1
|
Kopycka K, Maddison BC, Gough KC. Recombinant ovine prion protein can be mutated at position 136 to improve its efficacy as an inhibitor of prion propagation. Sci Rep 2023; 13:3452. [PMID: 36859422 PMCID: PMC9978027 DOI: 10.1038/s41598-023-30202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders with no effective therapeutics. The central event leading to the pathology in the diseases is the conversion of PrPC into PrPSc and its accumulation in the central nervous system. Previous studies demonstrated that recombinant PrP (rPrP) and PrP peptides can inhibit the formation of PrPSc. Here, the effectiveness of ovine rPrP mutants at codon 136 and peptides derived from this region were assessed for their ability to inhibit PrPSc replication, using protein misfolding cyclic amplification (PMCA). Based on a rPrP VRQ (rVRQ) genotype background (positions 136, 154 and 171) and mutations at position 136, the most effective inhibitors were V136R, V136K and V136P mutants, with IC50 values of 1 to 2 nM; activities much more potent than rVRQ (114 nM). rRRQ and rKRQ were also shown to effectively inhibit multiple ruminant prion amplification reactions that used distinct prion strain seeds and substrate PRNP genotypes. rRRQ, rKRQ and rPRQ were also shown to effectively protect Rov9 cells from scrapie infection when applied at 250 nM. The study demonstrates for the first time that the rPrP sequence can be mutated at sites known to be involved in prion disease susceptibility, to produce inhibitors with improved efficacy.
Collapse
Affiliation(s)
- Katarzyna Kopycka
- grid.4563.40000 0004 1936 8868School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Loughborough, LE12 5RD Leicestershire UK
| | - Ben C. Maddison
- ADAS Biotechnology, Unit 27, Beeston Business Park, Technology Drive, Beeston, NG9 1LA Nottinghamshire UK
| | - Kevin C. Gough
- grid.4563.40000 0004 1936 8868School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Loughborough, LE12 5RD Leicestershire UK
| |
Collapse
|
2
|
Otero A, Bolea R, Hedman C, Fernández-Borges N, Marín B, López-Pérez Ó, Barrio T, Eraña H, Sánchez-Martín MA, Monzón M, Badiola JJ, Castilla J. An Amino Acid Substitution Found in Animals with Low Susceptibility to Prion Diseases Confers a Protective Dominant-Negative Effect in Prion-Infected Transgenic Mice. Mol Neurobiol 2017; 55:6182-6192. [PMID: 29264770 DOI: 10.1007/s12035-017-0832-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 12/01/2022]
Abstract
While prion diseases have been described in numerous species, some, including those of the Canidae family, appear to show resistance or reduced susceptibility. A better understanding of the factors underlying prion susceptibility is crucial for the development of effective treatment and control measures. We recently demonstrated resistance to prion infection in mice overexpressing a mutated prion protein (PrP) carrying a specific amino acid substitution characteristic of canids. Here, we show that coexpression of this mutated PrP and wild-type mouse PrP in transgenic mice inoculated with different mouse-adapted prion strains (22 L, ME7, RML, and 301C) significantly increases survival times (by 45 to 113%). These data indicate that this amino acid substitution confers a dominant-negative effect on PrP, attenuating the conversion of PrPC to PrPSc and delaying disease onset without altering the neuropathological properties of the prion strains. Taken together, these findings have important implications for the development of new treatment approaches for prion diseases based on dominant-negative proteins.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Hedman
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Óscar López-Pérez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Tomás Barrio
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Manuel A Sánchez-Martín
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
3
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Adkin A, De Koeijer A, Ducrot C, Griffin J, Ortiz Pelaez A, Latronico F, Ru G. Bovine spongiform encephalopathy (BSE) cases born after the total feed ban. EFSA J 2017; 15:e04885. [PMID: 32625550 PMCID: PMC7010122 DOI: 10.2903/j.efsa.2017.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sixty bovine spongiform encephalopathy (BSE) cases of Classical or unknown type (BARB‐60 cases) were born after the date of entry into force of the EU total feed ban on 1 January 2001. The European Commission has requested EFSA to provide a scientific opinion on the most likely origin(s) of these BARB‐60 cases; whether feeding with material contaminated with the BSE agent can be excluded as the origin of any of these cases and, if so, whether there is enough scientific evidence to conclude that such cases had a spontaneous origin. The source of infection cannot be ascertained at the individual level for any BSE case, including these BARB‐60 cases, so uncertainty remains high about the origin of disease in each of these animals, but when compared with other biologically plausible sources of infection (maternal, environmental, genetic, iatrogenic), feed‐borne exposure is the most likely. This exposure was apparently excluded for only one of these BARB‐60 cases. However, there is considerable uncertainty associated with the data collected through the field investigation of these cases, due to a time span of several years between the potential exposure of the animal and the confirmation of disease, recall difficulty, and the general paucity of documented objective evidence available in the farms at the time of the investigation. Thus, feeding with material contaminated with the BSE agent cannot be excluded as the origin of any of the BARB‐60 cases, nor is it possible to definitively attribute feed as the cause of any of the BARB‐60 cases. A case of disease is classified as spontaneous by a process of elimination, excluding all other definable possibilities; with regard to the BARB‐60 cases, it is not possible to conclude that any of them had a spontaneous origin.
Collapse
|
4
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
5
|
Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochem J 2016; 474:123-147. [DOI: 10.1042/bcj20160737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022]
Abstract
Misfolding and aggregation of cellular prion protein is associated with a large array of neurological disorders commonly called the transmissible spongiform encephalopathies. Designing inhibitors against prions has remained a daunting task owing to limited information about mechanism(s) of their pathogenic self-assembly. Here, we explore the anti-prion properties of a combinatorial library of bispidine-based peptidomimetics (BPMs) that conjugate amino acids with hydrophobic and aromatic side chains. Keeping the bispidine unit unaltered, a series of structurally diverse BPMs were synthesized and tested for their prion-modulating properties. Administration of Leu- and Trp-BPMs delayed and completely inhibited the amyloidogenic conversion of human prion protein (HuPrP), respectively. We found that each BPM induced the HuPrP to form unique oligomeric nanostructures differing in their biophysical properties, cellular toxicities and response to conformation-specific antibodies. While Leu-BPMs were found to stabilize the oligomers, Trp-BPMs effected transient oligomerization, resulting in the formation of non-toxic, non-fibrillar aggregates. Yet another aromatic residue, Phe, however, accelerated the aggregation process in HuPrP. Molecular insights obtained through MD (molecular dynamics) simulations suggested that each BPM differently engages a conserved Tyr 169 residue at the α2–β2 loop of HuPrP and affects the stability of α2 and α3 helices. Our results demonstrate that this new class of molecules having chemical scaffolds conjugating hydrophobic/aromatic residues could effectively modulate prion aggregation and toxicity.
Collapse
|
6
|
Madsen-Bouterse SA, Schneider DA, Zhuang D, Dassanayake RP, Balachandran A, Mitchell GB, O'Rourke KI. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein. J Gen Virol 2016; 97:2451-2460. [PMID: 27393736 PMCID: PMC5042132 DOI: 10.1099/jgv.0.000539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.
