1
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Kelishadi M, Shahsavarani H, Tabarraei A, Shokrgozar MA, Teimoori-Toolabi L, Azadmanesh K. The chicken chorioallantoic membrane model for isolation of CRISPR/cas9-based HSV-1 mutant expressing tumor suppressor p53. PLoS One 2023; 18:e0286231. [PMID: 37862369 PMCID: PMC10588894 DOI: 10.1371/journal.pone.0286231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively target and kill cancer cells while sparing normal ones. Among them, engineered Herpes simplex virus type 1 (HSV-1) has been proposed as a potential treatment for cancer and was moved to phase III clinical trials. Previous studies showed that design of OV therapy combined with p53 gene therapy increases the anti-cancer activities of OVs. Here, the UL39 gene of the ICP34.5 deleted HSV-1 was manipulated with the insertion of the EGFP-p53 expression cassette utilizing CRISPR/ Cas9 editing approach to enhance oncoselectivity and oncotoxicity capabilities. The ΔUL39/Δγ34.5/HSV1-p53 mutant was isolated using the chorioallantoic membrane (CAM) of fertilized chicken eggs as a complementing membrane to support the growth of the viruses with gene deficiencies. Comparing phenotypic features of ΔUL39/Δγ34.5/HSV1-p53-infected cells with the parent Δγ34.5/HSV-1 in vitro revealed that HSV-1-P53 had cytolytic ability in various cell lines from different origin with different p53 expression rates. Altogether, data presented here illustrate the feasibility of exploiting CAM model as a promising strategy for isolating recombinant viruses such as CRISPR/Cas9 mediated HSV-1-P53 mutant with less virus replication in cell lines due to increased cell mortality induced by exogenous p53.
Collapse
Affiliation(s)
- Mishar Kelishadi
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Faculty of Life Science and Biotechnology, Department of Cell and Molecular Biology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Faculty of Medicine, Department of Virology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Abstract
Cells activate their DNA damage response (DDR) in response to DNA virus infection, including adenoviruses, papillomaviruses, polyomaviruses, and herpesviruses. In this study, we found that the DDR kinase pathways activated in normal human fibroblasts by herpes simplex virus 1 (HSV-1) input genomic DNA, HSV-1 replicating DNA, and progeny DNA and in uninfected cells treated with etoposide are different. We also found using clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 technology that different host gene products are required for the DDR in uninfected versus infected cells. Individual DDR components can be proviral or antiviral in that ataxia-telangiectasia mutated (ATM) and p53 promote and Mre11 restricts replication of ICP0-null HSV-1, but ICP0 expression eliminates these DDR effects. Thus, in total, these results argue that HSV-1 manipulates the host cell DDR to utilize specific components for its optimal replication while inactivating the antiviral aspects of the DDR.IMPORTANCE We investigated the relationship between the DNA damage response, a collection of vital cellular pathways that repair potentially lethal damage to the genome, and the DNA virus herpes simplex virus 1. We found that infection by the virus triggers the DNA damage response, and key proteins that mediate this response have opposing effects on the replication and production of progeny viruses. Our work provides novel insights into the relationship between DNA virus infection and the cellular response to the viral genome. We speculate that viral gene products modulate this response, providing potentially novel targets for therapeutic intervention against the virus.
Collapse
|
6
|
Kim RQ, Sixma TK. Regulation of USP7: A High Incidence of E3 Complexes. J Mol Biol 2017; 429:3395-3408. [DOI: 10.1016/j.jmb.2017.05.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
|
7
|
Guo H, Fu X, Lin Q, Liu L, Liang H, Huang Z, Li N, Su J. Mandarin fish p53: Genomic structure, alternatively spliced variant and its mRNA expression after virus challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 70:536-544. [PMID: 28923524 DOI: 10.1016/j.fsi.2017.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
A number of size variants of the p53 protein have been described in mammal, but little is known about alternative splicing of p53 expression and function in the fish. In our previous study, the immune defense and antiviral responses of p53 had been determined in mandarin fish (Siniperca chuatsi). However, the role of its splicing variants remains unknown. In the present study, the organization of mandarin fish p53 (Sc-p53) genome sequence was determined and a novel splice variant was characterized. The Sc-p53 genomic sequence was composed of 5543 bp, containing 11 exons and 10 introns, which was similar to other species. Then, a 1106 bp full-length cDNA of a novel splice variant p53 from mandarin fish (designed as Sc-p53I6) was cloned and characterized. Quantitative real-time PCR assays revealed that Sc-p53I6 was expressed in all tissues examined, and it was most abundant in the gill, hemocyte and hind kidney. Western blotting analysis revealed that Sc-p53I6 protein was abundant in liver, trunk kidney, hind kidney, stomach and heart. In addition, the regulation of Sc-p53I6 gene expression after virus infection was determined and characterized. The results showed twice rise expression pattern of Sc-p53I6 in CPB cells and spleen of mandarin fish in response to infectious kidney and spleen necrosis virus (ISKNV). However, a different expression pattern, once rise, of Sc-p53I6 in response to Siniperca chuatsi rhabdovirus (SCRV) infection was found. The mRNA expression of Sc-p53I6 was significantly up-regulated in CPB at 4 h and spleen of mandarin fish at 12 h post-infection. These results will shed a new light on antiviral response mechanisms of p53 in mandarin fish.
