1
|
Chen T, Duan X, Hu H, Shang Y, Hu Y, Deng F, Wang H, Wang M, Hu Z. Systematic Analysis of 42 Autographa Californica Multiple Nucleopolyhedrovirus Genes Identifies An Additional Six Genes Involved in the Production of Infectious Budded Virus. Virol Sin 2021; 36:762-773. [PMID: 33683665 PMCID: PMC8379328 DOI: 10.1007/s12250-021-00355-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Baculoviruses have been widely used as a vector for expressing foreign genes. Among numerous baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most frequently used and it encodes 155 open reading frames (ORFs). Here, we systematically investigated the impact of 42 genes of AcMNPV on the production of infectious budded viruses (BVs) by constructing gene-knockout bacmids and subsequently conducting transfection and infection assays. The results showed that among the 39 functionally unverified genes and 3 recently reported genes, 36 are dispensable for infectious BV production, as the one-step growth curves of the gene-knockout viruses were not significantly different from those of the parental virus. Three genes (ac62, ac82 and ac106/107) are essential for infectious BV production, as deletions thereof resulted in complete loss of infectivity while the repaired viruses showed no significant difference in comparison to the parental virus. In addition, three genes (ac13, ac51 and ac120) are important but not essential for infectious BV production, as gene-knockout viruses produced significantly lower BV levels than that of the parental virus or repaired viruses. We then grouped the 155 AcMNPV genes into three categories (Dispensable, Essential, or Important for infectious BV production). Based on our results and previous publications, we constructed a schematic diagram of a potential mini-genome of AcMNPV, which contains only essential and important genes. The results shed light on our understanding of functional genomics of baculoviruses and provide fundamental information for future engineering of baculovirus expression system.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiaoyan Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yu Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Bossert M, Carstens EB. Sequential deletion of AcMNPV homologous regions leads to reductions in budded virus production and late protein expression. Virus Res 2018; 256:125-133. [PMID: 30121325 DOI: 10.1016/j.virusres.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Homologous regions (hrs) have been predicted to act as origins of baculovirus DNA replication. Hrs have also been shown to function as enhancers of virus transcription. Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) carries eight hrs. In order to assess the role of hrs in virus replication in vivo, we applied a two-step RED recombination system for site-specific mutagenesis to sequentially delete each hr from a bacmid copy of AcMNPV. We then characterized the ability of the bacmids carrying different numbers of hrs or no hr to produce polyhedra and budded virus in transfected cells. We also investigated the ability of virus supernatants from transfected cells to produce budded virus and polyhedra when used to infect cells. We also characterized the expression of specific early and late virus proteins in transfected cells. The results demonstrated that removal of five hrs had little or no effect on virus infection but deleting all eight hrs compromised budded virus production and delayed early and late gene expression but did not completely eliminate assembly of infectious virus. We conclude that multiple hrs ensure an effective virus infection cycle with production of high titers of budded virus and polyhedra.
Collapse
Affiliation(s)
- Maike Bossert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3Y6, Canada
| | - Eric B Carstens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3Y6, Canada.
| |
Collapse
|
3
|
The N Terminus of Autographa californica Multiple Nucleopolyhedrovirus DNA Polymerase Is Required for Efficient Viral DNA Replication and Virus and Occlusion Body Production. J Virol 2018; 92:JVI.00398-18. [PMID: 29563284 DOI: 10.1128/jvi.00398-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) DNA polymerase (DNApol) plays a crucial role in viral DNA synthesis, and the N terminus (residues 1 to 186) is highly conserved in the baculovirus DNApol family. However, the functional role of the N terminus of DNApol has not yet been characterized. Here we report a functional analysis of the AcMNPV DNApol N terminus. We truncated the DNApol N terminus to construct truncation mutants Bac-GFP-PolΔ64, Bac-GFP-PolΔ110, and Bac-GFP-PolΔ186, which lack 64, 110, and 186 N-terminal residues, respectively. Although the truncation mutants rescued viral DNA synthesis and infectious virus production, the level of DNA replication decreased, and Bac-GFP-PolΔ64, Bac-GFP-PolΔ110, and Bac-GFP-PolΔ186 showed 10-fold, 89-fold, and 891-fold reductions in infectious viral yield compared to that of the wild-type repair virus, respectively. Production of occlusion bodies was compromised for all truncation mutants. Further bioinformatic analysis showed that the first 64 amino acids (aa) at the extreme N terminus contains a conserved α(-helix)-β(-sheet)-β-β secondary-structure region, and further downstream sequence from aa 67 to 186 is comprised of four conserved sequence motifs. Multiple alanine point substitutions in the α-β-β-β structure region or the four sequence motifs in the N terminus impaired viral DNA replication and resulted in reduction of virus yield and occlusion body production. Together, our results suggested that the secondary structure and four conserved motifs within the N terminus of AcMNPV DNApol are important for viral DNA synthesis, infectious virus yield, and production of occlusion bodies.IMPORTANCE DNA polymerase (DNApol) is highly conserved in all baculoviruses and is required for viral DNA replication. The N terminus is one of the highly conserved regions of baculovirus DNApols. Our results showed that the N terminus of baculovirus DNA polymerase plays an important role in efficient viral DNA synthesis and infectious virus yield and production of occlusion bodies. We identified five features, including a highly conserved secondary structure and four conserved amino acid motifs, in the AcMNPV DNApol N terminus, all of which are important for efficient viral DNA synthesis, infectious virus yield, and production of occlusion bodies.