Collapse
Affiliation(s)
- Sally A. Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - David A. Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Dongyue Zhuang
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Rohana P. Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Aru Balachandran
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Gordon B. Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Katherine I. O'Rourke
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| |
Collapse
|
7
|
González L, Chianini F, Hunter N, Hamilton S, Gibbard L, Martin S, Dagleish MP, Sisó S, Eaton SL, Chong A, Algar L, Jeffrey M. Stability of murine scrapie strain 87V after passage in sheep and comparison with the CH1641 ovine strain. J Gen Virol 2016; 96:3703-3714. [PMID: 26611906 DOI: 10.1099/jgv.0.000305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Breed- and prion protein (PRNP) genotype-related disease phenotype variability has been observed in sheep infected with the 87V murine scrapie strain. Therefore, the stability of this strain was tested by inoculating sheep-derived 87V brain material back into VM mice. As some sheep-adapted 87V disease phenotypes were reminiscent of CH1641 scrapie, transgenic mice (Tg338) expressing ovine prion protein (PrP) were inoculated with the same sheep-derived 87V sources and with CH1641. Although at first passage in VM mice the sheep-derived 87V sources showed some divergence from the murine 87V control, all the characteristics of murine 87V infection were recovered at second passage from all sheep sources. These included 100 % attack rates and indistinguishable survival times, lesion profiles, immunohistochemical features of disease-associated PrP accumulation in the brain and PrP biochemical properties. All sheep-derived 87V sources, as well as CH1641, were transmitted to Tg338 mice with identical clinical, pathological, immunohistochemical and biochemical features. While this might potentially indicate that sheep-adapted 87V and CH1641 are the same strain, profound divergences were evident, as murine 87V was unable to infect Tg338 mice but was lethal for VM mice, while the reverse was true for CH1641. These combined data suggest that: (i) murine 87V is stable and retains its properties after passage in sheep; (ii) it can be isolated from sheep showing a CH1641-like or a more conventional scrapie phenotype; and (iii) sheep-adapted 87V scrapie, with conventional or CH1641-like phenotype, is biologically distinct from experimental CH1641 scrapie, despite the fact that they behave identically in a single transgenic mouse line.
Collapse
Affiliation(s)
- Lorenzo González
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Nora Hunter
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Louise Gibbard
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Stuart Martin
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Sílvia Sisó
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Samantha L Eaton
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Angela Chong
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Lynne Algar
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
8
|
Arsac JN, Baron T. Distinct transmissibility features of TSE sources derived from ruminant prion diseases by the oral route in a transgenic mouse model (TgOvPrP4) overexpressing the ovine prion protein. PLoS One 2014; 9:e96215. [PMID: 24797075 PMCID: PMC4010433 DOI: 10.1371/journal.pone.0096215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases associated with a misfolded form of host-encoded prion protein (PrP). Some of them, such as classical bovine spongiform encephalopathy in cattle (BSE), transmissible mink encephalopathy (TME), kuru and variant Creutzfeldt-Jakob disease in humans, are acquired by the oral route exposure to infected tissues. We investigated the possible transmission by the oral route of a panel of strains derived from ruminant prion diseases in a transgenic mouse model (TgOvPrP4) overexpressing the ovine prion protein (A136R154Q171) under the control of the neuron-specific enolase promoter. Sources derived from Nor98, CH1641 or 87V scrapie sources, as well as sources derived from L-type BSE or cattle-passaged TME, failed to transmit by the oral route, whereas those derived from classical BSE and classical scrapie were successfully transmitted. Apart from a possible effect of passage history of the TSE agent in the inocula, this implied the occurrence of subtle molecular changes in the protease-resistant prion protein (PrPres) following oral transmission that can raises concerns about our ability to correctly identify sheep that might be orally infected by the BSE agent in the field. Our results provide proof of principle that transgenic mouse models can be used to examine the transmissibility of TSE agents by the oral route, providing novel insights regarding the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Jean-Noël Arsac
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses), Unité Maladies Neuro-dégénératives, Lyon, France
| | - Thierry Baron
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses), Unité Maladies Neuro-dégénératives, Lyon, France
- * E-mail:
| |
Collapse
|
9
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
10
|
Nicot S, Bencsik A, Migliore S, Canal D, Leboidre M, Agrimi U, Nonno R, Baron T. L-type bovine spongiform encephalopathy in genetically susceptible and resistant sheep: changes in prion strain or phenotypic plasticity of the disease-associated prion protein? J Infect Dis 2013; 209:950-9. [PMID: 24218507 DOI: 10.1093/infdis/jit596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sheep with prion protein (PrP) gene polymorphisms QQ171 and RQ171 were shown to be susceptible to the prion causing L-type bovine spongiform encephalopathy (L-BSE), although RQ171 sheep specifically propagated a distinctive prion molecular phenotype in their brains, characterized by a high molecular mass protease-resistant PrP fragment (HMM PrPres), distinct from L-BSE in QQ171 sheep. METHODS The resulting infectious and biological properties of QQ171 and RQ171 ovine L-BSE prions were investigated in transgenic mice expressing either bovine or ovine PrP. RESULTS In both mouse lines, ovine L-BSE transmitted similarly to cattle-derived L-BSE, with respect to survival periods, histopathology, and biochemical features of PrPres in the brain, as well as splenotropism, clearly differing from ovine classic BSE or from scrapie strain CH1641. Nevertheless and unexpectedly, HMM PrPres was found in the spleen of ovine PrP transgenic mice infected with L-BSE from RQ171 sheep at first passage, reminiscent, in lymphoid tissues only, of the distinct PrPres features found in RQ171 sheep brains. CONCLUSIONS The L-BSE agent differs from both ovine classic BSE or CH1641 scrapie maintaining its specific strain properties after passage in sheep, although striking PrPres molecular changes could be found in RQ171 sheep and in the spleen of ovine PrP transgenic mice.
Collapse
Affiliation(s)
- Simon Nicot
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Unité Maladies Neuro-Dégénératives, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Maluquer de Motes C, Espinosa JC, Esteban A, Calvo M, Girones R, Torres JM. Persistence of the bovine spongiform encephalopathy infectious agent in sewage. ENVIRONMENTAL RESEARCH 2012; 117:1-7. [PMID: 22776326 DOI: 10.1016/j.envres.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/28/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
Horizontal transmission of prion diseases through the environment represents a considerable concern. Prions are extremely resistant to inactivation and are thought to enter the environment after burial of animal mortalities or through biosolids from wastewater treatment plants. In addition, deposition of prions in the environment through biological fluids and/or faeces has been proved in the last years. Little is known about the behaviour of prion infectivity in the environment. In this study, the persistence of BSE infectious agent in sewage has been assessed by both PrP(Res) immunoblotting and mouse bioassay in a long-term incubation study. Results indicated that no PrP(Res) was detected after 150 day of incubation and consistent with this, a statistical regression model estimated 2-logs decay in 151 day. In contrast, no reduction in infectivity was observed during this period. Similarly, BSE infectivity remained unaltered after incubation in PBS for 265 day, whereas PrP(Res) levels dropped progressively over the length of the study. These results indicate that in sewage and PBS, prion infectivity persists longer and with different dynamics than its commonly used marker PrP(Res). Thus, mathematical models computed on the basis of PrP(Res) detection were unable to predict inactivation of prion infectivity. It is also reasonable to assume that conventional wastewater treatments with low retention times could have a very limited impact on prion infectivity. This data is essential for the development of accurate risk assessment analysis for BSE and other prion diseases in the environment.
Collapse
|
12
|
O'Rourke KI, Schneider DA, Spraker TR, Dassanayake RP, Highland MA, Zhuang D, Truscott TC. Transmissibility of caprine scrapie in ovine transgenic mice. BMC Vet Res 2012; 8:42. [PMID: 22472560 PMCID: PMC3489715 DOI: 10.1186/1746-6148-8-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/17/2012] [Indexed: 01/19/2023] Open
Abstract
Background The United States control program for classical ovine scrapie is based in part on the finding that infection is typically spread through exposure to shed placentas from infected ewes. Transmission from goats to sheep is less well described. A suitable rodent model for examining the effect of caprine scrapie isolates in the ovine host will be useful in the ovine scrapie eradication effort. In this study, we describe the incubation time, brain lesion profile, glycoform pattern and PrPSc distribution patterns in a well characterized transgenic mouse line (Tg338) expressing the ovine VRQ prion allele, following inoculation with brain from scrapie infected goats. Results First passage incubation times of caprine tissue in Tg338 ovinized mice varied widely but second passage intervals were shorter and consistent. Vacuolation profiles, glycoform patterns and paraffin-embedded tissue blots from terminally ill second passage mice derived from sheep or goat inocula were similar. Proteinase K digestion products of murine tissue were slightly smaller than the original ruminant inocula, a finding consistent with passage of several ovine strains in previous reports. Conclusions These findings demonstrate that Tg338 mice propagate prions of caprine origin and provide a suitable baseline for examination of samples identified in the expanded US caprine scrapie surveillance program.