Collapse
Affiliation(s)
- Huizhi Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Zhibin Huang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
8
|
Luo Y, Xiong D, Li HH, Qiu SP, Lin CL, Chen Q, Huang CH, Yuan Q, Zhang J, Xia NS. Development of an HSV-1 neutralization test with a glycoprotein D specific antibody for measurement of neutralizing antibody titer in human sera. Virol J 2016; 13:44. [PMID: 26987753 PMCID: PMC4797254 DOI: 10.1186/s12985-016-0508-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Background Investigating the neutralizing antibody (NAb) titer against HSV-1 is essential for monitoring the immune protection against HSV-1 in susceptible populations, which would facilitate the development of vaccines against herpes infection and improvement of HSV-1 based oncolytic virotherapy. Results In this study, we have developed a neutralization test based on the enzyme-linked immunospot assay (ELISPOT-NT) to determine the neutralizing antibody titer against HSV-1 in human serum samples. This optimized assay employed a monoclonal antibody specifically recognizing glycoprotein D to detect the HSV-1 infected cells. With this test, the neutralizing antibody titer against HSV-1 could be determined within one day by automated interpretation of the counts of cell spots. We observed good correlation in the results obtained from ELISPOT-NT and plaque reduction neutralization test (PRNT) by testing 22 human serum samples representing different titers. Moreover, 269 human serum samples collected from a wide range of age groups were tested, the average neutralizing antibody titer (log2NT50) was 8.3 ± 2.8 and the prevalence of NAbs was 83.6 % in this cohort, it also revealed that the average neutralizing antibody titer in different groups increased with the age, and no significant difference in neutralizing antibody titers was observed between males and females. Conclusions These results prove that this novel assay would serve as an accurate and simple assay for the assessment of the neutralizing antibody titers against HSV-1 in large cohorts.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dan Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Huan-Huan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Sheng-Ping Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chao-Long Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Qin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Cheng-Hao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China. .,School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity. Cells 2014; 3:438-54. [PMID: 24852129 PMCID: PMC4092860 DOI: 10.3390/cells3020438] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0), is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10), SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate) regulatory mediators that include IFI16 (IFN γ-inducible protein 16), MyD88 (myeloid differentiation factor 88), and Mal (MyD88 adaptor-like protein). We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B) inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7) and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.
Collapse
|
10
|
Abstract
p53 is a critical factor in the cellular response to a broad range of stress factors through its ability to regulate various cellular pathways. In this study, tandem affinity purification of transiently expressed herpes simplex virus 1 (HSV-1) regulatory protein ICP22 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP22 interacted with p53 in HSV-1-infected cells. In p53(-/-) cells, replication of wild-type HSV-1 was reduced compared to that in parental p53(+/+) cells, indicating that p53 had a positive effect on HSV-1 replication. In contrast, the levels of viral replication of an ICP22-null mutant virus were similar in both p53(-/-) and p53(+/+) cells. At 2 h postinfection, the level of expression of ICP27, an essential viral regulatory protein, in p53(-/-) cells infected with wild-type HSV-1 or the ICP22-null mutant virus was lower than in p53(+/+) cells. In contrast, at 18 h postinfection, the level of expression of ICP0, a critical viral regulatory protein, in p53(-/-) cells infected with the ICP22-null mutant virus was higher than in p53(+/+) cells, although the levels of ICP0 expression in p53(-/-) and p53(+/+) cells infected with wild-type HSV-1 were almost identical. These results suggested that p53 overall promoted HSV-1 replication and that p53 played both positive and negative roles in HSV-1 replication: upregulating ICP27 expression very early in infection and downregulating ICP0 expression later in infection, which was antagonized by ICP22.
Collapse
|
11
|
Rotavirus-encoded nonstructural protein 1 modulates cellular apoptotic machinery by targeting tumor suppressor protein p53. J Virol 2013; 87:6840-50. [PMID: 23576507 DOI: 10.1128/jvi.00734-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p53, a member of the innate immune system, is triggered under stress to induce cell growth arrest and apoptosis. Thus, p53 is an important target for viruses, as efficient infection depends on modulation of the host apoptotic machinery. This study focuses on how rotaviruses manipulate intricate p53 signaling for their advantage. Analysis of p53 expression revealed degradation of p53 during initial stages of rotavirus infection. However, in nonstructural protein-1 (NSP1) mutant strain A5-16, p53 degradation was not observed, suggesting a role of NSP1 in this process. This function of NSP1 was independent of its interferon or phosphatidylinositol 3-kinase (PI3K)/AKT modulation activity since p53 degradation was observed in Vero cells as well as in the presence of PI3K inhibitor. p53 transcript levels remained the same in SA11-infected cells (at 2 to 14 h postinfection), but p53 protein was stabilized only in the presence of MG132, suggesting a posttranslational process. NSP1 interacted with the DNA binding domain of p53, resulting in ubiquitination and proteasomal degradation of p53. Degradation of p53 during initial stages of infection inhibited apoptosis, as the proapoptotic genes PUMA and Bax were downregulated. During late viral infection, when progeny dissemination is the main objective, the NSP1-p53 interaction was diminished, resulting in restoration of the p53 level, with initiation of proapoptotic signaling ensuing. Overall results highlight the multiple strategies evolved by NSP1 to combat the host immune response.
Collapse
|
12
|
Kofod-Olsen E, Møller JML, Schleimann MH, Bundgaard B, Bak RO, Øster B, Mikkelsen JG, Hupp T, Höllsberg P. Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B. PLoS One 2013; 8:e59223. [PMID: 23555634 PMCID: PMC3608612 DOI: 10.1371/journal.pone.0059223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 01/20/2023] Open
Abstract
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.