Collapse
|
4
|
Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress. J Virol 2018; 92:JVI.01713-17. [PMID: 29142135 DOI: 10.1128/jvi.01713-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
During the infection cycle of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), two forms of virions are produced, budded virus (BV) and occlusion-derived virus (ODV). Nucleocapsids that form BV have to egress from the nucleus, whereas nucleocapsids that form ODV remain inside the nucleus. The molecular mechanism that determines whether nucleocapsids remain inside or egress from the nucleus is unknown. AC141 (a predicted E3 ubiquitin ligase) and viral ubiquitin (vUbi) have both been shown to be required for efficient BV production. In this study, it was hypothesized that vUbi interacts with AC141, and in addition, that this interaction was required for BV production. Deletion of both ac141 and vubi restricted viral infection to a single cell, and BV production was completely eliminated. AC141 was ubiquitinated by either vUbi or cellular Ubi, and this interaction was required for optimal BV production. Nucleocapsids in BV, but not ODV, were shown to be specifically ubiquitinated by vUbi, including a 100-kDa protein, as well as high-molecular-weight conjugates. The viral ubiquitinated 100-kDa BV-specific nucleocapsid protein was identified as AC66, which is known to be required for BV production and was shown by coimmunoprecipitation and mass spectrometry to interact with AC141. Confocal microscopy also showed that AC141, AC66, and vUbi interact at the nuclear periphery. These results suggest that ubiquitination of nucleocapsid proteins by vUbi functions as a signal to determine if a nucleocapsid will egress from the nucleus and form BV or remain in the nucleus to form ODV.IMPORTANCE Baculoviruses produce two types of virions called occlusion-derived virus (ODV) and budded virus (BV). ODVs are required for oral infection, whereas BV enables the systemic spread of virus to all host tissues, which is critical for killing insects. One of the important steps for BV production is the export of nucleocapsids out of the nucleus. This study investigated the molecular mechanisms that enable the selection of nucleocapsids for nuclear export instead of being retained within the nucleus, where they would become ODV. Our data show that ubiquitination, a universal cellular process, specifically tags nucleocapsids of BV, but not those found in ODV, using a virus-encoded ubiquitin (vUbi). Therefore, ubiquitination may be the molecular signal that determines if a nucleocapsid is destined to form a BV, thus ensuring lethal infection of the host.
Collapse
|
5
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
6
|
Autographa californica Multiple Nucleopolyhedrovirus AC83 is a Per Os Infectivity Factor (PIF) Protein Required for Occlusion-Derived Virus (ODV) and Budded Virus Nucleocapsid Assembly as well as Assembly of the PIF Complex in ODV Envelopes. J Virol 2017; 91:JVI.02115-16. [PMID: 28031365 DOI: 10.1128/jvi.02115-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Baculovirus occlusion-derived virus (ODV) initiates infection of lepidopteran larval hosts by binding to the midgut epithelia, which is mediated by per os infectivity factors (PIFs). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes seven PIF proteins, of which PIF1 to PIF4 form a core complex in ODV envelopes to which PIF0 and PIF6 loosely associate. Deletion of any pif gene results in ODV being unable to bind or enter midgut cells. AC83 also associates with the PIF complex, and this study further analyzed its role in oral infectivity to determine if it is a PIF protein. It had been proposed that AC83 possesses a chitin binding domain that enables transit through the peritrophic matrix; however, no chitin binding activity has ever been demonstrated. AC83 has been reported to be found only in the ODV envelopes, but in contrast, the Orgyia pseudotsugata MNPV AC83 homolog is associated with both ODV nucleocapsids and envelopes. In addition, unlike known pif genes, deletion of ac83 eliminates nucleocapsid formation. We propose a new model for AC83 function and show AC83 is associated with both ODV nucleocapsids and envelopes. We also further define the domain required for nucleocapsid assembly. The cysteine-rich region of AC83 is also shown not to be a chitin binding domain but a zinc finger domain required for the recruitment or assembly of the PIF complex to ODV envelopes. As such, AC83 has all the properties of a PIF protein and should be considered PIF8. In addition, pif7 (ac110) is reported as the 38th baculovirus core gene.IMPORTANCE ODV is essential for the per os infectivity of the baculovirus AcMNPV. To initiate infection, ODV binds to microvilli of lepidopteran midgut cells, a process which requires a group of seven virion envelope proteins called PIFs. In this study, we reexamined the function of AC83, a protein that copurifies with the ODV PIFs, to determine its role in the oral infection process. A zinc finger domain was identified and a new model for AC83 function was proposed. In contrast to previous studies, AC83 was found to be physically located in both the envelope and nucleocapsid of ODV. By deletion analysis, the AC83 domain required for nucleocapsid assembly was more finely delineated. We show that AC83 is required for PIF complex formation and conclude that it is a true per os infectivity factor and should be called PIF8.