Collapse
Affiliation(s)
- Katherine I O'Rourke
- United States Department of Agriculture, Agricultural Research Service, Pullman, WA 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Thackray AM, Hopkins L, Lockey R, Spiropoulos J, Bujdoso R. Propagation of ovine prions from “poor” transmitter scrapie isolates in ovine PrP transgenic mice. Exp Mol Pathol 2012; 92:167-74. [DOI: 10.1016/j.yexmp.2011.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 11/27/2022]
|
14
|
Webb PR, Denyer M, Gough J, Spiropoulos J, Simmons MM, Spencer YI. Paraffin-embedded tissue blot as a sensitive method for discrimination between classical scrapie and experimental bovine spongiform encephalopathy in sheep. J Vet Diagn Invest 2012; 23:492-8. [PMID: 21908277 DOI: 10.1177/1040638711403399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paraffin-embedded tissue (PET) blot was modified for use as a tool to differentiate between classical scrapie and experimental bovine spongiform encephalopathy (BSE) in sheep. Medulla (obex) from 21 cases of classical scrapie and 6 cases of experimental ovine BSE were used to develop the method such that it can be used as a tool to differentiate between BSE and scrapie in the same way that differential immunohistochemistry (IHC) has been used previously. The differential PET blot successfully differentiated between all of the scrapie and ovine BSE cases. Differentiation was permitted more easily with PET blot than by differential IHC, with accurate observations possible at the macroscopic level. At the microscopic level, sensitivity was such that discrimination by the differential PET blot could be made with more confidence than with differential IHC in cases where the immunohistochemical differences were subtle. The differential PET blot makes use of harsh epitope demasking conditions, and, because of the differences in the way prion protein is processed in different prion diseases, it can serve as a new, highly sensitive method to discriminate between classical scrapie and experimental BSE in sheep.
Collapse
Affiliation(s)
- Paul R Webb
- Department of Pathology and Host Susceptability, Animal Health and Veterinary Laboratories Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Bencsik A, Baron T. Histopathological studies of "CH1641-like" scrapie sources versus classical scrapie and BSE transmitted to ovine transgenic mice (TgOvPrP4). PLoS One 2011; 6:e22105. [PMID: 21765939 PMCID: PMC3135617 DOI: 10.1371/journal.pone.0022105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/17/2011] [Indexed: 11/29/2022] Open
Abstract
The possibility of the agent causing bovine spongiform encephalopathy (BSE) infecting small ruminants is of serious concern for human health. Among scrapie cases, the CH1641 source in particular appears to have certain biochemical properties similar to the BSE strain. In France, several natural scrapie cases were identified as “CH1641-like” natural scrapie isolates in sheep and goats. The Tg(OvPrP4) mouse line expressing the ovine prion protein is a sensitive model for studying and identifying strains of agents responsible for scrapie and BSE. This model is also very useful when studying specific scrapie source CH1641, known to be not transmissible to wild-type mice despite the similarity of some of its biochemical properties to those of the BSE strain. As it is important to be able to fully distinguish CH1641 from BSE, we herein report the histopathological data from CH1641 scrapie transmission experiments compared to specific cases of “CH1641-like” natural scrapie isolates in sheep, murine scrapie strains and BSE. In addition to the conventional vacuolar lesion profile approach and PrPd brain mappings, an innovative differential PET-blot analysis was introduced to classify the different strains of agent and revealed the first direct concordance between ways of grouping strains on the basis of PrPd biochemical characteristics.
Collapse
Affiliation(s)
- Anna Bencsik
- Unité Maladies Neurodégénératives, French Agency for Food, Environmental and Occupational Health Safety, ANSES, Lyon, France.
| | | |
Collapse
|
16
|
Transmission of prion strains in a transgenic mouse model overexpressing human A53T mutated α-synuclein. J Neuropathol Exp Neurol 2011; 70:377-85. [PMID: 21487306 DOI: 10.1097/nen.0b013e318217d95f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is a growing interest in the potential roles of misfolded protein interactions in neurodegeneration. To investigate this issue, we inoculated 3 prion strains intracerebrally into transgenic (TgM83) mice that overexpress human A53T α-synuclein. In comparison to nontransgenic controls, there was a striking decrease in the incubation periods of scrapie, classic and H-type bovine spongiform encephalopathies(C-BSE and H-BSE), with conservation of the histopathologic and biochemical features characterizing these 3 prion strains. TgM83 mice died of scrapie or C-BSE prion diseases before accumulating the insoluble and phosphorylated forms of α-synuclein specific to late stages of synucleinopathy. In contrast, the median incubation time for TgM83 mice inoculated with H-BSE was comparable to that observed when these mice were uninfected, thereby allowing the development of molecular alterations of α-synuclein. The last 4 mice of this cohort exhibited early accumulations of H-BSE prion protein along with α-synuclein pathology. The results indicate that a prion disease was triggered concomitantly with an overt synucleinopathy in some transgenic mice overexpressing human A53T α-synuclein after intracerebral inoculation with an H-BSE prion strain.
Collapse
|
17
|
Seuberlich T, Heim D, Zurbriggen A. Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control. J Vet Diagn Invest 2011; 22:823-42. [PMID: 21088166 DOI: 10.1177/104063871002200601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since 1987, when bovine spongiform encephalopathy (BSE) emerged as a novel disease in cattle, enormous efforts were undertaken to monitor and control the disease in ruminants worldwide. The driving force was its high economic impact, which resulted from trade restrictions and the loss of consumer confidence in beef products, the latter because BSE turned out to be a fatal zoonosis, causing variant Creutzfeldt-Jakob disease in human beings. The ban on meat and bone meal in livestock feed and the removal of specified risk materials from the food chain were the main measures to successfully prevent infection in cattle and to protect human beings from BSE exposure. However, although BSE is now under control, previously unknown, so-called atypical transmissible spongiform encephalopathies (TSEs) in cattle and small ruminants have been identified by enhanced disease surveillance. This report briefly reviews and summarizes the current level of knowledge on the spectrum of TSEs in cattle and small ruminants and addresses the question of the extent to which such atypical TSEs have an effect on disease surveillance and control strategies.
Collapse
Affiliation(s)
- Torsten Seuberlich
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, DCR-VPH, Bremgartenstrasse 109a, CH-3001 Berne, Switzerland.
| | | | | |
Collapse
|
18
|
Joint Scientific Opinion on any possible epidemiological or molecular association between TSEs in animals and humans. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
19
|
Abstract
Here we review the known strain profiles of various prion diseases of animals and humans, and how transgenic mouse models are being used to elucidate basic molecular mechanisms of prion propagation and strain variation and for assessing the zoonotic potential of various animal prion strains.
Collapse
Affiliation(s)
- Glenn C Telling
- Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, KY 40506, USA.
| |
Collapse
|
20
|
Abstract
We investigated the susceptibilities of Syrian golden hamsters to transmissible spongiform encephalopathy agents from cattle. We report efficient transmission of the L-type atypical bovine spongiform encephalopathy (BSE) agent into hamsters. Importantly, hamsters were also susceptible to the transmissible mink encephalopathy agent from cattle, which has molecular features similar to those of the L-type BSE agent, as also shown in bovinized transgenic mice. In sharp contrast, hamsters could not be infected with classical or H-type BSE agents from cattle. However, previous adaptation of the classical BSE agent in wild-type mice led to efficient transmission. Thus, this study demonstrates the existence of distinct "strain barriers" upon the transmission of bovine prions in hamsters.