Collapse
Affiliation(s)
| | | | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bodil Øster
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Ted Hupp
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
13
|
Overexpression of the ubiquitin-specific protease 7 resulting from transfection or mutations in the ICP0 binding site accelerates rather than depresses herpes simplex virus 1 gene expression. J Virol 2012; 86:12871-8. [PMID: 22993145 DOI: 10.1128/jvi.01981-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Earlier studies reported that ICP0, a key regulatory protein encoded by herpes simplex virus 1 (HSV-1), binds ubiquitin-specific protease 7 (USP7). The fundamental conclusion of these studies is that depletion of USP7 destabilized ICP0, that ICP0 mediated the degradation of USP7, and that amino acid substitutions in ICP0 that abolished binding to USP7 significantly impaired the ability of HSV-1 to replicate. We show here that, indeed, depletion of USP7 leads to reduction of ICP0 and that USP7 is degraded in an ICP0-dependent manner. However, overexpression of USP7 or substitution in ICP0 of a single amino acid to abolish binding to USP7 accelerated the accumulation of viral mRNAs and proteins at early times after infection and had no deleterious effect on virus yields. A clue as to why USP7 is degraded emerged from the observation that, notwithstanding the accelerated expression of viral genes, the plaques formed by the mutant virus were very small, implying a defect in virus transmission from cell to cell.
Collapse
|
14
|
Zhou Q, Zhu M, Zhang H, Yi T, Klena JD, Peng Y. Disruption of the p53-p21 pathway inhibits efficiency of the lytic-replication cycle of herpes simplex virus type 2 (HSV-2). Virus Res 2012; 169:91-7. [PMID: 22820403 DOI: 10.1016/j.virusres.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/26/2022]
Abstract
Cellular p53 and its downstream mediator p21, the major cellular growth suppression and DNA repair markers, have recently been implicated in viral amplification. Here, we show that herpes simplex virus type 2 (HSV-2) infection of both HCT116 p53(+/+)and NIH3T3 cells resulted in sustained increases of p21. HSV-2 infection did not increase cellular p53 expression, but led to phosphorylation of this protein at Ser20. This phosphorylation was accompanied by the increase of p21 protein levels. Furthermore, specific knockdown of endogenous p21 by siRNAs severely impaired virus production represented by HSV envelope glycoprotein B (gB) expression and progeny virus titers. Disruption of the p53-p21 pathway by either knocking down p53 in HCT116 p53(+/+) and NIH3T3 cells or using p53-deficient HCT116 p53(-/-) cells, led to a significant reduction of HSV-2 production. Together, these results suggest that the p53-p21 pathway is required for efficient HSV-2 lytic replication cycle. Because HSV infection induces the G0/G1 phase arrest at the early step of lytic-replication cycle, we propose that HSV-2 might hijack the cellular p53-p21 pathway to arrest the host cell cycle at G0/G1 phase, blocking cellular DNA synthesis, for its own benefit, i.e., to favor its own viral replication by avoiding competition in generating viral nucleotide pools.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Microbiology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Adeno-associated virus type 2 modulates the host DNA damage response induced by herpes simplex virus 1 during coinfection. J Virol 2011; 86:143-55. [PMID: 22013059 DOI: 10.1128/jvi.05694-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adeno-associated virus type 2 (AAV2) is a human parvovirus that relies on a helper virus for efficient replication. Herpes simplex virus 1 (HSV-1) supplies helper functions and changes the environment of the cell to promote AAV2 replication. In this study, we examined the accumulation of cellular replication and repair proteins at viral replication compartments (RCs) and the influence of replicating AAV2 on HSV-1-induced DNA damage responses (DDR). We observed that the ATM kinase was activated in cells coinfected with AAV2 and HSV-1. We also found that phosphorylated ATR kinase and its cofactor ATR-interacting protein were recruited into AAV2 RCs, but ATR signaling was not activated. DNA-PKcs, another main kinase in the DDR, was degraded during HSV-1 infection in an ICP0-dependent manner, and this degradation was markedly delayed during AAV2 coinfection. Furthermore, we detected phosphorylation of DNA-PKcs during AAV2 but not HSV-1 replication. The AAV2-mediated delay in DNA-PKcs degradation affected signaling through downstream substrates. Overall, our results demonstrate that coinfection with HSV-1 and AAV2 provokes a cellular DDR which is distinct from that induced by HSV-1 alone.
