus in particle assembly and selective encapsidation of viral RNA. Virology 2017; 512:83-94. [PMID: 28946005 DOI: 10.1016/j.virol.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 01/21/2023]
Abstract
Cucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total. Virion accumulation and vRNA encapsidation were significantly reduced in mutants containing two or four substitutions and virion morphology was also affected, where both T = 1 and intermediate-sized particles were produced. Mutants with two or four substitutions encapsidated significantly greater levels of truncated RNA than that of WT, suggesting that basic residues in the "KGRKPR" sequence are important for encapsidation of full-length CNV RNA. Interestingly, "KGRKPR" mutants also encapsidated relatively higher levels of host RNA, suggesting that the "KGRKPR" sequence also contributes to selective encapsidation of CNV RNA.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada.
| |
Collapse
|
6
|
Blawid R, Hayashi EAI, Rezende JAM, Kitajima EW, Nagata T. A highly divergent isolate of tomato blistering mosaic virus from Solanum violaefolium. Virus Genes 2016; 52:294-8. [PMID: 26810401 DOI: 10.1007/s11262-016-1288-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The complete genome of a tymovirus infecting Solanum violaefolium was sequenced. The genome comprised 6284 nt, with a 5'-UTR of 137 nt and a comparatively longer 3'-UTR of 121 nt. Sequence analysis confirmed three ORFs encoding a movement protein, a polyprotein, and a coat protein (CP). The isolate was considered to be the Tomato blistering mosaic virus (ToBMV) based on a CP amino acid sequence identity of 95.3 %. The nucleotide sequence of the complete genome of the S. violaefolium isolate, however, differed markedly from the other two reported ToBMV isolates, with identities of 76.6 and 76.3 %, below one of the demarcation criteria of the genus Tymovirus (overall genome identity of 80 %). No recombination signals were detected in the genome of this isolate. The high identity of the CP amino acid sequence and similar host responses suggest that the S. violaefolium isolate belongs to the same species as the Tomato blistering mosaic virus. The sequence analysis of this ToBMV isolate thus suggests that the demarcation criterion of 80 % overall genome sequence identity in the genus Tymovirus may require revision.
Collapse
Affiliation(s)
- Rosana Blawid
- Departamento de Biologia Celular, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - Jorge Alberto Marques Rezende
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Cx. Postal 9, Piracicaba, SP, 13418-900, Brazil
| | - Elliot W Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Cx. Postal 9, Piracicaba, SP, 13418-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Universidade de Brasília, UnB, Brasília, DF, Brazil.
| |
Collapse
|
7
|
Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection. J Virol 2015; 89:10748-61. [PMID: 26269190 DOI: 10.1128/jvi.01466-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs. The most predominant host RNA species encapsidated in VLPs were chloroplast encoded, consistent with the efficient targeting of CNV CP to chloroplasts during agroinfiltration. Interestingly, droplet digital PCR analysis showed that the CNV CP mRNA expressed during agroinfiltration was the most efficiently encapsidated mRNA, suggesting that the CNV CP open reading frame may contain a high-affinity site or sites for CP binding and thus contribute to the specificity of CNV RNA encapsidation. Approximately 0.09% to 0.7% of the RNA derived from authentic CNV virions contained host RNA, with chloroplast RNA again being the most prominent species. This is consistent with our previous finding that a small proportion of CNV CP enters chloroplasts during the infection process and highlights the possibility that chloroplast targeting is a significant aspect of CNV infection. Remarkably, 6 to 8 of the top 10 most efficiently encapsidated nucleus-encoded RNAs in CNV virions correspond to retrotransposon or retrotransposon-like RNA sequences. Thus, CNV could potentially serve as a vehicle for horizontal transmission of retrotransposons to new hosts and thereby significantly influence genome evolution. IMPORTANCE Viruses predominantly encapsidate their own virus-related RNA species due to the possession of specific sequences and/or structures on viral RNA which serve as high-affinity binding sites for the coat protein. In this study, we show, using next-generation sequence analysis, that CNV also encapsidates host RNA species, which account for ∼0.1% of the RNA packaged in CNV particles. The encapsidated host RNAs predominantly include chloroplast RNAs, reinforcing previous observations that CNV CP enters chloroplasts during infection. Remarkably, the most abundantly encapsidated cytoplasmic mRNAs consisted of retrotransposon-like RNA sequences, similar to findings recently reported for flock house virus (A. Routh, T. Domitrovic, and J. E. Johnson, Proc Natl Acad Sci U S A 109:1907-1912, 2012). Encapsidation of retrotransposon sequences may contribute to their horizontal transmission should CNV virions carrying retrotransposons infect a new host. Such an event could lead to large-scale genomic changes in a naive plant host, thus facilitating host evolutionary novelty.