Collapse
|
21
|
Yokoyama T, Masujin K, Schmerr MJ, Shu Y, Okada H, Iwamaru Y, Imamura M, Matsuura Y, Murayama Y, Mohri S. Intraspecies prion transmission results in selection of sheep scrapie strains. PLoS One 2010; 5:e15450. [PMID: 21103326 PMCID: PMC2982847 DOI: 10.1371/journal.pone.0015450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/30/2010] [Indexed: 12/03/2022] Open
Abstract
Background Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined. Methodology/Principal Findings In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain. Conclusions/Significance Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Eiden M, Hoffmann C, Balkema-Buschmann A, Müller M, Baumgartner K, Groschup MH. Biochemical and immunohistochemical characterization of feline spongiform encephalopathy in a German captive cheetah. J Gen Virol 2010; 91:2874-83. [PMID: 20660146 DOI: 10.1099/vir.0.022103-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline spongiform encephalopathy (FSE) is a transmissible spongiform encephalopathy that affects domestic cats (Felis catus) and captive wild members of the family Felidae. In this report we describe a case of FSE in a captive cheetah from the zoological garden of Nuremberg. The biochemical examination revealed a BSE-like pattern. Disease-associated scrapie prion protein (PrP(Sc)) was widely distributed in the central and peripheral nervous system, as well as in the lymphoreticular system and in other tissues of the affected animal, as demonstrated by immunohistochemistry and/or immunoblotting. Moreover, we report for the first time the use of the protein misfolding cyclic amplification technique for highly sensitive detection of PrP(Sc) in the family Felidae. The widespread PrP(Sc) deposition suggests a simultaneous lymphatic and neural spread of the FSE agent. The detection of PrP(Sc) in the spleen indicates a potential for prion infectivity of cheetah blood.
Collapse
Affiliation(s)
- Martin Eiden
- Institute for Novel and Emerging Infectious Diseases at the Friedrich Loeffler Institute (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Sigurdson CJ, Nilsson KPR, Hornemann S, Manco G, Fernández-Borges N, Schwarz P, Castilla J, Wüthrich K, Aguzzi A. A molecular switch controls interspecies prion disease transmission in mice. J Clin Invest 2010; 120:2590-9. [PMID: 20551516 DOI: 10.1172/jci42051] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/28/2010] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies are lethal neurodegenerative disorders that present with aggregated forms of the cellular prion protein (PrPC), which are known as PrPSc. Prions from different species vary considerably in their transmissibility to xenogeneic hosts. The variable transmission barriers depend on sequence differences between incoming PrPSc and host PrPC and additionally, on strain-dependent conformational properties of PrPSc. The beta2-alpha2 loop region within PrPC varies substantially between species, with its structure being influenced by the residue types in the 2 amino acid sequence positions 170 (most commonly S or N) and 174 (N or T). In this study, we inoculated prions from 5 different species into transgenic mice expressing either disordered-loop or rigid-loop PrPC variants. Similar beta2-alpha2 loop structures correlated with efficient transmission, whereas dissimilar loops correlated with strong transmission barriers. We then classified literature data on cross-species transmission according to the 170S/N polymorphism. Transmission barriers were generally low between species with the same amino acid residue in position 170 and high between those with different residues. These findings point to a triggering role of the local beta2-alpha2 loop structure for prion transmissibility between different species.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology and Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baron T, Bencsik A, Morignat E. Prions of ruminants show distinct splenotropisms in an ovine transgenic mouse model. PLoS One 2010; 5:e10310. [PMID: 20436680 PMCID: PMC2859945 DOI: 10.1371/journal.pone.0010310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/28/2010] [Indexed: 11/18/2022] Open
Abstract
Background Transmissible agents involved in prion diseases differ in their capacities to target different regions of the central nervous system and lymphoid tissues, which are also host-dependent. Methodology/Principal Findings Protease-resistant prion protein (PrPres) was analysed by Western blot in the spleen of transgenic mice (TgOvPrP4) that express the ovine prion protein under the control of the neuron-specific enolase promoter, after infection by intra-cerebral route with a variety of transmissible spongiform encephalopathies (TSEs) from cattle and small ruminants. Splenic PrPres was consistently detected in classical BSE and in most natural scrapie sources, the electrophoretic pattern showing similar features to that of cerebral PrPres. However splenic PrPres was not detected in L-type BSE and TME-in-cattle, or in the CH1641 experimental scrapie isolate, indicating that some TSE strains showed reduced splenotropism in the ovine transgenic mice. In contrast with CH1641, PrPres was also consistently detected in the spleen of mice infected with six natural “CH1641-like” scrapie isolates, but then showed clearly different molecular features from those identified in the brains (unglycosylated PrPres at ∼18 kDa with removal of the 12B2 epitope) of ovine transgenic mice or of sheep. These features included different cleavage of the main PrPres cleavage product (unglycosylated PrPres at ∼19 kDa with preservation of the 12B2 epitope) and absence of the additional C-terminally cleaved PrPres product (unglycosylated form at ∼14 kDa) that was detected in the brain. Conclusion/Significance Studies in a transgenic mouse model expressing the sheep prion protein revealed different capacities of ruminant prions to propagate in the spleen. They showed unexpected features in “CH1641-like” ovine scrapie suggesting that such isolates contain mixed conformers with distinct capacities to propagate in the brain or lymphoid tissues of these mice.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments - Lyon, Unité ATNC, Lyon, France.
| | | | | |
Collapse
|
25
|
Nicot S, Baron TGM. Strain-specific proteolytic processing of the prion protein in prion diseases of ruminants transmitted in ovine transgenic mice. J Gen Virol 2009; 91:570-4. [PMID: 19828761 DOI: 10.1099/vir.0.014464-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebral prion protein (PrP) isolated in the absence of proteinase K digestion, from ruminants prion sources transmitted to ovine transgenic mice, was studied by Western blot analysis. A C2 PrP fragment, showing strain-specific cleavages, similar to those observed after proteinase K or thermolysin digestion, accumulated in the brain. 'CH1641-like' scrapie was characterized by the unique accumulation of a more C-terminally cleaved PrP fragment (CTF14). A similar, protease-resistant, PrP product was observed after proteinase K or thermolysin digestion. Whereas classical BSE appeared highly resistant to thermolysin digestion, CH1641 and 'CH1641-like' natural isolates did not show any remarkable feature regarding resistance to thermolysin. Thus, the molecular strain-specific features in the brain of transmissible spongiform encephalopathy infected mice essentially reflect the PrP proteolytic processing occurring in vivo.
Collapse
Affiliation(s)
- Simon Nicot
- Agence Française de Sécurité Sanitaire des Aliments - Lyon, Unité ATNC, Lyon, France
| | | |
Collapse
|
26
|
Transmissibility of atypical scrapie in ovine transgenic mice: major effects of host prion protein expression and donor prion genotype. PLoS One 2009; 4:e7300. [PMID: 19806224 PMCID: PMC2752806 DOI: 10.1371/journal.pone.0007300] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/04/2009] [Indexed: 12/01/2022] Open
Abstract
Atypical scrapie or Nor98 has been identified as a transmissible spongiform encephalopathy (TSE) that is clearly distinguishable from classical scrapie and BSE, notably regarding the biochemical features of the protease-resistant prion protein PrPres and the genetic factors involved in susceptibility to the disease. In this study we transmitted the disease from a series of 12 French atypical scrapie isolates in a transgenic mouse model (TgOvPrP4) overexpressing in the brain ∼0.25, 1.5 or 6× the levels of the PrPARQ ovine prion protein under the control of the neuron-specific enolase promoter. We used an approach based on serum PrPc measurements that appeared to reflect the different PrPc expression levels in the central nervous system. We found that transmission of atypical scrapie, much more than in classical scrapie or BSE, was strongly influenced by the PrPc expression levels of TgOvPrP4 inoculated mice. Whereas TgOvPrP4 mice overexpressing ∼6× the normal PrPc level died after a survival periods of 400 days, those with ∼1.5× the normal PrPc level died at around 700 days. The transmission of atypical scrapie in TgOvPrP4 mouse line was also strongly influenced by the prnp genotypes of the animal source of atypical scrapie. Isolates carrying the AF141RQ or AHQ alleles, associated with increased disease susceptibility in the natural host, showed a higher transmissibility in TgOvPrP4 mice. The biochemical analysis of PrPres in TgOvPrP4 mouse brains showed a fully conserved pattern, compared to that in the natural host, with three distinct PrPres products. Our results throw light on the transmission features of atypical scrapie and suggest that the risk of transmission is intrinsically lower than that of classical scrapie or BSE, especially in relation to the expression level of the prion protein.