Collapse
|
7
|
The Autographa californica Multiple Nucleopolyhedrovirus ac54 Gene Is Crucial for Localization of the Major Capsid Protein VP39 at the Site of Nucleocapsid Assembly. J Virol 2016; 90:4115-4126. [PMID: 26865720 DOI: 10.1128/jvi.02885-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Baculovirus DNAs are synthesized and inserted into preformed capsids to form nucleocapsids at a site in the infected cell nucleus, termed the virogenic stroma. Nucleocapsid assembly ofAutographa californicamultiple nucleopolyhedrovirus (AcMNPV) requires the major capsid protein VP39 and nine minor capsid proteins, including VP1054. However, how VP1054 participates in nucleocapsid assembly remains elusive. In this study, the VP1054-encoding gene (ac54) was deleted to generate theac54-knockout AcMNPV (vAc54KO). In vAc54KO-transfected cells, nucleocapsid assembly was disrupted, leading to the formation of abnormally elongated capsid structures. Interestingly, unlike cells transfected with AcMNPV mutants lacking other minor capsid proteins, in which capsid structures were distributed within the virogenic stroma,ac54ablation resulted in a distinctive location of capsid structures and VP39 at the periphery of the nucleus. The altered distribution pattern of capsid structures was also observed in cells transfected with AcMNPV lacking BV/ODV-C42 or in cytochalasind-treated AcMNPV-infected cells. BV/ODV-C42, along with PP78/83, has been shown to promote nuclear filamentous actin (F-actin) formation, which is another requisite for nucleocapsid assembly. Immunofluorescence using phalloidin indicated that the formation and distribution of nuclear F-actin were not affected byac54deletion. However, immunoelectron microscopy revealed that BV/ODV-C42, PP78/83, and 38K failed to integrate into capsid structures in the absence of VP1054, and immunoprecipitation further demonstrated that in transient expression assays, VP1054 interacted with BV/ODV-C42 and VP80 but not VP39. Our findings suggest that VP1054 plays an important role in the transport of capsid proteins to the nucleocapsid assembly site prior to the process of nucleocapsid assembly. IMPORTANCE Baculoviruses are large DNA viruses whose replication occurs within the host nucleus. The localization of capsids into the capsid assembly site requires virus-induced nuclear F-actin; the inhibition of nuclear F-actin formation results in the retention of capsid structures at the periphery of the nucleus. In this paper, we note that the minor capsid protein VP1054 is essential for the localization of capsid structures, the major capsid protein VP39, and the minor capsid protein 38K into the capsid assembly site. Moreover, VP1054 is crucial for correct targeting of the nuclear F-actin factors BV/ODV-C42 and PP78/83 for capsid maturation. However, the formation and distribution of nuclear F-actin are not affected by the lack of VP1054. We further reveal that VP1054 interacts with BV/ODV-C42 and a capsid transport-related protein, VP80. Taken together, our findings suggest that VP1054 plays a unique role in the pathway(s) for transport of capsid proteins.
Collapse
|
8
|
Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus. J Virol 2016; 90:3480-95. [PMID: 26763996 DOI: 10.1128/jvi.02912-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus.
Collapse
|
9
|
Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression. J Virol 2015; 89:7646-59. [PMID: 25972542 DOI: 10.1128/jvi.00333-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/07/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to regulate gene expression. Many viruses also utilize host- or virus-induced chromatin machinery to promote efficient infections. Baculoviruses encode a protamine-like protein, P6.9, which is required for a variety of processes in the infection cycle. Currently, P6.9's PTM sites and its regulating factors remain unknown. Here, we found that P6.9 could be categorized as unphosphorylated, hypophosphorylated, and hyperphosphorylated species and that a virus-encoded serine/threonine kinase, PK1, was essential for P6.9 hyperphosphorylation. Abundant PTM sites on P6.9 were identified, among which 7 Ser/Thr phosphorylated sites were PK1 dependent. Mutation of these Ser/Thr sites reduced very late viral gene transcription and viral infectivity, indicating that the PK1-mediated P6.9 hyperphosphorylation contributes to viral proliferation. These data suggest that a code exists in the sophisticated PTM of viral protamine-like proteins and participates in viral gene transcription.
Collapse
|
10
|
Defining the roles of the baculovirus regulatory proteins IE0 and IE1 in genome replication and early gene transactivation. Virology 2014; 468-470:160-171. [DOI: 10.1016/j.virol.2014.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
|
11
|
Chen H, Li M, Mai W, Tang Q, Li G, Chen K, Zhou Y. Analysis of BmNPV orf101 disruption: orf101 is essential for mediating budded virus production. Cytotechnology 2014; 66:1021-9. [PMID: 25300342 DOI: 10.1007/s10616-014-9772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/09/2014] [Indexed: 11/28/2022] Open
Abstract
In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.
Collapse
Affiliation(s)
- Huiqing Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Autographa californica multiple nucleopolyhedrovirus DNA polymerase C terminus is required for nuclear localization and viral DNA replication. J Virol 2014; 88:10918-33. [PMID: 25008932 DOI: 10.1128/jvi.01167-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The DNA polymerase (DNApol) of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is essential for viral DNA replication. The DNApol exonuclease and polymerase domains are highly conserved and are considered functional in DNA replication. However, the role of the DNApol C terminus has not yet been characterized. To identify whether only the exonuclease and polymerase domains are sufficient for viral DNA replication, several DNApol C-terminal truncations were cloned into a dnapol-null AcMNPV bacmid with a green fluorescent protein (GFP) reporter. Surprisingly, most of the truncation constructs, despite containing both exonuclease and polymerase domains, could not rescue viral DNA replication and viral production in bacmid-transfected Sf21 cells. Moreover, GFP fusions of these same truncations failed to localize to the nucleus. Truncation of the C-terminal amino acids 950 to 984 showed nuclear localization but allowed for only limited and delayed viral spread. The C terminus contains a typical bipartite nuclear localization signal (NLS) motif at residues 804 to 827 and a monopartite NLS motif at residues 939 to 948. Each NLS, as a GFP fusion peptide, localized to the nucleus, but both NLSs were required for nuclear localization of DNApol. Alanine substitutions in a highly conserved baculovirus DNApol sequence at AcMNPV DNApol amino acids 972 to 981 demonstrated its importance for virus production and DNA replication. Collectively, the data indicated that the C terminus of AcMNPV DNApol contains two NLSs and a conserved motif, all of which are required for nuclear localization of DNApol, viral DNA synthesis, and virus production. IMPORTANCE The baculovirus DNA polymerase (DNApol) is a highly specific polymerase that allows viral DNA synthesis and hence virus replication in infected insect cells. We demonstrated that the exonuclease and polymerase domains of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) alone are insufficient for viral DNA synthesis and virus replication. Rather, we identified three features, including two nuclear localization signals and a highly conserved 10-amino-acid sequence in the AcMNPV DNApol C terminus, all three of which are important for both nuclear localization of DNApol and for DNApol activity, as measured by viral DNA synthesis and virus replication.