Collapse
|
16
|
Workman A, Jones C. Analysis of the cell cycle regulatory protein (E2F1) after infection of cultured cells with bovine herpesvirus 1 (BHV-1) or herpes simplex virus type 1 (HSV-1). Virus Res 2011; 160:66-73. [PMID: 21624405 PMCID: PMC3163728 DOI: 10.1016/j.virusres.2011.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 12/18/2022]
Abstract
The E2F family of cellular transcription factors controls cell cycle progression and cell death. During cell cycle progression, activated cyclin-dependent kinases phosphorylate the retinoblastoma (Rb) protein, causing the release and activation of E2F family members. Previous studies demonstrated that bovine herpes virus 1 (BHV-1) productive infection increases E2F1 protein levels, the bICP0 early promoter is activated more than 100 fold by E2F1 or E2F2, and silencing E2F1 reduced the efficiency of productive infection. In this study, the effect of herpes simplex virus type 1 (HSV-1) productive infection on E2F protein levels and regulation of E2F dependent transcription was compared to BHV-1 infection in the same permissive cell line, rabbit skin (RS) cells. Silencing E2F1 with a specific siRNA reduced HSV-1 productive infection approximately 10 fold in RS cells, and total E2F1 protein levels increased during productive infection. In contrast to RS cells infected with BHV-1, a fraction of total E2F1 protein was localized to the cytoplasm in HSV-1 infected RS cells. Furthermore, E2F1 did not efficiently trans-activate the HSV-1 ICP0 or ICP4 promoter. When RS cells were transfected with an E2F reporter construct or the cyclin D1 promoter and then infected with BHV-1, promoter activity increased after infection. In contrast, HSV-1 infection of RS cells had little effect on E2F dependent transcription and cyclin D1 promoter activity was reduced. In summary, these studies indicated that silencing E2F1 reduced the efficiency of HSV-1 and BHV-1 productive infection. However, only BHV-1 productive infection induced E2F dependent transcription.
Collapse
Affiliation(s)
- Aspen Workman
- School of Biological Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905
- Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905
- School of Biological Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905
- Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905
| |
Collapse
|
17
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|
18
|
Poly(A)-binding protein 1 partially relocalizes to the nucleus during herpes simplex virus type 1 infection in an ICP27-independent manner and does not inhibit virus replication. J Virol 2010; 84:8539-48. [PMID: 20573819 DOI: 10.1128/jvi.00668-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cells by herpes simplex virus type 1 (HSV-1) triggers host cell shutoff whereby mRNAs are degraded and cellular protein synthesis is diminished. However, virus protein translation continues because the translational apparatus in HSV-infected cells is maintained in an active state. Surprisingly, poly(A)-binding protein 1 (PABP1), a predominantly cytoplasmic protein that is required for efficient translation initiation, is partially relocated to the nucleus during HSV-1 infection. This relocalization occurred in a time-dependent manner with respect to virus infection. Since HSV-1 infection causes cell stress, we examined other cell stress inducers and found that oxidative stress similarly relocated PABP1. An examination of stress-induced kinases revealed similarities in HSV-1 infection and oxidative stress activation of JNK and p38 mitogen-activated protein (MAP) kinases. Importantly, PABP relocalization in infection was found to be independent of the viral protein ICP27. The depletion of PABP1 by small interfering RNA (siRNA) knockdown had no significant effect on viral replication or the expression of selected virus late proteins, suggesting that reduced levels of cytoplasmic PABP1 are tolerated during infection.
Collapse
|
19
|
Nguyen ML, Blaho JA. Cellular players in the herpes simplex virus dependent apoptosis balancing act. Viruses 2009; 1:965-78. [PMID: 21994577 PMCID: PMC3185536 DOI: 10.3390/v1030965] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 01/01/2023] Open
Abstract
Apoptosis is triggered as an intrinsic defense against numerous viral infections. Almost every virus encodes apoptotic modulators, and the herpes simplex viruses (HSV) are no exception. During HSV infection, there is an intricate balance between pro- and anti-apoptotic factors that delays apoptotic death until the virus has replicated. Perturbations in the apoptotic balance can cause premature cell death and have the potential to dramatically alter the outcome of infection. Recently, certain cellular genes have been shown to regulate sensitivity to HSV-dependent apoptosis. This review summarizes current knowledge of the cellular genes that impact the apoptotic balance during HSV infection.
Collapse
Affiliation(s)
- Marie L. Nguyen
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-515-271-1400; Fax: +1-515-271-1543
| | - John A. Blaho
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, USA; E-Mail:
| |
Collapse
|
20
|
Megyeri K, Orosz L, Kormos B, Pásztor K, Seprényi G, Ocsovszki I, Mándi Y, Bata-Csörgo Z, Kemény L. The herpes simplex virus-induced demise of keratinocytes is associated with a dysregulated pattern of p63 expression. Microbes Infect 2009; 11:785-94. [PMID: 19427396 DOI: 10.1016/j.micinf.2009.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/09/2009] [Accepted: 04/19/2009] [Indexed: 11/26/2022]
Abstract
p63 plays a pivotal role in the development and maintenance of stratified epithelial tissues. In an effort to gain insight into the pathogenic mechanisms of skin infections caused by HSV-1 and HSV-2, we determined the patterns of p63 expression in primary keratinocytes and in the HaCaT cell line. The levels of DeltaNp63alpha and a 50kDa p73 isoform were decreased, Bax-alpha remained unaffected, while the expressions of the Bax-beta, TAp63gamma and a 44.5kDa p73 isoform were highly increased in both HSV-1-infected HaCaT cells and primary keratinocytes. In contrast, in response to HSV-2 infection the levels of DeltaNp63alpha, a 50kDa p73 isoform and a 44.5kDa p73 protein were decreased, Bax-alpha and TAp63gamma remained unaffected, while the expression of Bax-beta was slightly increased. The knockdown of TAp63 expression enhanced the viability of HSV-1-infected cells. Thus, HSV-1 and HSV-2 modulate the patterns of p63 and Bax expression in a serotype-specific manner. The dysregulated pattern of p63 expression observed in HSV-infected keratinocytes may comprise part of a mechanism by which these viruses perturb the functions of keratinocytes and lead to their demise.