Collapse
|
27
|
Bencsik A, Debeer S, Petit T, Baron T. Possible case of maternal transmission of feline spongiform encephalopathy in a captive cheetah. PLoS One 2009; 4:e6929. [PMID: 19738899 PMCID: PMC2732902 DOI: 10.1371/journal.pone.0006929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/12/2009] [Indexed: 11/18/2022] Open
Abstract
Feline spongiform encephalopathy (FSE) is considered to be related to bovine spongiform encephalopathy (BSE) and has been reported in domestic cats as well as in captive wild cats including cheetahs, first in the United Kingdom (UK) and then in other European countries. In France, several cases were described in cheetahs either imported from UK or born in France. Here we report details of two other FSE cases in captive cheetah including a 2(nd) case of FSE in a cheetah born in France, most likely due to maternal transmission. Complete prion protein immunohistochemical study on both brains and peripheral organs showed the close likeness between the two cases. In addition, transmission studies to the TgOvPrP4 mouse line were also performed, for comparison with the transmission of cattle BSE. The TgOvPrP4 mouse brains infected with cattle BSE and cheetah FSE revealed similar vacuolar lesion profiles, PrP(d) brain mapping with occurrence of typical florid plaques. Collectively, these data indicate that they harbor the same strain of agent as the cattle BSE agent. This new observation may have some impact on our knowledge of vertical transmission of BSE agent-linked TSEs such as in housecat FSE, or vCJD.
Collapse
Affiliation(s)
- Anna Bencsik
- Unité ATNC, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Lyon, France.
| | | | | | | |
Collapse
|
28
|
Tester S, Juillerat V, Doherr MG, Haase B, Polak M, Ehrensperger F, Leeb T, Zurbriggen A, Seuberlich T. Biochemical typing of pathological prion protein in aging cattle with BSE. Virol J 2009; 6:64. [PMID: 19470160 PMCID: PMC2693104 DOI: 10.1186/1743-422x-6-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/26/2009] [Indexed: 11/20/2022] Open
Abstract
Background The broad enforcement of active surveillance for bovine spongiform encephalopathy (BSE) in 2000 led to the discovery of previously unnoticed, atypical BSE phenotypes in aged cattle that differed from classical BSE (C-type) in biochemical properties of the pathological prion protein. Depending on the molecular mass and the degree of glycosylation of its proteinase K resistant core fragment (PrPres), mainly determined in samples derived from the medulla oblongata, these atypical cases are currently classified into low (L)-type or high (H)-type BSE. In the present study we address the question to what extent such atypical BSE cases are part of the BSE epidemic in Switzerland. Results To this end we analyzed the biochemical PrPres type by Western blot in a total of 33 BSE cases in cattle with a minimum age of eight years, targeting up to ten different brain regions. Our work confirmed H-type BSE in a zebu but classified all other cases as C-type BSE; indicating a very low incidence of H- and L-type BSE in Switzerland. It was documented for the first time that the biochemical PrPres type was consistent across different brain regions of aging animals with C-type and H-type BSE, i.e. independent of the neuroanatomical structure investigated. Conclusion Taken together this study provides further characteristics of the BSE epidemic in Switzerland and generates new baseline data for the definition of C- and H-type BSE phenotypes, thereby underpinning the notion that they indeed represent distinct prion disease entities.
Collapse
Affiliation(s)
- Seraina Tester
- NeuroCenter, Reference Laboratory for TSE in animals, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Bovine spongiform encephalopathy is an infectious disease of cattle that is transmitted through the consumption of meat-and-bone meal from infected cattle. The etiologic agent is an aberrant isoform of the native cellular prion protein that is a normal component of neurologic tissue. There currently are no approved tests that can detect BSE in live cattle.
Collapse
Affiliation(s)
- Jane L Harman
- Food Safety and Inspection Service, Office of Public Health Science, USDA, 1400 Independence Ave SW, Washington, DC 20250, USA
| | | |
Collapse
|
30
|
Maluquer de Motes C, Simon S, Grassi J, Torres J, Pumarola M, Girones R. Assessing the presence of BSE and scrapie in slaughterhouse wastewater. J Appl Microbiol 2008; 105:1649-57. [DOI: 10.1111/j.1365-2672.2008.03916.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Molecular and transmission characteristics of primary-passaged ovine scrapie isolates in conventional and ovine PrP transgenic mice. J Virol 2008; 82:11197-207. [PMID: 18768980 DOI: 10.1128/jvi.01454-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A more complete assessment of ovine prion strain diversity will be achieved by complementing biological strain typing in conventional and ovine PrP transgenic mice with a biochemical analysis of the resultant PrPSc. This will provide a correlation between ovine prion strain phenotype and the molecular nature of different PrP conformers associated with particular prion strains. Here, we have compared the molecular and transmission characteristics of ovine ARQ/ARQ and VRQ/VRQ scrapie isolates following primary passage in tg338 (VRQ) and tg59 (ARQ) ovine PrP transgenic mice and the conventional mouse lines C57BL/6 (Prnp(a)), RIII (Prnp(a)), and VM (Prnp(b)). Our data show that these different genotypes of scrapie isolates display similar incubation periods of >350 days in conventional and tg59 mice. Facilitated transmission of sheep scrapie isolates occurred in tg338 mice, with incubation times reduced to 64 days for VRQ/VRQ inocula and to </=210 days for ARQ/ARQ samples. Distinct genotype-specific lesion profiles were seen in the brains of conventional and tg59 mice with prion disease, which was accompanied by the accumulation of more conformationally stable PrPSc, following inoculation with ARQ/ARQ compared to VRQ/VRQ scrapie isolates. In contrast, the lesion profiles, quantities, and stability of PrPSc induced by the same inocula in tg338 mice were more similar than in the other mouse lines. Our data show that primary transmission of different genotypes of ovine prions is associated with the formation of different conformers of PrPSc with distinct molecular properties and provide the basis of a molecular approach to identify the true diversity of ovine prion strains.