Collapse
|
13
|
Baculovirus F-box protein LEF-7 modifies the host DNA damage response to enhance virus multiplication. J Virol 2013; 87:12592-9. [PMID: 24027328 DOI: 10.1128/jvi.02501-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7's N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein.
Collapse
|
14
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
15
|
An ac34 deletion mutant of Autographa californica nucleopolyhedrovirus exhibits delayed late gene expression and a lack of virulence in vivo. J Virol 2012; 86:10432-43. [PMID: 22787232 DOI: 10.1128/jvi.00779-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ac34 and its homologs are highly conserved in all sequenced alphabaculoviruses. In this paper, we show that ac34 transcripts were detected from 6 to 48 h postinfection (p.i.) in Autographa californica nucleopolyhedrovirus (AcMNPV)-infected Sf9 cells. Ac34 localized to both the cytoplasm and the nuclei of infected cells but was not a viral structural protein. To determine the function of ac34 in the viral life cycle, an ac34 knockout AcMNPV (vAc34KO) was constructed. Compared with wild-type and repair viruses, vAc34KO exhibited an approximately 100-fold reduction in infectious virus production. Further investigations showed that the ac34 deletion did not affect the replication of viral DNA, polyhedron formation, or nucleocapsid assembly but delayed the expression of late genes, such as vp39, 38k, and p6.9. Bioassays revealed that vAc34KO was unable to establish a fatal infection in Trichoplusia ni larvae via per os inoculation. Few infectious progeny viruses were detected in the hemolymph of the infected larvae, indicating that the replication of vAc34KO was attenuated. These results suggest that Ac34 is an activator protein that promotes late gene expression and is essential for the pathogenicity of AcMNPV.
Collapse
|
16
|
Dickison VL, Willis LG, Sokal NR, Theilmann DA. Deletion of AcMNPV ac146 eliminates the production of budded virus. Virology 2012; 431:29-39. [PMID: 22682215 DOI: 10.1016/j.virol.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/02/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac146 is a highly conserved gene in the Alpha- and Betabaculovirus genera that has an unknown function. Northern blot analysis and transcript mapping showed that ac146 is transcribed at late times post infection as a 1.2 kb mRNA. To determine the role of ac146 in the baculovirus life cycle ac146 knock out viruses were constructed. Transfection and plaque assays showed that all the ac146 deletions produced a single cell phenotype indicating that no infectious budded virus (BV) was produced, however occlusion bodies were formed. The lack of BV production was confirmed by viral titration utilizing both qPCR and TCID₅₀. Analysis of BV and occlusion derived virus (ODV) revealed that AC146 is associated with both forms of the virus and is modified specifically in ODV. This study therefore demonstrates that AC146 is a late virion associated protein and is essential for the viral life cycle.
Collapse
Affiliation(s)
- Virginia L Dickison
- Irving K. Barber School of Arts and Sciences, Unit 2 Biology, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada
| | | | | | | |
Collapse
|
17
|
Peng K, van Lent JWM, Boeren S, Fang M, Theilmann DA, Erlandson MA, Vlak JM, van Oers MM. Characterization of novel components of the baculovirus per os infectivity factor complex. J Virol 2012; 86:4981-8. [PMID: 22379094 PMCID: PMC3347349 DOI: 10.1128/jvi.06801-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/22/2012] [Indexed: 01/22/2023] Open
Abstract
Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed.
Collapse
Affiliation(s)
- Ke Peng
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Minggang Fang
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - David A. Theilmann
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Martin A. Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
The Autographa californica M nucleopolyhedrovirus ac79 gene encodes an early gene product with structural similarities to UvrC and intron-encoded endonucleases that is required for efficient budded virus production. J Virol 2012; 86:5614-25. [PMID: 22419804 DOI: 10.1128/jvi.06252-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Autographa californica M nucleopolyhedrovirus (AcMNPV) orf79 (ac79) gene is a conserved gene in baculoviruses and shares homology with genes in ascoviruses, iridoviruses, and several bacteria. Ac79 has a conserved motif and structural similarities to UvrC and intron-encoded endonucleases. Ac79 is produced at early times during infection and concentrates in the nucleus of infected cells at late times, suggesting a cellular compartment-specific function. To investigate its function, an ac79-knockout bacmid was generated through homologous recombination in Escherichia coli. Titration assays showed that budded virus (BV) production was reduced in the ac79-knockout virus compared to control viruses, following either virus infection or the transfection of bacmid DNA. The ac79-knockout virus-infected cells produced plaques smaller than those infected with control ac79-carrying viruses. No obvious differences were observed in viral DNA synthesis, viral protein accumulation, or the formation of occlusion bodies in ac79-knockout and control viral DNA-transfected cells, indicating progression into the late and very late phases of viral infection. However, comparative analyses of the amounts of BV genomic DNA and structural proteins in a given quantity of infectious virions suggested that the ac79-knockout virus produced more noninfectious BV in infected cells than the control virus. The structure of the ac79-knockout BV determined by transmission electron microscopy appeared to be similar to that of the control virus, although aberrant capsid protein-containing tubular structures were observed in the nuclei of ac79-knockout virus-infected cells. Tubular structures were not observed for ac79 viruses with mutations in conserved endonuclease residues. These results indicate that Ac79 is required for efficient BV production.