Collapse
|
8
|
The red clover necrotic mosaic virus capsid protein N-terminal amino acids possess specific RNA binding activity and are required for stable virion assembly. Virus Res 2013; 176:107-18. [PMID: 23747688 DOI: 10.1016/j.virusres.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/21/2022]
Abstract
The red clover necrotic mosaic virus (RCNMV) bipartite RNA genome is packaged into two virion populations containing either RNA-1 and RNA-2 or multiple copies of RNA-2 only. To understand this distinctive packaging scheme, we investigated the RNA-binding properties of the RCNMV capsid protein (CP). Maltose binding protein-CP fusions exhibited the highest binding affinities for RNA probes containing the RNA-2 trans-activator or the 3' non-coding region from RNA-1. Other viral and non-viral RNA probes displayed CP binding but to a much lower degree. Deletion of the highly basic N-terminal 50 residues abolished CP binding to viral RNA transcripts. In planta studies of select CP deletion mutants within this N-terminal region revealed that it was indispensable for stable virion formation and the region spanning CP residues 5-15 is required for systemic movement. Thus, the N-terminal region of the CP is involved in both producing two virion populations due to its RNA binding properties and virion stability.
Collapse
|
9
|
Dykeman EC, Stockley PG, Twarock R. Building a viral capsid in the presence of genomic RNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022717. [PMID: 23496558 DOI: 10.1103/physreve.87.022717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Virus capsid assembly has traditionally been considered as a process that can be described primarily via self-assembly of the capsid proteins, neglecting interactions with other viral or cellular components. Our recent work on several ssRNA viruses, a major class of viral pathogens containing important human, animal, and plant viruses, has shown that this protein-centric view is too simplistic. Capsid assembly for these viruses relies strongly on a number of cooperative roles played by the genomic RNA. This realization requires a new theoretical framework for the modeling and prediction of the assembly behavior of these viruses. In a seminal paper Zlotnick [J. Mol. Biol. 241, 59 (1994)] laid the foundations for the modeling of capsid assembly as a protein-only self-assembly process, illustrating his approach using the example of a dodecahedral study system. We describe here a generalized framework for modeling assembly that incorporates the regulatory functions provided by cognate protein-nucleic-acid interactions between capsid proteins and segments of the genomic RNA, called packaging signals, into the model. Using the same dodecahedron system we demonstrate, using a Gillespie-type algorithm to deal with the enhanced complexity of the problem instead of a master equation approach, that assembly kinetics and yield strongly depend on the distribution and nature of the packaging signals, highlighting the importance of the crucial roles of the RNA in this process.
Collapse
Affiliation(s)
- Eric C Dykeman
- Department of Biology, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD United Kingdom
| | | | | |
Collapse
|
10
|
Loew R, Heinz N, Hampf M, Bujard H, Gossen M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 2010; 10:81. [PMID: 21106052 PMCID: PMC3002914 DOI: 10.1186/1472-6750-10-81] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background The performance of the tetracycline controlled transcriptional activation system (Tet system) depends critically on the choice of minimal promoters. They are indispensable to warrant low expression levels with the system turned "off". On the other hand, they must support high level of gene expression in the "on"-state. Results In this study, we systematically modified the widely used Cytomegalovirus (CMV) minimal promoter to further minimize background expression, resulting in an improved dynamic expression range. Using both plasmid-based and retroviral gene delivery, our analysis revealed that especially background expression levels could be significantly reduced when compared to previously established "standard" promoter designs. Our results also demonstrate the possibility to fine-tune expression levels in non-clonal cell populations. They also imply differences regarding the requirements for tight regulation and high level induction between transient and stable gene transfer systems. Conclusions Until now, our understanding of mammalian transcriptional regulation including promoter architecture is limited. Nevertheless, the partly empirical modification of cis-elements as shown in this study can lead to the specific improvement of the performance of minimal promoters. The novel composite Ptet promoters introduced here will further expand the utility of the Tet system.