Collapse
|
32
|
Baron T, Bencsik A, Vulin J, Biacabe AG, Morignat E, Verchere J, Betemps D. A C-terminal protease-resistant prion fragment distinguishes ovine "CH1641-like" scrapie from bovine classical and L-Type BSE in ovine transgenic mice. PLoS Pathog 2008; 4:e1000137. [PMID: 18769714 PMCID: PMC2516186 DOI: 10.1371/journal.ppat.1000137] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/31/2008] [Indexed: 11/18/2022] Open
Abstract
The protease-resistant prion protein (PrP(res)) of a few natural scrapie isolates identified in sheep, reminiscent of the experimental isolate CH1641 derived from a British natural scrapie case, showed partial molecular similarities to ovine bovine spongiform encephalopathy (BSE). Recent discovery of an atypical form of BSE in cattle, L-type BSE or BASE, suggests that also this form of BSE might have been transmitted to sheep. We studied by Western blot the molecular features of PrP(res) in four "CH1641-like" natural scrapie isolates after transmission in an ovine transgenic model (TgOvPrP4), to see if "CH1641-like" isolates might be linked to L-type BSE. We found less diglycosylated PrP(res) than in classical BSE, but similar glycoform proportions and apparent molecular masses of the usual PrP(res) form (PrP(res) #1) to L-type BSE. However, the "CH1641-like" isolates differed from both L-type and classical BSE by an abundant, C-terminally cleaved PrP(res) product (PrP(res) #2) specifically recognised by a C-terminal antibody (SAF84). Differential immunoprecipitation of PrP(res) #1 and PrP(res) #2 resulted in enrichment in PrP(res) #2, and demonstrated the presence of mono- and diglycosylated PrP(res) products. PrP(res) #2 could not be obtained from several experimental scrapie sources (SSBP1, 79A, Chandler, C506M3) in TgOvPrP4 mice, but was identified in the 87V scrapie strain and, in lower and variable proportions, in 5 of 5 natural scrapie isolates with different molecular features to CH1641. PrP(res) #2 identification provides an additional method for the molecular discrimination of prion strains, and demonstrates differences between "CH1641-like" ovine scrapie and bovine L-type BSE transmitted in an ovine transgenic mouse model.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments-Lyon, Unité ATNC, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Béringue V, Vilotte JL, Laude H. Prion agent diversity and species barrier. Vet Res 2008; 39:47. [PMID: 18519020 DOI: 10.1051/vetres:2008024] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/30/2008] [Indexed: 11/14/2022] Open
Abstract
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie et Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
34
|
Maluquer de Motes C, Cano MJ, Torres JM, Pumarola M, Girones R. Detection and survival of prion agents in aquatic environments. WATER RESEARCH 2008; 42:2465-2472. [PMID: 18321558 DOI: 10.1016/j.watres.2008.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/07/2007] [Accepted: 01/29/2008] [Indexed: 05/26/2023]
Abstract
Environmental contamination is considered a potential mechanism of transmission of prion diseases. Sheep scrapie and cervid chronic wasting diseases (CWD) epizootics are thought to be maintained by natural horizontal transmission through the environment. Here, we describe a method for the detection of prion proteins (PrPres) in aquatic environments. The procedure is based on a glycine buffer-mediated extraction, sonication, and an ultracentrifugation step. The detection limit of the method was estimated to be over 5-10 microg of infected tissue. In order to determine the inactivation of these agents, we spiked infected brain tissue in urban sewage, seawater and a buffered solution (final concentrations of 0.1-0.2% brain in matrix), and studied the decay of BSE- and scrapie-associated PrPres over time (up to 265 days). Densitometric data from Western blots were plotted in logarithmic scale against time. Reduction of PrPres titer in sewage was quantified in one logarithm after 13.5 days for BSE, 27.9 days for mouse-passaged scrapie and 32.6 days for sheep scrapie. In the buffered solution, a logarithm of BSE-associated PrPres also disappeared earlier than that of scrapie (113.9 and 214.3 days, respectively). By means of the covariance analysis, these differences in the inactivation patterns were shown to be statistically significant. According to the data, prions may be stable for extended periods of time in buffered solutions like PBS, but would show limited survival in aquatic environmental matrices.
Collapse
Affiliation(s)
- C Maluquer de Motes
- Department of Microbiology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
35
|
Baron T, Bencsik A, Biacabe AG, Morignat E, Bessen RA. Phenotypic similarity of transmissible mink encephalopathy in cattle and L-type bovine spongiform encephalopathy in a mouse model. Emerg Infect Dis 2008. [PMID: 18258040 PMCID: PMC2876762 DOI: 10.3201/eid13112.070635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-type BSE is a more likely candidate for the origin of TME than typical BSE. Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine-passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, H-type BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profiles, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME. The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments-Lyon, Lyon, France.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Prions represent a new biological paradigm of protein-mediated information transfer. In mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, often referred to as transmissible spongiform encephalopathies. Many unresolved issues remain, including the exact molecular nature of the prion, the detailed mechanism of prion propagation, and the mechanism by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological function of the normal form of the prion protein remains unclear, and it is uncertain whether loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, dramatic advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic mouse models has done much to further our understanding about various aspects of prion biology. In this chapter, I review recent advances in our understanding of prion biology that derive from this powerful and informative approach.
Collapse
Affiliation(s)
- Glenn C Telling
- Department of Microbiology, Immunology and Molecular Genetics, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Abstract
A short review of the results of molecular modeling of prion disease is presented in this chapter. According to the "one-protein theory" proposed by Prusiner, prion proteins are misfolded naturally occurring proteins, which, on interaction with correctly folded proteins may induce misfolding and propagate the disease, resulting in insoluble amyloid aggregates in cells of affected specimens. Because of experimental difficulties in measurements of origin and growth of insoluble amyloid aggregations in cells, theoretical modeling is often the only one source of information regarding the molecular mechanism of the disease. Replica exchange Monte Carlo simulations presented in this chapter indicate that proteins in the native state, N, on interaction with an energetically higher structure, R, can change their conformation into R and form a dimer, R(2). The addition of another protein in the N state to R(2) may lead to spontaneous formation of a trimer, R(3). These results reveal the molecular basis for a model of prion disease propagation or conformational diseases in general.
Collapse
|
38
|
Baron T, Bencsik A, Biacabe AG, Morignat E, Bessen RA. Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model. Emerg Infect Dis 2007; 13:1887-94. [DOI: 10.3201/eid1312.070635] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France
| | - Anna Bencsik
- Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France
| | | | - Eric Morignat
- Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France
| | | |
Collapse
|
39
|
Vidal E, Márquez M, Costa C, Tortosa R, Domènech A, Serafín A, Pumarola M. Molecular profiling and comparison of field transmissible spongiform encephalopathy cases diagnosed in Catalunya. Vet J 2007; 174:196-9. [PMID: 16690334 DOI: 10.1016/j.tvjl.2006.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.
Collapse
Affiliation(s)
- E Vidal
- Laboratori PRIOCAT, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Baron T, Biacabe AG. Molecular behaviors of "CH1641-like" sheep scrapie isolates in ovine transgenic mice (TgOvPrP4). J Virol 2007; 81:7230-7. [PMID: 17442721 PMCID: PMC1933328 DOI: 10.1128/jvi.02475-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular analyses of the protease-resistant prion protein (PrP(res)) from a few natural scrapie isolates showed by Western blotting some partial similarities with those observed in experimental ovine bovine spongiform encephalopathy (BSE). They showed a low apparent molecular mass of unglycosylated PrP(res), although diglycosylated PrP(res) was less abundant than in ovine BSE. The prototype of such cases is the CH1641 experimental scrapie isolate. We analyzed PrP(res) molecular features from three French natural "CH1641-like" isolates, in comparison with CH1641 and BSE, after transmission of the disease in ovine transgenic mice (TgOvPrP4). One of these isolates (TR316211) behaved like the CH1641 isolate, with PrP(res) features in mice similar to those in the sheep brain. From two other isolates (O100 and O104), two distinct PrP(res) phenotypes were identified in mouse brains, with either high (h-type) or low (l-type) apparent molecular masses of unglycosylated PrP(res), the latter being similar to that observed with CH1641, TR316211, or BSE. Both phenotypes could be found in variable proportions in the brains of the individual mice. In contrast with BSE, l-type PrP(res) from "CH1641-like" isolates showed lower levels of diglycosylated PrP(res). From one of these cases (O104), a second passage in mice was performed for two mice with distinct PrP(res) profiles. This showed a partial selection of the l-type phenotype in mice infected with a mouse brain with predominant l-type PrP(res), and it was accompanied by a significant increase in the proportions of the diglycosylated band. These results are discussed in relation to the diversity of scrapie and BSE strains.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments-Lyon, Unité ATNC, Lyon, France.
| | | |
Collapse
|
41
|
Bencsik A, Philippe S, Debeer S, Crozet C, Calavas D, Baron T. Scrapie strain transmission studies in ovine PrP transgenic mice reveal dissimilar susceptibility. Histochem Cell Biol 2007; 127:531-9. [PMID: 17361441 DOI: 10.1007/s00418-007-0276-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
The Tg(OvPrP4) mouse line, expressing the sheep prion protein, is a sensitive model crucial for the identification of the bovine spongiform encephalopathy agent possibly present in natural sheep spongiform encephalopathies. It was also previously demonstrated as susceptible to infection with natural scrapie isolates from sheep harbouring various genotypes. The performance of this new transgenic mouse line in scrapie strain characterization was further assessed by intracranial inoculation of five groups of Tg(OvPrP4) mice with brain homogenate of the wild type mouse-adapted scrapie strains, C506M3, 22A, 79A, 87V, or Chandler. The Tg(OvPrP4) mice were susceptible to the scrapie agent transmitted using mouse-adapted scrapie strains but not equivalently. Strains 87V and Chandler were most readily transmissible followed by 79A and C506M3. Strain 22A was the least transmissible. Clinical signs, survival data, spongiosis, and PrP(sc) distribution were also reported. These various data demonstrate the possibility of distinguishing between scrapie strains. Our findings are discussed with regard to agent strain and host factors and already demonstrate the dissimilar susceptibilities of Tg(OvPrP4) mice to the different murine strains studied, thus, reinforcing their potential use in strain typing studies.