Collapse
|
19
|
Yu M, Carstens EB. Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3–P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3–P143 double knockout bacmid. J Gen Virol 2012; 93:383-388. [DOI: 10.1099/vir.0.036699-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient replication assays using Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) genes suggested that the interactions between P143, the viral helicase and LEF-3, a ssDNA-binding protein, may represent virus species specificity determinants. P143 and LEF-3 are essential for DNA replication in these assays and together with IE-1, the major immediate-early transcription factor, may be part of the viral replisome. In the current report, a lef-3/p143 double-knockout AcMNPV bacmid was constructed that was defective for viral DNA replication and late gene expression. When the homologous lef-3/p143 CfMNPV genes were introduced into this double-knockout bacmid, DNA replication was restored but the level of replication was lower, budded virus production was delayed, and the yields were reduced from those in an AcMNPV-rescue bacmid. These results suggest that to maximize virus replication, baculovirus replisome assembly and function requires protein–protein interactions between P143 and LEF-3, and other viral proteins.
Collapse
Affiliation(s)
- Mei Yu
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Eric B. Carstens
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
20
|
Analysis of the autographa californica multiple nucleopolyhedrovirus overlapping gene pair lef3 and ac68 reveals that AC68 is a per os infectivity factor and that LEF3 is critical, but not essential, for virus replication. J Virol 2012; 86:3985-94. [PMID: 22278232 DOI: 10.1128/jvi.06849-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus ac68 is a core gene that overlaps lef3 which encodes the single-stranded DNA binding protein. A knockout (KO) virus lacking both lef3 and ac68 was generated (lef3-ac68 2×KO) to enable the functional study of ac68. To produce an ac68KO virus that did not impact lef3 expression, the lef3-ac68 2×KO virus was repaired with a DNA fragment containing lef3 and ac68, in which ac68 contained point mutations so that only LEF3 was expressed. Repair of lef3-ac68 2×KO with just ac68 generated an lef3KO virus. Analysis of the ac68KO virus showed that viral DNA replication and budded virus (BV) levels were unaffected compared to levels in the double-repair or wild-type (WT) control virus. Bioassay analyses of Trichoplusia ni larvae injected with BV directly into the hemolymph, bypassing the gut, showed no difference in mortality rates between the ac68KO and the WT viruses. However, in oral bioassays the ac68KO occlusion bodies failed to kill larvae. These results show that the core gene ac68 encodes a per os infectivity factor (pif6). The lef3KO virus was also analyzed, and virus replication was drastically reduced compared to WT virus, but very low levels of lef3KO virus DNA replication and BV production could be detected. In addition, in transfected cells P143 was transported to the nucleus in the absence of LEF3. This study therefore shows for the first time that even though the loss of LEF3 severely impairs virus replication, it is not absolutely essential for P143 nuclear import or viral replication.
Collapse
|
21
|
Direct interaction of baculovirus capsid proteins VP39 and EXON0 with kinesin-1 in insect cells determined by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy. J Virol 2011; 86:844-53. [PMID: 22072745 DOI: 10.1128/jvi.06109-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replicates in the nucleus of insect cells to produce nucleocapsids, which are transported from the nucleus to the plasma membrane for budding through GP64-enriched areas to form budded viruses. However, little is known about the anterograde trafficking of baculovirus nucleocapsids in insect cells. Preliminary confocal scanning laser microscopy studies showed that enhanced green fluorescent protein (EGFP)-tagged nucleocapsids and capsid proteins aligned and colocalized with the peripheral microtubules of virus-infected insect cells. A colchicine inhibition assay of virus-infected insect cells showed a significant reduction in budded virus production, providing further evidence for the involvement of microtubules and suggesting a possible role of kinesin in baculovirus anterograde trafficking. We investigated the interaction between AcMNPV nucleocapsids and kinesin-1 with fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) and show for the first time that AcMNPV capsid proteins VP39 and EXON0, but not Orf1629, interact with the tetratricopeptide repeat (TPR) domain of kinesin. The excited-state fluorescence lifetime of EGFP fused to VP39 or EXON0 was quenched from 2.4 ± 1 ns to 2.1 ± 1 ns by monomeric fluorescent protein (mDsRed) fused to TPR (mDsRed-TPR). However, the excited-state fluorescence lifetime of an EGFP fusion of Orf1629 remained unquenched by mDsRed-TPR. These data indicate that kinesin-1 plays an important role in the anterograde trafficking of baculovirus in insect cells.
Collapse
|
22
|
Yu M, Carstens EB. Characterization of an Autographa californica multiple nucleopolyhedrovirus mutant lacking the ac39(p43) gene. Virus Res 2010; 155:300-6. [PMID: 20974197 DOI: 10.1016/j.virusres.2010.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 01/12/2023]
Abstract
Open reading frame 39 [orf39(p43)] of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is present in 10 isolates of the Alphabaculovirus genus. It is highly conserved in sequence and genomic location in the Group I but much less conserved in the Group II viruses. To investigate the potential role of p43 in AcMNPV infection, we constructed and characterized a p43 knockout mutant. The results showed that the p43 region was expressed as RNA from 3h post infection to at least 24h post infection, and its expression pattern was identical to the expression profile of its neighbouring gene, p47. P47 is an essential core gene component of the baculovirus RNA polymerase. The deletion of the p43 region was confirmed by PCR analysis of bacmid DNA and by RT-PCR analysis of RNA purified from p43 knockout infected cells. The results supported the hypothesis that a large transcript, initiating upstream of p47, includes the p43 ORF. Analyses of protein synthesis in p43 knockout infected cells clearly demonstrated that there were no obvious differences in the timing or amount of expression of P47, LEF-3, or VP39. Growth curves showed that infectious budded virus production and occlusion body formation were also not affected by the p43 knockout. We conclude that orf39(p43) is not essential for virus replication in cell culture.