Collapse
Affiliation(s)
- Klára Megyeri
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Influenza A virus induces p53 accumulation in a biphasic pattern. Biochem Biophys Res Commun 2009; 382:331-5. [PMID: 19275889 DOI: 10.1016/j.bbrc.2009.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 03/03/2009] [Indexed: 01/06/2023]
Abstract
Tumor suppressor p53, the major cellular defense against tumor development, has recently been implicated in host antiviral defense. Previous studies have shown that p53 was induced at the apoptotic stage of influenza virus-infected cells. However, we found that p53 was induced not only at the apoptotic stage but also at the beginning phase of infection, showing a biphasic pattern with a first transient elevation apparent at the beginning phase of infection and a second elevation observable at the middle-late phase of infection. This up-regulation of p53 was independent of increased p53 transcription, but dependent on virus adsorption and replication. The increased p53 was active and able to transactivate its downstream target genes, such as interferon regulatory factor 9 (IRF9) and Bax. To our knowledge, this is the first report to describe a biphasic pattern of p53 accumulation in influenza virus-infected cells.
Collapse
|
22
|
Antrobus R, Boutell C. Identification of a novel higher molecular weight isoform of USP7/HAUSP that interacts with the Herpes simplex virus type-1 immediate early protein ICP0. Virus Res 2008; 137:64-71. [DOI: 10.1016/j.virusres.2008.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
|
23
|
López MR, Schlegel EFM, Wintersteller S, Blaho JA. The major tegument structural protein VP22 targets areas of dispersed nucleolin and marginalized chromatin during productive herpes simplex virus 1 infection. Virus Res 2008; 136:175-88. [PMID: 18584907 PMCID: PMC2496966 DOI: 10.1016/j.virusres.2008.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/02/2023]
Abstract
The herpes simplex virus (HSV) major tegument structural protein VP22 resides in multiple subcellular regions during productive infection. During an analysis of the molecular determinants of these localizations, we observed that a transfected fusion of the C-terminal portion of VP22, containing its pat4 nuclear localization signal, with GFP lacked nucleolar sparing compared to GFP alone. Thus, the initial goal was to determine whether VP22 associates with nucleoli. Using an optimized indirect immunofluorescence system to visualize nucleolin and viral proteins, we observed that VP22 present in VP22-expressing Vero (V49) cells "surrounded" nucleolin. These two initial findings implied that VP22 might associate directly with nucleoli. We next analyzed HSV-infected cells and observed that at late times, anti-nucleolin immune reactivity was dispersed throughout the nuclei while it retained uniform, circular staining in mock-infected cells. Time course infection experiments indicated that nucleolin initiated its transition from uniform to dispersed structures between 2 and 4 hpi. Comparison of Hoechst stained nuclei showed bright anti-nucleolin staining localized to regions of marginalized chromatin. These effects required de novo infected cell protein synthesis. A portion of VP22 detected in nuclei at 4 and 6 hpi localized to these areas of altered nucleolin and marginalized chromatin. VP22 was excluded from viral replication compartments containing the viral regulatory protein ICP22. Finally, altered nucleolin and marginalized chromatin were detected with a VP22-null virus, indicating that VP22 was not responsible for these nuclear architecture alterations. Thus, we conclude that nuclear VP22 targets unique subnuclear structures early (<6hpi) during herpes simplex virus 1 (HSV-1) infection.
Collapse
Affiliation(s)
- María R López
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy, New York, NY 10029, USA
| | | | | | | |
Collapse
|
24
|
MacLaine NJ, Oster B, Bundgaard B, Fraser JA, Buckner C, Lazo PA, Meek DW, Höllsberg P, Hupp TR. A central role for CK1 in catalyzing phosphorylation of the p53 transactivation domain at serine 20 after HHV-6B viral infection. J Biol Chem 2008; 283:28563-73. [PMID: 18669630 DOI: 10.1074/jbc.m804433200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at Ser20 whose modification stabilizes the binding of the transcriptional co-activator p300 and whose mutation in murine transgenics induces B-cell lymphoma. Although the checkpoint kinase CHK2 is implicated in promoting Ser20 site phosphorylation after irradiation, the enzyme that triggers this phosphorylation after DNA viral infection is undefined. Using human herpesvirus 6B (HHV-6B) as a virus that induces Ser20 site phosphorylation of p53 in T-cells, we sought to identify the kinase responsible for this virus-induced p53 modification. The p53 Ser20 kinase was fractionated and purified using cation, anion, and dye-ligand exchange chromatography. Mass spectrometry identified casein kinase 1 (CK1) and vaccinia-related kinase 1 (VRK1) as enzymes that coeluted with virus-induced Ser20 site kinase activity. Immunodepletion of CK1 but not VRK1 removed the kinase activity from the peak fraction, and bacterially expressed CK1 exhibited Ser20 site kinase activity equivalent to that of the virus-induced native CK1. CK1 modified p53 in a docking-dependent manner, which is similar to other known Ser20 site p53 kinases. Low levels of the CK1 inhibitor D4476 selectively inhibited HHV-6B-induced Ser20 site phosphorylation of p53. However, x-ray-induced Ser20 site phosphorylation of p53 was not blocked by D4476. These data highlight a central role for CK1 as the Ser20 site kinase for p53 in DNA virus-infected cells but also suggest that distinct stresses may selectively trigger different protein kinases to modify the transactivation domain of p53 at Ser20.