Collapse
Affiliation(s)
- Anna Bencsik
- ATNC unit, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), 31 avenue Tony Garnier, 69364, Lyon Cedex 07, France.
| | | | | | | | | | | |
Collapse
|
42
|
Takemura K, Kahdre M, Joseph D, Yousef A, Sreevatsan S. An overview of transmissible spongiform encephalopathies. Anim Health Res Rev 2007; 5:103-24. [PMID: 15984319 DOI: 10.1079/ahr200494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractTransmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders of humans and animals associated with an accumulation of abnormal isoforms of prion protein (PrP) in nerve cells. The pathogenesis of TSEs involves conformational conversions of normal cellular PrP (PrPc) to abnormal isoforms of PrP (PrPSc). While the protein-only hypothesis has been widely accepted as a causal mechanism of prion diseases, evidence from more recent research suggests a possible involvement of other cellular component(s) or as yet undefined infectious agent(s) in PrP pathogenesis. Although the underlying mechanisms of PrP strain variation and the determinants of interspecies transmissibility have not been fully elucidated, biochemical and molecular findings indicate that bovine spongiform encephalopathy in cattle and new-variant Creutzfeldt–Jakob disease in humans are caused by indistinguishable etiological agent(s). Cumulative evidence suggests that there may be risks of humans acquiring TSEs via a variety of exposures to infected material. The development of highly precise ligands is warranted to detect and differentiate strains, allelic variants and infectious isoforms of these PrPs. This article describes the general features of TSEs and PrP, the current understanding of their pathogenesis, recent advances in prion disease diagnostics, and PrP inactivation.
Collapse
Affiliation(s)
- K Takemura
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
43
|
Biacabe AG, Jacobs JG, Bencsik A, Langeveld JPM, Baron TGM. H-type bovine spongiform encephalopathy: complex molecular features and similarities with human prion diseases. Prion 2007; 1:61-8. [PMID: 19164888 DOI: 10.4161/pri.1.1.3828] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously reported that some cattle affected by bovine spongiform encephalopathy (BSE) showed distinct molecular features of the protease-resistant prion protein (PrP(res)) in Western blot, with a 1-2 kDa higher apparent molecular mass of the unglycosylated PrP(res) associated with labelling by antibodies against the 86-107 region of the bovine PrP protein (H-type BSE). By Western blot analyses of PrP(res), we now showed that the essential features initially described in cattle were observed with a panel of different antibodies and were maintained after transmission of the disease in C57Bl/6 mice. In addition, antibodies against the C-terminal region of PrP revealed a second, more C-terminally cleaved, form of PrP(res) (PrP(res) #2), which, in unglycosylated form, migrated as a approximately 14 kDa fragment. Furthermore, a PrP(res) fragment of approximately 7 kDa, which was not labelled by C-terminus-specific antibodies and was thus presumed to be a product of cleavage at both N- and C-terminal sides of PrP protein, was also detected. Both PrP(res) #2 and approximately 7 kDa PrP(res) were detected in cattle and in C57Bl/6 infected mice. These complex molecular features are reminiscent of findings reported in human prion diseases. This raises questions regarding the respective origins and pathogenic mechanisms in prion diseases of animals and humans.
Collapse
|
44
|
Morales R, Abid K, Soto C. The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta Mol Basis Dis 2006; 1772:681-91. [PMID: 17254754 PMCID: PMC2597801 DOI: 10.1016/j.bbadis.2006.12.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/09/2006] [Accepted: 12/11/2006] [Indexed: 11/18/2022]
Abstract
Prions are unconventional infectious agents responsible for transmissible spongiform encephalopathies. Compelling evidences indicate that prions are composed exclusively by a misfolded form of the prion protein (PrP(Sc)) that replicates in the absence of nucleic acids. One of the most challenging problems for the prion hypothesis is the existence of different strains of the infectious agent. Prion strains have been characterized in most of the species. Biochemical characteristics of PrP(Sc) used to identify each strain include glycosylation profile, electrophoretic mobility, protease resistance, and sedimentation. In vivo, prion strains can be differentiated by the clinical signs, incubation period after inoculation and the lesion profiles in the brain of affected animals. Sources of prion strain diversity are the inherent conformational flexibility of the prion protein, the presence of PrP polymorphisms and inter-species transmissibility. The existence of the strain phenomenon is not only a scientific challenge, but it also represents a serious risk for public health. The dynamic nature and inter-relations between strains and the potential for the generation of a large number of new prion strains is the perfect recipe for the emergence of extremely dangerous new infectious agents.
Collapse
Affiliation(s)
- Rodrigo Morales
- Protein Misfolding Disorders Laboratory, George and Cynthia Mitchell Center for Neurodegenerative diseases, Departments of Neurology, Neuroscience & Cell Biology and Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0646, USA
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karim Abid
- Protein Misfolding Disorders Laboratory, George and Cynthia Mitchell Center for Neurodegenerative diseases, Departments of Neurology, Neuroscience & Cell Biology and Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0646, USA
| | - Claudio Soto
- Protein Misfolding Disorders Laboratory, George and Cynthia Mitchell Center for Neurodegenerative diseases, Departments of Neurology, Neuroscience & Cell Biology and Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0646, USA
- To whom correspondence should be addressed at
| |
Collapse
|
45
|
Cordier C, Bencsik A, Philippe S, Bétemps D, Ronzon F, Calavas D, Crozet C, Baron T. Transmission and characterization of bovine spongiform encephalopathy sources in two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59). J Gen Virol 2006; 87:3763-3771. [PMID: 17098996 DOI: 10.1099/vir.0.82062-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transgenic mice expressing the prion protein (PrP) of species affected by transmissible spongiform encephalopathies (TSEs) have recently been produced to facilitate experimental transmission of these diseases by comparison with wild-type mice. However, whilst wild-type mice have largely been described for the discrimination of different TSE strains, including differentiation of agents involved in bovine spongiform encephalopathy (BSE) and scrapie, this has been only poorly described in transgenic mice. Here, two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59), expressing the ovine PrP (A136 R154 Q171) under control of the neuron-specific enolase promoter, were studied; they were challenged with brainstem or spinal cord from experimentally BSE-infected sheep (AA136 RR154 QQ171 and AA136 RR154 RR171 genotypes) or brainstem from cattle BSE and natural sheep scrapie. The disease was transmitted successfully from all of these sources, with a mean of approximately 300 days survival following challenge with material from two ARQ-homozygous BSE-infected sheep in TgOvPrP4 mice, whereas the survival period in mice challenged with material from the ARR-homozygous BSE-infected sheep was 423 days on average. It was shown that, in the two ovine transgenic mouse lines, the Western blot characteristics of protease-resistant PrP (PrPres) were similar, whatever the BSE source, with a low apparent molecular mass of the unglycosylated glycoform, a poor labelling by P4 monoclonal antibody and high proportions of the diglycosylated form. With all BSE sources, but not with scrapie, florid plaques were observed in the brains of mice from both transgenic lines. These data reinforce the potential of this recently developed experimental model for the discrimination of BSE from scrapie agents.