Collapse
Affiliation(s)
- Mei Yu
- Department of Microbiology and Immunology, Queen's University, Kingston, Canada ON K7L 3N6
| | | |
Collapse
|
23
|
Nie Y, Theilmann DA. Deletion of AcMNPV AC16 and AC17 results in delayed viral gene expression in budded virus infected cells but not transfected cells. Virology 2010; 404:168-79. [PMID: 20627351 DOI: 10.1016/j.virol.2010.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/19/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
Abstract
This study investigated the combined function of the Autographa californica multiple nucleopolyhedrovirus overlapping genes ac16 (BV/ODV-E26, DA26) and ac17. Ac17 is a late gene and the promoter is within the ac16 open reading frame. A double ac16-ac17 knockout virus was generated to assess the function of each gene independently or together. Loss of ac17 did not affect viral DNA synthesis but budded virus (BV) production was reduced. Deletion of both ac16-ac17 resulted in reduced viral DNA synthesis and a further reduction in BV production. In BV infected Sf9 cells, viral gene expression was delayed up to 12 h in the absence of both AC16 and AC17 but not if either gene was present. Cells infected by transfecting viral DNA, by-passing the BV particle, exhibited no delay in gene expression from the double knockout virus. AC16 and AC17 are therefore required for rapid viral gene expression in cells infected by BV.
Collapse
Affiliation(s)
- Yingchao Nie
- Plant Science, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
24
|
Open reading frame 60 of the Bombyx mori nucleopolyhedrovirus plays a role in budded virus production. Virus Res 2010; 151:185-91. [PMID: 20576538 DOI: 10.1016/j.virusres.2010.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
Open reading frame 60 (bm60) of the Bombyx mori nucleopolyhedrovirus (BmNPV) is a conserved gene among group I and some group II NPVs. bm60 encodes a late expressed protein that localizes to both the cytoplasm and nucleus of infected cells. This paper describes the characterization of a BmNPV mutant (vbm60-Null) lacking functional bm60. It was observed that the production of budded virus (BV) was reduced by nearly an order of magnitude relative to wt virus in vbm60-Null-infected BmN cells and B. mori larvae. Quantitative real-time PCR assay showed that the viral DNA replication was affected in infected cells due to disruption of bm60. Larval bioassays showed that the speed of kill of vbm60-Null virus was greatly reduced, as it took approximately 28-36 h longer to kill the fifth instar B. mori larvae. These results suggest that BmNPV bm60 is not essential for viral replication, but required for efficient BV production.
Collapse
|
25
|
Identification of a domain of the baculovirus Autographa californica multiple nucleopolyhedrovirus single-strand DNA-binding protein LEF-3 essential for viral DNA replication. J Virol 2010; 84:6153-62. [PMID: 20357098 DOI: 10.1128/jvi.00115-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) lef-3 is one of nine genes required for viral DNA replication in transient assays. LEF-3 is predicted to contain several domains related to its functions, including nuclear localization, single-strand DNA binding, oligomerization, interaction with P143 helicase, and interaction with a viral alkaline nuclease. To investigate the essential nature of LEF-3 and the roles it may play during baculovirus DNA replication, a lef-3 null bacmid (bKO-lef3) was constructed in Escherichia coli and characterized in Sf21 cells. The results showed that AcMNPV lef-3 is essential for DNA replication, budded virus production, and late gene expression in vivo. Cells transfected with the lef-3 knockout bacmid produced low levels of early proteins (P143, DNA polymerase, and early GP64) and no late proteins (P47, VP39, or late GP64). To investigate the functional role of domains within the LEF-3 open reading frame in the presence of the whole viral genome, plasmids expressing various LEF-3 truncations were transfected into Sf21 cells together with bKO-lef3 DNA. The results showed that expression of AcMNPV LEF-3 amino acids 1 to 125 was sufficient to stimulate viral DNA replication and to support late gene expression. Expression of Choristoneura fumiferana MNPV lef-3 did not rescue any LEF-3 functions. The construction of a LEF-3 amino acid 1 to 125 rescue bacmid revealed that this region of LEF-3, when expressed in the presence of the rest of the viral genome, stimulated viral DNA replication and late and very late protein expression, as well as budded virus production.
Collapse
|
26
|
Liang G, Li G, Chen K, Yao Q, Chen H, Zhou Y. Bombyx mori nucleopolyhedrovirus ORF94, a novel late protein is identified to be a component of ODV structural protein. Curr Microbiol 2010; 61:190-6. [PMID: 20135318 DOI: 10.1007/s00284-010-9595-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 01/18/2010] [Indexed: 11/25/2022]
Abstract
Orf94 (Bm94) of Bombyx mori nucleopolyhedrovirus (BmNPV) potentially encodes 424-amino acids with a predicted molecular weight of 49.4 kDa, but its function remains unknown. Blast search results revealed that Bm94 homologues exist in 10 completely sequenced Lepidopteron NPVs with identities ranging from 95 to 37%. Results of our recent study showed that Bm94 was transcribed from 12 to 72 h and the corresponding protein was detected from 24 to 72 h post-infection. Furthermore, Western blot analysis revealed that Bm94 was present in occlusion-derived virus (ODV) and in total protein from BmNPV-infected BmN cells, but not in budded virus. Immunofluorescence analysis revealed that the protein located primarily in the cytoplasm and was also present in the nucleus in the later infection. In conclusion, these results together indicated that Bm94 was a late gene, which distributed both in the cytoplasm and in the nucleus, and was identified to be a component of BmNPV ODV.