Collapse
|
11
|
Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Res 2010; 147:208-15. [DOI: 10.1016/j.virusres.2009.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/02/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022]
|
12
|
Islam MM, Suresh Kumar G. RNA-binding potential of protoberberine alkaloids: spectroscopic and calorimetric studies on the binding of berberine, palmatine, and coralyne to protonated RNA structures. DNA Cell Biol 2009; 28:637-50. [PMID: 19715476 DOI: 10.1089/dna.2009.0930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interaction of the protoberberine alkaloids berberine, palmatine, and coralyne with the two double-stranded RNA homopolymers of cytidine-guanosine (CG) and inosine-cytidine (IC) sequences in the protonated conformation was investigated using various biophysical techniques. All the three alkaloids bound polyC(+)G in a cooperative way. The binding of coralyne to both the polyribonucleotides was stronger than that of berberine and palmatine. Evidence for the intercalative binding of coralyne was revealed from fluorescence quenching studies. Isothermal titration calorimetry results suggested that the binding of berberine to both the polymers and palmatine to polyIC(+) was very weak while that of palmatine and coralyne to polyC(+)G and polyIC(+) was predominantly entropy driven. Circular dichroic results provided evidence for the perturbation of the RNA conformation with the bound coralyne in a more deeply intercalated position compared to berberine and palmatine as revealed by induced circular dichroism peaks. Taken together, the present study suggests that planarity of coralyne results in a more favorable and stronger binding to the double-stranded RNA conformations compared to berberine and palmatine that may potentiate its use in RNA-targeted drug design.
Collapse
Affiliation(s)
- M M Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata 700032, India.
| | | |
Collapse
|
13
|
Tzanetakis IE, Tsai CH, Martin RR, Dreher TW. A tymovirus with an atypical 3'-UTR illuminates the possibilities for 3'-UTR evolution. Virology 2009; 392:238-45. [PMID: 19664793 DOI: 10.1016/j.virol.2009.06.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 02/02/2023]
Abstract
We report the complete genome sequence of Dulcamara mottle virus (DuMV), confirming its membership within the Tymovirus genus, which was previously based on physical and pathology evidence. The 5'-untranslated region (UTR) and coding region of DuMV RNA have the typical characteristics of tymoviral RNAs. In contrast, the 3'-UTR is the longest and most unusual yet reported for a tymovirus, possessing an internal poly(A) tract, lacking a 3'-tRNA-like structure (TLS) and terminating at the 3'-end with -UUC instead of the typical -CC(A). An expressible cDNA clone was constructed and shown to be capable of producing infectious DuMV genomic RNAs with -UUC 3'-termini. A chimeric Turnip yellow mosaic virus (TYMV) genome bearing the DuMV 3'-UTR in place of the normal TLS was constructed in order to investigate the ability of the TYMV replication proteins to amplify RNAs with -UUC instead of -CC(A) 3'-termini. The chimeric genome was shown to be capable of replication and systemic spread in plants, although amplification was very limited. These experiments suggest the way in which DuMV may have evolved from a typical tymovirus, and illuminate the ways in which viral 3'-UTRs in general can evolve.
Collapse
|
14
|
Shin HI, Tzanetakis IE, Dreher TW, Cho TJ. The 5′-UTR of Turnip yellow mosaic virus does not include a critical encapsidation signal. Virology 2009; 387:427-35. [DOI: 10.1016/j.virol.2009.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 01/19/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
15
|
Shin HI, Cho NJ, Cho TJ. Role of 5'-UTR hairpins of the Turnip yellow mosaic virus RNA in replication and systemic movement. BMB Rep 2009; 41:778-83. [PMID: 19017489 DOI: 10.5483/bmbrep.2008.41.11.778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Turnip yellow mosaic virus (TYMV) RNA has two hairpins in its 5' untranslated region (5'-UTR). To investigate the role of the hairpins in replication of TYMV, mutants lacking one or both of the two hairpins were constructed. The TYMV constructs were introduced into Chinese cabbage by an Agrobacterium-mediated T-DNA transfer method, called agroinfiltration. Analysis of total RNA from agroinfiltrated leaves showed that replication of the mutant TYMV RNA lacking both hairpins was about 1/100 of wild type. This mutant was also impaired in systemic spread. Deletion analysis of each hairpin revealed that both hairpins were needed for maximal replication. The deletion analysis along with sequence modification of the hairpin structure indicates that the second hairpin plays a role in efficient long-distance systemic movement of TYMV.