Collapse
Affiliation(s)
- C Cordier
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - A Bencsik
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - S Philippe
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - D Bétemps
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - F Ronzon
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - D Calavas
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - C Crozet
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - T Baron
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| |
Collapse
|
46
|
Baron T, Biacabe AG, Arsac JN, Benestad S, Groschup MH. Atypical transmissible spongiform encephalopathies (TSEs) in ruminants. Vaccine 2006; 25:5625-30. [PMID: 17126958 DOI: 10.1016/j.vaccine.2006.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/30/2006] [Indexed: 11/22/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are associated with the accumulation in infected tissues of a disease-associated form of a host-encoded protein, the prion protein (PrP). Contrary to the normal form of the protein, this form of PrP is partially resistant to protease digestion (PrP(res)). Detailed characterisation of PrP(res) has been intensively investigated in recent years to try and decipher the diversity of TSEs in human and animals. This considerably and unexpectedly enlarged our knowledge about such diseases in ruminants. Previously, such a diversity was essentially shown by the demonstration that scrapie from sheep and goats could have different biological behaviours following transmission of the disease in mice, unlike bovine spongiform encephalopathy from cattle (BSE) which showed a distinct and unique behaviour. The properties of the BSE agent were also demonstrated to be very stable, following transmission to a variety of different species. Molecular studies of PrP(res), followed by transmission studies to mice, gave the first evidence for the accidental transmission of the BSE agent to humans where it induced a variant form of the fatal Creutzfeldt-Jakob disease (CJD) and also to different animal species including a goat in France. This last case was found among a few unusual cases of TSEs in small ruminants that showed some molecular similarities with BSE and which are currently under investigation by transmission studies in mice. The application of the molecular methods to characterise PrP(res) has most recently led to the unexpected discovery of deviant BSE forms in a few affected cattle in Europe and in the United States, which raises the question of a possible different origin at least of some cases of BSE in cattle. Finally, considerable numbers of a new TSE form in small ruminants, referred to as "atypical scrapie" or "Nor98", have meanwhile been identified in most European countries by TSE rapid testing using an assay which recognizes also comparatively less PK resistant PrP(res).
Collapse
Affiliation(s)
- T Baron
- AFSSA-Lyon, Unité ATNC, Lyon, France.
| | | | | | | | | |
Collapse
|
47
|
Sigurdson CJ, Manco G, Schwarz P, Liberski P, Hoover EA, Hornemann S, Polymenidou M, Miller MW, Glatzel M, Aguzzi A. Strain fidelity of chronic wasting disease upon murine adaptation. J Virol 2006; 80:12303-11. [PMID: 17020952 PMCID: PMC1676299 DOI: 10.1128/jvi.01120-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a prion disease of deer and elk, is highly prevalent in some regions of North America. The establishment of mouse-adapted CWD prions has proven difficult due to the strong species barrier between mice and deer. Here we report the efficient transmission of CWD to transgenic mice overexpressing murine PrP. All mice developed disease 500 +/- 62 days after intracerebral CWD challenge. The incubation period decreased to 228 +/- 103 days on secondary passage and to 162 +/- 6 days on tertiary passage. Mice developed very large, radially structured cerebral amyloid plaques similar to those of CWD-infected deer and elk. PrP(Sc) was detected in spleen, indicating that murine CWD was lymphotropic. PrP(Sc) glycoform profiles maintained a predominantly diglycosylated PrP pattern, as seen with CWD in deer and elk, across all passages. Therefore, all pathological, biochemical, and histological strain characteristics of CWD appear to persist upon repetitive serial passage through mice. These findings indicate that the salient strain-specific properties of CWD are encoded by agent-intrinsic components rather than by host factors.
Collapse
Affiliation(s)
- Christina J Sigurdson
- UniversitätsSpital Zürich, Institute of Neuropathology, Department of Pathology, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lezmi S, Bencsik A, Baron T. PET-blot analysis contributes to BSE strain recognition in C57Bl/6 mice. J Histochem Cytochem 2006; 54:1087-94. [PMID: 16735593 PMCID: PMC3957803 DOI: 10.1369/jhc.5a6892.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 05/16/2006] [Indexed: 11/22/2022] Open
Abstract
Identification of the strain of agent responsible for bovine spongiform encephalopathy (BSE) can be made histologically through the analysis of both distribution and intensity of brain vacuolar lesions after BSE transmission to mouse. Another useful way to distinguish the BSE agent from other prion strains is the study of the distribution of the abnormal prion protein (PrP(res)). For that purpose, paraffin-embedded tissue blot (PET-blot) method was applied on brains from C57Bl/6 mice infected with cattle BSE, experimental sheep BSE, or feline spongiform encephalopathy (FSE) from a cheetah. PrP(res) distribution was comparable, whichever of the three BSE agent sources was considered and was distinct from the PrP(res) distribution in C57Bl/6 mice inoculated with a French scrapie isolate or with a mouse-adapted scrapie strain (C506M3). These data confirm a common origin of infectious agent responsible for the British and French cattle BSE. They also indicate that PET-blot method appears as a precise complementary tool in prion strain studies because it offers easy and quick assessment of the PrP(res) mapping. Advantages and limits of the PET-blot method are discussed and compared with other established and validated methods of strain typing.
Collapse
Affiliation(s)
- Stéphane Lezmi
- Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France
| | - Anna Bencsik
- Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France
| | - Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France
| |
Collapse
|
49
|
Abstract
We previously reported that cattle were affected by a prion disorder that differed from bovine spongiform encephalopathy (BSE) by showing distinct molecular features of disease-associated protease-resistant prion protein (PrPres). We show that intracerebral injection of such isolates into C57BL/6 mice produces a disease with preservation of PrPres molecular features distinct from BSE.
Collapse
Affiliation(s)
- Thierry G M Baron
- Unité Agents Transmissibles Non Conventionnels, Agence Française de Sécurité Sanitaire des Aliments, Lyon, France.
| | | | | | | |
Collapse
|
50
|
Gretzschel A, Buschmann A, Eiden M, Ziegler U, Lühken G, Erhardt G, Groschup MH. Strain typing of German transmissible spongiform encephalopathies field cases in small ruminants by biochemical methods. ACTA ACUST UNITED AC 2005; 52:55-63. [PMID: 15752263 DOI: 10.1111/j.1439-0450.2005.00827.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following the implementation of a large scale transmissible spongiform encephalopathies (TSE) surveillance programme of small ruminants, evidence for a natural transmission of bovine spongiform encephalopathy (BSE) to a French goat has been found. During the years 2002-2004, a massive TSE rapid testing programme on >250,000 small ruminants was carried out in Germany. In this national survey, 186 scrapie-affected sheep were found which originated from 78 flocks. The majority of these cases were of the classical TSE type (115 sheep belonging to 14 outbreaks). However, 71 cases coming from 64 flocks were of the novel atypical scrapie type. According to the regulation EU 999/2001, all TSE cases in small ruminants have to be examined by strain typing methods to explore any possibility of the existence of BSE cases in the field sheep population. Here we report on a biochemical typing strategy (termed FLI-test), which includes the determination of molecular masses, antibody binding affinities and glycosylation pattern of the TSE induced abnormal prion protein. Based on this typing approach none of the analysed German classical TSE outbreaks (total number of analysed sheep: 36) displayed biochemical features indicative for a BSE infection. However, in two cases distinct but BSE-unrelated PrP(Sc) types were found, which alludes to the existence of different scrapie strains in the German sheep population.
Collapse
Affiliation(s)
- A Gretzschel
- Friedrich-Loeffler-Institut (FLI), Institute for Novel and Emerging Diseases, Insel Riems, Germany
| | | | | | | | | | | | | |
Collapse
|