Collapse
Affiliation(s)
- Guiting Liang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | | | | | | | | | | |
Collapse
|
27
|
Peng K, Wu M, Deng F, Song J, Dong C, Wang H, Hu Z. Identification of protein-protein interactions of the occlusion-derived virus-associated proteins of Helicoverpa armigera nucleopolyhedrovirus. J Gen Virol 2009; 91:659-70. [PMID: 19906939 DOI: 10.1099/vir.0.017103-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to identify protein-protein interactions among the components of the occlusion-derived virus (ODV) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV), a group II alphabaculovirus in the family Baculoviridae. To achieve this, 39 selected genes of potential ODV structural proteins were cloned and expressed in the Gal4 yeast two-hybrid (Y2H) system. The direct-cross Y2H assays identified 22 interactions comprising 13 binary interactions [HA9-ODV-EC43, ODV-E56-38K, ODV-E56-PIF3, LEF3-helicase, LEF3-alkaline nuclease (AN), GP41-38K, GP41-HA90, 38K-PIF3, 38K-PIF2, VP80-HA100, ODV-E66-PIF3, ODV-E66-PIF2 and PIF3-PIF2] and nine self-associations (IE1, HA44, LEF3, HA66, GP41, CG30, 38K, PIF3 and P24). Five of these interactions - LEF3-helicase and LEF3-AN, and the self-associations of IE1, LEF3 and 38K - have been reported previously in Autographa californica multiple nucleopolyhedrovirus. As HA44 and HA100 were two newly identified ODV proteins of group II viruses, their interactions were further confirmed. The self-association of HA44 was verified with a His pull-down assay and the interaction of VP80-HA100 was confirmed by a co-immunoprecipitation assay. A summary of the protein-protein interactions of baculoviruses reported so far, comprising 68 interactions with 45 viral proteins and five host proteins, is presented, which will facilitate our understanding of the molecular mechanisms of baculovirus infection.
Collapse
Affiliation(s)
- Ke Peng
- State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Cohen DPA, Marek M, Davies BG, Vlak JM, van Oers MM. Encyclopedia of Autographa californica nucleopolyhedrovirus genes. Virol Sin 2009. [DOI: 10.1007/s12250-009-3059-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
29
|
Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per Os infectivity factor (PIF-4). J Virol 2009; 83:12569-78. [PMID: 19759145 DOI: 10.1128/jvi.01141-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac96 is a core gene, but its role in virus replication is still unknown. To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac96-null virus (vAc(96)(null)). Our analyses showed that the absence of ac96 does not affect budded virus (BV) production or viral DNA replication in infected Sf9 cells. Western blotting and confocal immunofluorescence analysis showed that AC96 is expressed in both the cytoplasm and the nucleus throughout infection. In addition, AC96 was detected in the envelope fractions of both BV and occlusion-derived virus. Injection of vAc(96)(null) BV into the hemocoel killed Trichoplusia ni larvae as efficiently as repaired and control viruses; however, vAc(96)(null) was unable to infect the midgut tissue of Trichoplusia ni larvae when inoculated per os. Therefore, the results of this study show that ac96 encodes a new per os infectivity factor (PIF-4).
Collapse
|
30
|
Noad RJ, Stewart M, Boyce M, Celma CC, Willison KR, Roy P. Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA. BMC Mol Biol 2009; 10:87. [PMID: 19725957 PMCID: PMC2749033 DOI: 10.1186/1471-2199-10-87] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 09/02/2009] [Indexed: 02/26/2023] Open
Abstract
Background Many cellular multi-protein complexes are naturally present in cells at low abundance. Baculovirus expression offers one approach to produce milligram quantities of correctly folded and processed eukaryotic protein complexes. However, current strategies suffer from the need to produce large transfer vectors, and the use of repeated promoter sequences in baculovirus, which itself produces proteins that promote homologous recombination. One possible solution to these problems is to construct baculovirus genomes that express each protein in a complex from a separate locus within the viral DNA. However current methods for selecting such recombinant genomes are too inefficient to routinely modify the virus in this way. Results This paper reports a method which combines the lambda red and bacteriophage P1 Cre-recombinase systems to efficiently generate baculoviruses in which protein complexes are expressed from multiple, single-locus insertions of foreign genes. This method is based on an 88 fold improvement in the selection of recombinant viruses generated by red recombination techniques through use of a bipartite selection cassette. Using this system, seven new genetic loci were identified in the AcMNPV genome suitable for the high level expression of recombinant proteins. These loci were used to allow the recovery two recombinant virus-like particles with potential biotechnological applications (influenza A virus HA/M1 particles and bluetongue virus VP2/VP3/VP5/VP7 particles) and the mammalian chaperone and cancer drug target CCT (16 subunits formed from 8 proteins). Conclusion 1. Use of bipartite selections can significantly improve selection of modified bacterial artificial chromosomes carrying baculovirus DNA. Furthermore this approach is sufficiently robust to allow routine modification of the virus genome. 2. In addition to the commonly used p10 and polyhedrin loci, the ctx, egt, 39k, orf51, gp37, iap2 and odv-e56 loci in AcMNPV are all suitable for the high level expression of heterologous genes. 3. Two protein, four protein and eight protein complexes including virus-like particles and cellular chaperone complexes can be produced using the new approach.