Collapse
Affiliation(s)
- Nicola J MacLaine
- University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cell cycle-independent expression of immediate-early gene 3 results in G1 and G2 arrest in murine cytomegalovirus-infected cells. J Virol 2008; 82:10188-98. [PMID: 18667506 DOI: 10.1128/jvi.01212-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The infectious cycle of human cytomegalovirus (HCMV) is intricately linked to the host's cell cycle. Viral gene expression can be initiated only in G(0)/G(1) phase. Once expressed, the immediate-early gene product IE2 prevents cellular DNA synthesis, arresting infected cells with a G(1) DNA content. This function is required for efficient viral replication in vitro. A prerequisite for addressing its in vivo relevance is the characterization of cell cycle-regulatory activities of CMV species for which animal models have been established. Here, we show that murine CMV (MCMV), like HCMV, has a strong antiproliferative capacity and arrests cells in G(1). Unexpectedly, and in contrast to HCMV, MCMV can also block cells that have passed through S phase by arresting them in G(2). Moreover, MCMV can also replicate in G(2) cells. This is made possible by the cell cycle-independent expression of MCMV immediate-early genes. Transfection experiments show that of several MCMV candidate genes, only immediate-early gene 3 (ie3), the homologue of HCMV IE2, exhibits cell cycle arrest activity. Accordingly, an MCMV ie3 deletion mutant has lost the ability to arrest cells in either G(1) or G(2). Thus, despite interspecies variations in the cell cycle dependence of viral gene expression, the central theme of HCMV IE2-induced cell cycle arrest is conserved in the murine counterpart, raising the possibility of studying its physiological relevance at the level of the whole organism.
Collapse
|
26
|
Øster B, Kofod-Olsen E, Bundgaard B, Höllsberg P. Restriction of human herpesvirus 6B replication by p53. J Gen Virol 2008; 89:1106-1113. [PMID: 18420787 DOI: 10.1099/vir.0.83262-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53, and only a minor fraction of the infected cells undergoes apoptosis. Using pifithrin-alpha, a p53 inhibitor, and p53-null cells, this study showed that infected epithelial cells accumulated viral transcripts and proteins to a significantly higher degree in the absence of active p53. Moreover, HHV-6B-induced cytopathic effects were greatly enhanced in the absence of p53. This suggests that, in epithelial cells, some of the functions of p53 leading to cell-cycle arrest and apoptosis are restrained by HHV-6B infection, whereas other cellular defences, causing inhibition of virus transcription, are partially retained.
Collapse
Affiliation(s)
- Bodil Øster
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Emil Kofod-Olsen
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Bettina Bundgaard
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - Per Höllsberg
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
27
|
Li H, Baskaran R, Krisky DM, Bein K, Grandi P, Cohen JB, Glorioso JC. Chk2 is required for HSV-1 ICP0-mediated G2/M arrest and enhancement of virus growth. Virology 2008; 375:13-23. [PMID: 18321553 DOI: 10.1016/j.virol.2008.01.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/11/2007] [Accepted: 01/18/2008] [Indexed: 12/01/2022]
Abstract
ICP0 is a multi-functional herpes simplex virus type 1 (HSV-1) immediate-early (IE) gene product that contributes to efficient virus growth and reactivation from latency. Here we show that HSV-1-induced cell-cycle arrest at the G2/M border requires ICP0 and Chk2 kinase and that ICP0 expression by transfection or infection induces ATM-dependent phosphorylation of Chk2 and Cdc25C. Infection of cells with a replication-defective mutant virus deleted for all the regulatory IE genes except ICP0 (TOZ22R) induced G2/M arrest whereas a mutant virus deleted in addition for ICP0 (QOZ22R) failed to do so. Chk2-deficient cells and cells expressing a kinase-deficient Chk2 did not undergo cell-cycle arrest in response to TOZ22R infection. Chk2 deficiency diminished the growth of wild-type HSV-1, but not the growth of an ICP0-deleted recombinant virus. Together, these results are consistent with the interpretation that ICP0 activates a DNA damage response pathway to arrest cells in G2/M phase and promote virus growth.
Collapse
Affiliation(s)
- Han Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Øster B, Bundgaard B, Hupp TR, Höllsberg P. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway. J Gen Virol 2008; 89:87-96. [PMID: 18089732 DOI: 10.1099/vir.0.83136-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although the signalling pathways leading to Ser392 phosphorylation are poorly understood, they seem to include casein kinase 2 (CK2), double-stranded RNA-activated protein kinase (PKR), p38 or cyclin-dependent kinase 9 (Cdk9). By using column chromatography and in vitro kinase assays, CK2 and p38, but not PKR or Cdk9, eluted in column fractions that phosphorylated p53 at Ser392. However, treatment of cells with neither the CK2 and Cdk9 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) nor p38 kinase inhibitors reduced HHV-6B-induced Ser392 phosphorylation significantly. Knockdown of the CK2beta subunit or p38alpha by small interfering RNA had no effect on HHV-6B-induced phosphorylation of p53 at Ser392. Thus, HHV-6B induces p53 Ser392 phosphorylation by an atypical pathway independent of CK2 and p38 kinases, whereas mitogen-activated protein (MAP) kinase signalling pathways are involved in viral replication.