Collapse
Affiliation(s)
- Hyun-Il Shin
- Division of Life Sciences, Chungbuk National University, Cheongju, Korea
| | | | | |
Collapse
|
16
|
Basnayake VR, Sit TL, Lommel SA. The Red clover necrotic mosaic virus origin of assembly is delimited to the RNA-2 trans-activator. Virology 2008; 384:169-78. [PMID: 19062064 DOI: 10.1016/j.virol.2008.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/01/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
The bipartite RNA genome of Red clover necrotic mosaic virus (RCNMV) is encapsidated into icosahedral virions that exist as two populations: i) virions that co-package both genomic RNAs and ii) virions packaging multiple copies of RNA-2. To elucidate the packaging mechanism, we sought to identify the RCNMV origin of assembly sequence (OAS). RCNMV RNA-1 cannot package in the absence of RNA-2 suggesting that it does not contain an independent packaging signal. A 209 nt RNA-2 element expressed from the Tomato bushy stunt virus CP subgenomic promoter is co-assembled with genomic RNA-1 into virions. Deletion mutagenesis delimited the previously characterized 34 nt trans-activator (TA) as the minimal RCNMV OAS. From this study we hypothesize that RNA-1 must be base-paired with RNA-2 at the TA to initiate co-packaging. The addition of viral assembly illustrates the critical importance of the multifunctional TA element as a key regulatory switch in the RCNMV life cycle.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7342, USA
| | | | | |
Collapse
|
17
|
Stephan D, Siddiqua M, Ta Hoang A, Engelmann J, Winter S, Maiss E. Complete nucleotide sequence and experimental host range of Okra mosaic virus. Virus Genes 2007; 36:231-40. [PMID: 18049886 DOI: 10.1007/s11262-007-0181-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 11/21/2007] [Indexed: 12/12/2022]
Abstract
Okra mosaic virus (OkMV) is a tymovirus infecting members of the family Malvaceae. Early infections in okra (Abelmoschus esculentus) lead to yield losses of 12-19.5%. Besides intensive biological characterizations of OkMV only minor molecular data were available. Therefore, we determined the complete nucleotide sequence of a Nigerian isolate of OkMV. The complete genomic RNA (gRNA) comprises 6,223 nt and its genome organization showed three major ORFs coding for a putative movement protein (MP) of M r 73.1 kDa, a large replication-associated protein (RP) of M r 202.4 kDa and a coat protein (CP) of M r 19.6 kDa. Prediction of secondary RNA structures showed three hairpin structures with internal loops in the 5'-untranslated region (UTR) and a 3'-terminal tRNA-like structure (TLS) which comprises the anticodon for valine, typical for a member of the genus Tymovirus. Phylogenetic comparisons based on the RP, MP and CP amino acid sequences showed the close relationship of OkMV not only to other completely sequenced tymoviruses like Kennedya yellow mosaic virus (KYMV), Turnip yellow mosaic virus (TYMV) and Erysimum latent virus (ErLV), but also to Calopogonium yellow vein virus (CalYVV), Clitoria yellow vein virus (CYVV) and Desmodium yellow mottle virus (DYMoV). This is the first report of a complete OkMV genome sequence from one of the various OkMV isolates originating from West Africa described so far. Additionally, the experimental host range of OkMV including several Nicotiana species was determined.