Collapse
Affiliation(s)
- B Øster
- The University of Edinburgh, CRUK p53 Signal Transduction Group, Edinburgh, UK.,Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - B Bundgaard
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - T R Hupp
- The University of Edinburgh, CRUK p53 Signal Transduction Group, Edinburgh, UK
| | - P Höllsberg
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
29
|
Nguyen ML, Kraft RM, Aubert M, Goodwin E, DiMaio D, Blaho JA. p53 and hTERT determine sensitivity to viral apoptosis. J Virol 2007; 81:12985-95. [PMID: 17855516 PMCID: PMC2169073 DOI: 10.1128/jvi.01485-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a potent host defense against microbes. Most viruses have adapted strategies to counteract this response. Herpes simplex virus (HSV) produces a balance between pro- and antiapoptotic processes during infection. When antiapoptotic signals become limiting, infected cells die through HSV-dependent apoptosis (HDAP). Oncogenic pathways were previously implicated in HDAP susceptibility. Here, we exploited our ability to selectively express all, one, or no oncogenes in the well-defined HeLa cell system to dissect the requirements for HDAP. Human papillomavirus E6 and E7 oncogene expression was inhibited by the E2 viral repressor. Sole expression of E6 mediated HDAP sensitization. Next, two known cellular targets of E6 were independently modulated. This demonstrated that E6 sensitizes HeLa cells to HDAP through hTERT and p53. Given the universality of the apoptotic antiviral response, p53 and telomerase regulation will likely be important for counteracting host defenses in many other viral infections.
Collapse
Affiliation(s)
- Marie L Nguyen
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
30
|
Forrest JC, Paden CR, Allen RD, Collins J, Speck SH. ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J Virol 2007; 81:11957-71. [PMID: 17699571 PMCID: PMC2168792 DOI: 10.1128/jvi.00111-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses establish lifelong, latent infections in host lymphocytes, during which a limited subset of viral gene products facilitates maintenance of the viral episome. Among the gamma-2-herpesvirus (rhadinovirus) subfamily, this includes expression of the conserved ORF73-encoded LANA proteins. We previously demonstrated by loss-of-function mutagenesis that the murine gammaherpesvirus 68 (MHV68) ORF73 gene product, mLANA, is required for the establishment of latency following intranasal inoculation of mice (N. J. Moorman, D. O. Willer, and S. H. Speck, J. Virol. 77:10295-10303, 2003). mLANA-deficient viruses also exhibited a defect in acute virus replication in the lungs of infected mice. The latter observation led us to examine the role of mLANA in productive viral replication. We assessed the capacity of mLANA-deficient virus (73.Stop) to replicate in cell culture at low multiplicities of infection (MOIs) and found that 73.Stop growth was impaired in murine fibroblasts but not in Vero cells. A recombinant virus expressing an mLANA-green fluorescent protein (GFP) fusion revealed that mLANA is expressed throughout the virus replication cycle. In addition, 73.Stop infection of murine fibroblasts at high MOIs was substantially more cytotoxic than infection with a genetically repaired marker rescue virus (73.MR), a phenotype that correlated with enhanced kinetics of viral gene expression and increased activation of p53. Notably, augmented cell death, viral gene expression, and p53 induction were independent of viral DNA replication. Expression of a mLANA-GFP fusion protein in fibroblasts correlated with both reduced p53 stabilization and reduced cell death following treatment with p53-inducing agonists. In agreement, accentuated cell death associated with 73.Stop infection was reduced in p53-deficient murine embryonic fibroblasts. Additionally, replication of 73.Stop in p53-deficient cells was restored to levels comparable to those of 73.MR. More remarkably, the absence of p53 led to an overall delay in replication for both 73.Stop and 73.MR viruses, which correlated with delayed viral gene expression, indicating a role for p53 in MHV68 replication. Consistent with these findings, the expression of replication-promoting viral genes was positively influenced by p53 overexpression or treatment with the p53 agonist etoposide. Overall, these data demonstrate the importance of mLANA in MHV68 replication and suggest that LANA proteins limit the induction of cellular stress responses to regulate the viral gene expression cascade and limit host cell injury.
Collapse
Affiliation(s)
- J Craig Forrest
- Department of Microbiology and immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
31
|
Fernández-Montalván A, Bouwmeester T, Joberty G, Mader R, Mahnke M, Pierrat B, Schlaeppi JM, Worpenberg S, Gerhartz B. Biochemical characterization of USP7 reveals post-translational modification sites and structural requirements for substrate processing and subcellular localization. FEBS J 2007; 274:4256-70. [PMID: 17651432 DOI: 10.1111/j.1742-4658.2007.05952.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ubiquitin specific protease 7 (USP7) belongs to the family of deubiquitinating enzymes. Among other functions, USP7 is involved in the regulation of stress response pathways, epigenetic silencing and the progress of infections by DNA viruses. USP7 is a 130-kDa protein with a cysteine peptidase core, N- and C-terminal domains required for protein-protein interactions. In the present study, recombinant USP7 full length, along with several variants corresponding to domain deletions, were expressed in different hosts in order to analyze post-translational modifications, oligomerization state, enzymatic properties and subcellular localization patterns of the enzyme. USP7 is phosphorylated at S18 and S963, and ubiquitinated at K869 in mammalian cells. In in vitro activity assays, N- and C-terminal truncations affected the catalytic efficiency of the enzyme different. Both the protease core alone and in combination with the N-terminal domain are over 100-fold less active than the full length enzyme, whereas a construct including the C-terminal region displays a rather small decrease in catalytic efficiency. Limited proteolysis experiments revealed that USP7 variants containing the C-terminal domain interact more tightly with ubiquitin. Besides playing an important role in substrate recognition and processing, this region might be involved in enzyme dimerization. USP7 constructs lacking the N-terminal domain failed to localize in the cell nucleus, but no nuclear localization signal could be mapped within the enzyme's first 70 amino acids. Instead, the tumor necrosis factor receptor associated factor-like region (amino acids 70-205) was sufficient to achieve the nuclear localization of the enzyme, suggesting that interaction partners might be required for USP7 nuclear import.
Collapse
|
32
|
Lindner HA. Deubiquitination in virus infection. Virology 2007; 362:245-56. [PMID: 17291557 PMCID: PMC7103280 DOI: 10.1016/j.virol.2006.12.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/05/2006] [Accepted: 12/14/2006] [Indexed: 11/22/2022]
Abstract
Post-translational modification of proteins and peptides by ubiquitin, a highly evolutionarily conserved 76 residue protein, and ubiquitin-like modifiers has emerged as a major regulatory mechanism in various cellular activities. Eukaryotic viruses are known to modulate protein ubiquitination to their advantage in various ways. At the same time, the evidence for the importance of deubiquitination as a viral target also is growing. This review centers on known viral interactions with protein deubiquitination, on viral enzymes for which deubiquitinating activities were recently demonstrated, and on the roles of viral ubiquitin-like sequences.
Collapse
Affiliation(s)
- Holger A Lindner
- Biotechnology Research Institute, National Research Council of Canada, 6100 Avenue Royalmount, Montreal, Quebec, Canada H4P 2R2.
| |
Collapse
|
33
|
Lilley CE, Schwartz RA, Weitzman MD. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 2007; 15:119-26. [PMID: 17275307 DOI: 10.1016/j.tim.2007.01.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/04/2007] [Accepted: 01/23/2007] [Indexed: 11/29/2022]
Abstract
During infection, viruses attempt to hijack the cell while the host responds with various defense systems. Traditional defenses include the interferon response and apoptosis, but recent work suggests that this antiviral arsenal also includes the cellular DNA damage response machinery. The observation of interactions between viruses and cellular DNA repair proteins has not only uncovered new complexities of the virus-host interaction but is also reinforcing the view that viruses can reveal key regulators of cellular pathways through the proteins they target.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Boutell C, Canning M, Orr A, Everett RD. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol 2005; 79:12342-54. [PMID: 16160161 PMCID: PMC1211536 DOI: 10.1128/jvi.79.19.12342-12354.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 stimulates lytic infection and the reactivation of quiescent viral genomes. These roles of ICP0 require its RING finger E3 ubiquitin ligase domain, which induces the degradation of several cellular proteins, including components of promyelocytic leukemia nuclear bodies and centromeres. ICP0 also interacts very strongly with the cellular ubiquitin-specific protease USP7 (also known as HAUSP). We have shown previously that ICP0 induces its own ubiquitination and degradation in a RING finger-dependent manner, and that its interaction with USP7 regulates this process. In the course of these studies we found and report here that ICP0 also targets USP7 for ubiquitination and proteasome-dependent degradation. The reciprocal activities of the two proteins reveal an intriguing situation that poses the question of the balance of the two processes during productive HSV-1 infection. Based on a thorough analysis of the properties of an HSV-1 mutant virus that expresses forms of ICP0 that are unable to bind to USP7, we conclude that USP7-mediated stabilization of ICP0 is dominant over ICP0-induced degradation of USP7 during productive HSV-1 infection. We propose that the biological significance of the ICP0-USP7 interaction may be most pronounced in natural infection situations, in which limited amounts of ICP0 are expressed.
Collapse
Affiliation(s)
- Chris Boutell
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
35
|
Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, Kiyono T, Sugaya Y, Isomura H, Ishizaki K, Tsurumi T. Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 2005; 280:30336-41. [PMID: 15964848 DOI: 10.1074/jbc.m500976200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.
Collapse
Affiliation(s)
- Noriko Shirata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Canning M, Boutell C, Parkinson J, Everett RD. A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 2004; 279:38160-8. [PMID: 15247261 DOI: 10.1074/jbc.m402885200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus type 1 immediate-early regulatory protein ICP0 stimulates lytic infection and reactivation from latency, processes that require the ubiquitin E3 ligase activity mediated by the RING finger domain in the N-terminal portion of the protein. ICP0 stimulates the production of polyubiquitin chains by the ubiquitin-conjugating enzymes UbcH5a and UbcH6 in vitro, and in infected and transfected cells it induces the proteasome-dependent degradation of a number of cellular proteins including PML, the major constituent protein of PML nuclear bodies. However, ICP0 binds strongly to the cellular ubiquitin-specific protease USP7, a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors. The region of ICP0 that is required for its interaction with USP7 has been mapped, and mutations in this domain reduce the functionality of ICP0. These findings pose the question: why does ICP0 include domains that are associated with the potentially antagonistic functions of ubiquitin conjugation and deconjugation? Here we report that although neither protein affected the intrinsic activities of the other in vitro, USP7 protected ICP0 from autoubiquitination in vitro, and their interaction can greatly increase the stability of ICP0 in vivo. These results demonstrate that RING finger-mediated autoubiquitination of ICP0 is biologically relevant and can be regulated by interaction with USP7. This principle may extend to a number of cellular RING finger E3 ubiquitin ligase proteins that have analogous interactions with ubiquitin-specific cleavage enzymes.
Collapse
Affiliation(s)
- Mary Canning
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|