Collapse
Affiliation(s)
- Dirk Stephan
- Institute of Plant Diseases and Plant Protection, Leibniz University Hannover, Herrenhaeuser Str. 2, 30419 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Induction of particle polymorphism by cucumber necrosis virus coat protein mutants in vivo. J Virol 2007; 82:1547-57. [PMID: 18032493 DOI: 10.1128/jvi.01976-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cucumber necrosis virus (CNV) particle is a T=3 icosahedron consisting of 180 identical coat protein (CP) subunits. Plants infected with wild-type CNV accumulate a high number of T=3 particles, but other particle forms have not been observed. Particle polymorphism in several T=3 icosahedral viruses has been observed in vitro following the removal of an extended N-terminal region of the CP subunit. In the case of CNV, we have recently described the structure of T=1 particles that accumulate in planta during infection by a CNV mutant (R1+2) in which a large portion of the N-terminal RNA binding domain (R-domain) has been deleted. In this report we further describe properties of this mutant and other CP mutants that produce polymorphic particles. The T=1 particles produced by R1+2 mutants were found to encapsidate a 1.9-kb RNA species as well as smaller RNA species that are similar to previously described CNV defective interfering RNAs. Other R-domain mutants were found to encapsidate a range of specifically sized less-than-full-length CNV RNAs. Mutation of a conserved proline residue in the arm domain near its junction with the shell domain also influenced T=1 particle formation. The proportion of polymorphic particles increased when the mutation was incorporated into R-domain deletion mutants. Our results suggest that both the R-domain and the arm play important roles in the formation of T=3 particles. In addition, the encapsidation of specific CNV RNA species by individual mutants indicates that the R-domain plays a role in the nature of CNV RNA encapsidated in particles.
Collapse
|
19
|
Abstract
Jamestown Canyon virus (JCV) is a member of the Bunyaviridae family, Orthobunyavirus genus, California serogroup. Replication and, ultimately, assembly and packaging rely on the process of encapsidation. Therefore, the ability of viral RNAs (vRNAs) (genomic and antigenomic) to interact with the nucleocapsid protein (N protein) and the location of this binding domain on the RNAs are of interest. The questions to be addressed are the following. Where is the binding domain located on both the vRNA and cRNA strands, is this RNA bound when double or single stranded, and does this identified region have the ability to transform the binding potential of nonviral RNA? Full-length viral and complementary S segment RNA, as well as 3' deletion mutants of both vRNA and cRNA, nonviral RNA, and hybrid viral/nonviral RNA, were analyzed for their ability to interact with bacterially expressed JCV N protein. RNA-nucleocapsid interactions were examined by UV cross-linking, filter binding assays, and the generation of hybrid RNA to help define the area responsible for RNA-protein binding. The assays identified the region responsible for binding to the nucleocapsid as being contained within the 5' half of both the genomic and antigenomic RNAs. This region, if placed within nonviral RNA, is capable of altering the binding potential of nonviral RNA to levels seen with wild-type vRNAs.
Collapse
Affiliation(s)
- Monica M Ogg
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 27227, USA
| | | |
Collapse
|
20
|
Cho TJ, Dreher TW. Encapsidation of genomic but not subgenomic Turnip yellow mosaic virus RNA by coat protein provided in trans. Virology 2006; 356:126-35. [PMID: 16942786 DOI: 10.1016/j.virol.2006.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/02/2006] [Accepted: 06/07/2006] [Indexed: 11/17/2022]
Abstract
We have studied the encapsidation requirements of Turnip yellow mosaic virus (TYMV) genomic and subgenomic RNA using an "agroinfiltration" procedure involving transient expression of RNAs and coat protein (CP) in Nicotiana benthamiana leaves. Although N. benthamiana is a nonhost, expression of TYMV RNA in its leaves by agroinfiltration resulted in efficient local infection and production of the expected virions containing genomic and subgenomic RNAs together with empty capsids. A nonreplicating genomic RNA with a mutation in the polymerase domain was efficiently encapsidated by CP provided in trans, even though RNA levels were a thousand-fold lower than in normal infections. In contrast, encapsidation of CP mRNA was not observed under these conditions, even when the CP mRNA had authentic 5'- and 3'-termini. Deletion of the 3'-tRNA-like structure from the genomic RNA did not alter the encapsidation behavior, suggesting that this feature does not play a role in the encapsidation of TYMV RNA. Our results indicate differences in the encapsidation process between genomic and subgenomic RNAs, and suggest an interaction between RNA replication and the packaging of subgenomic RNA.
Collapse
Affiliation(s)
- Tae-Ju Cho
- Division of Life Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | |
Collapse
|
21
|
Abstract
The majority of positive-strand RNA viruses of plants replicate and selectively encapsidate their progeny genomes into stable virions in cytoplasmic compartments of the cell where the opportunity to copackage cellular RNA also exists. Remarkably, highly purified infectious virions contain almost exclusively viral RNA, suggesting that mechanisms exist to regulate preferential packaging of viral genomes. The general principle that governs RNA packaging is an interaction between the structural CP and a specific RNA signal. Mechanisms that enhance selective packaging of viral genomes and formation of infectious virions may involve factors other than CP and nucleic acid sequences. The possible involvement of replicase proteins is an example. Our knowledge concerning genome packaging among spherical plant RNA viruses is still maturing. The main focus of this review is to discuss factors that have limited progress and to evaluate recent technical breakthroughs likely to help unravel the mechanism of RNA packaging among viruses of agronomic importance. A key breakthrough is the development of in vivo systems and comparisons with results obtained in vitro.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology, University of California Riverside, Riverside, California 92521-0122, USA.
| |
Collapse
|
22
|
Dreher TW. Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and a C-rich genome. MOLECULAR PLANT PATHOLOGY 2004; 5:367-75. [PMID: 20565613 DOI: 10.1111/j.1364-3703.2004.00236.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SUMMARY Taxonomy: Turnip yellow mosaic virus (TYMV) is the type species of the genus Tymovirus, family Tymoviridae. TYMV is a positive strand RNA virus of the alphavirus-like supergroup. Physical properties: Virions are non-enveloped 28-nm T = 3 icosahedrons composed of a single 20-kDa coat protein that is clustered in 20 hexameric and 12 pentameric subunits. Infectious particles and empty capsids coexist in infected tissue. The genomic RNA is 6.3 kb long, with a 5'(m7)GpppG cap and a 3' untranslated region ending in a tRNA-like structure to which valine can be covalently added. The genome has a distinctive skewed C-rich, G-poor composition (39% C, 17% G). Viral proteins: Two proteins, whose open reading frames extensively overlap, are translated from the genomic RNA. p206, which contains sequences indicative of RNA capping, NTPase/helicase and polymerase activities, is the only viral protein that is necessary for genome replication in single cells. It is produced as a polyprotein and self-cleaved to yield 141- and 66-kDa proteins. p69 is required for virus movement within the plant and is also a suppressor of gene silencing. The coat protein is expressed from the single subgenomic RNA. Hosts and symptoms: TYMV has a narrow host range almost completely restricted to the Cruciferae. Experimental host species are Brassica pekinensis (Chinese cabbage) or B. rapa (turnip), in which diffuse chlorotic local lesions and systemic yellow mosaic symptoms appear. Arabidopsis thaliana can also be used. Clumping of chloroplasts and the accumulation of vesicular invaginations of the chloroplast outer membranes are distinctive cytopathological symptoms. High yields of virus are produced in all leaf tissues, and the virus is readily transmissible by mechanical inoculation. Localized transmission by flea beetles may occur in the field.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
23
|
Gowda S, Satyanarayana T, Ayllón MA, Moreno P, Flores R, Dawson WO. The conserved structures of the 5' nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 2003; 317:50-64. [PMID: 14675624 DOI: 10.1016/j.virol.2003.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genomic RNA of different isolates of Citrus tristeza virus (CTV) reveals an unusual pattern of sequence diversity: the 3' halves are highly conserved (homology >90%), while the 5' halves show much more dissimilarity, with the 5' nontranslated region (NTR) containing the highest diversity (homology as low as 42%). Yet, positive-sense sequences of the 5' NTR were predicted to fold into nearly identical structures consisting of two stem-loops (SL1 and SL2) separated by a short spacer region. The predicted most stable secondary structures of the negative-sense sequences were more variable. We introduced mutations into the 5' NTR of a CTV replicon to alter the sequence and/or the predicted secondary structures with or without additional compensatory changes designed to restore predicted secondary structures, and examined their effect on replication in transfected protoplasts. The results suggested that the predicted secondary structures of the 5' NTR were more important for replication than the primary structure. Most mutations that were predicted to disrupt the secondary structures fail to replicate, while compensatory mutations were allowed replication to resume. The 5' NTR mutations that were tolerated by the CTV replicon were examined in the full-length virus for effects on replication and production of the multiple subgenomic RNAs. Additionally, the ability of these mutants to produce virions was monitored by electron microscopy and by passaging the progeny nucleocapsids to another batch of protoplasts. Some of the mutants with compensatory sequence alterations predicted to rebuild similar secondary structures allowed replication at near wild-type levels but failed to passage, suggesting that the 5' NTR contains sequences required for both replication and virion assembly.
Collapse
Affiliation(s)
- Siddarame Gowda
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | | | | | | | |
Collapse
|