Collapse
Affiliation(s)
- Rob J Noad
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Fang M, Nie Y, Theilmann DA. Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious. Virology 2009; 389:66-74. [DOI: 10.1016/j.virol.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/09/2009] [Accepted: 04/03/2009] [Indexed: 11/17/2022]
|
32
|
Yu IL, Bray D, Lin YC, Lung O. Autographa californica multiple nucleopolyhedrovirus ORF 23 null mutant produces occlusion-derived virions with fewer nucleocapsids. J Gen Virol 2009; 90:1499-1504. [DOI: 10.1099/vir.0.009035-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two envelope fusion protein gene homologues have been identified in the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). AcMNPV GP64 protein is fusogenic and essential for propagation and pathogenicity. The F homologue (Ac23) is not essential, is fusion-incompetent in standard assays, but contributes to faster host death. Here, we show that occlusion bodies (OBs) from Ac23null mutants and control viruses do not differ significantly in size and the number of occlusion-derived virions (ODVs) contained; however, Ac23null OBs had a much higher percentage of ODVs with a single nucleocapsid (44.6 %) than the near-isogenic control (11.3 %). Infection of Sf9 cells with Ac23–green fluorescent protein (gfp)-expressing recombinant viruses showed Ac23–gfp fluorescence overlapping perinuclear DAPI staining at later times, a pattern not observed with GP64. These results suggest that F proteins have evolved functions beyond envelope fusion and play a different role from that of GP64 in viruses that contain both proteins.
Collapse
Affiliation(s)
- Ian-Ling Yu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Doug Bray
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Ying-Chu Lin
- Faculty of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Oliver Lung
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
33
|
Autographa californica multiple nucleopolyhedrovirus me53 (ac140) is a nonessential gene required for efficient budded-virus production. J Virol 2009; 83:7440-8. [PMID: 19457997 DOI: 10.1128/jvi.02390-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
me53 is a highly conserved baculovirus gene found in all lepidopteran baculoviruses that have been fully sequenced to date. The putative ME53 protein contains a zinc finger domain and has been previously described as a major early transcript. We generated an me53-null bacmid (AcDeltame53GFP), as well as a repair virus (AcRepME53:HA-GFP) carrying me53 with a C-terminal hemagglutinin (HA) tag, under the control of its native early and late promoter elements. Sf9 and BTI-Tn-5b1 cells transfected with AcDeltame53GFP resulted in a 3-log reduction in budded-virus (BV) production compared to both the parental Autographa californica multiple nucleopolyhedrosis virus and the repair bacmids, demonstrating that although me53 is not essential for replication, replication is compromised in its absence. Our data also suggest that me53 does not affect DNA replication. Cell fractionation showed that ME53 is found in both the nucleus and the cytoplasm as early as 6 h postinfection. Deletion of the early transcriptional start site resulted in a 10- to 360-fold reduction of BV yield; however, deletion of the late promoter (ATAAG) resulted in a 160- to 1,000-fold reduction, suggesting that, in the context of BV production, ME53 is required both early and late in the infection cycle. Additional Western blot analysis of purified virions from the repair virus revealed that ME53:HA is associated with both BV and occlusion-derived virions. Together, these results indicate that me53, although not essential for viral replication, is required for efficient BV production.
Collapse
|
34
|
Characterization of Bombyx mori nucleopolyhedrovirus orf74, a novel gene involved in virulence of virus. Virus Genes 2009; 38:487-94. [DOI: 10.1007/s11262-009-0350-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/15/2009] [Indexed: 10/20/2022]
|
35
|
Tian CH, Zhao JF, Xu YP, Xue J, Zhang BQ, Cui YJ, Zhang MJ, Bao YY, Zhang CX. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment. Virology 2009; 387:184-92. [DOI: 10.1016/j.virol.2009.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 12/27/2008] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
|
36
|
AcMNPV EXON0 (AC141) which is required for the efficient egress of budded virus nucleocapsids interacts with beta-tubulin. Virology 2009; 385:496-504. [PMID: 19155039 DOI: 10.1016/j.virol.2008.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/15/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encoded protein, EXON0 (AC141), is required for the efficient transport of nucleocapsids out of the nucleus for the production of budded virus (BV). To further elucidate the molecular mechanisms by which EXON0 regulates BV production, EXON0 was tagged at the N-terminus with 3x FLAG-6x His. Protein complexes were isolated by tandem affinity purification and potential EXON0 specific interacting protein partners were gel purified and identified by LC-MS/MS. This analysis showed that the cellular protein, beta-tubulin, co-purified with EXON0 which was confirmed by co-immunoprecipitation. In addition, immunofluorescence showed that EXON0 and beta-tubulin co-localized during virus infection. The microtubule inhibitors colchicine and nocodazole were used to treat AcMNPV infected Sf9 cells and results showed that BV production was reduced by over 85%. These data suggest that the egress of AcMNPV budded virus may be facilitated by the interaction of EXON0 with beta-tubulin and microtubules.
Collapse
|
37
|
Nie Y, Fang M, Theilmann DA. AcMNPV AC16 (DA26, BV/ODV-E26) regulates the levels of IE0 and IE1 and binds to both proteins via a domain located within the acidic transcriptional activation domain. Virology 2009; 385:484-95. [PMID: 19150105 DOI: 10.1016/j.virol.2008.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/20/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022]
Abstract
IE0 and IE1 are the primary viral regulatory proteins of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) involved in the transactivation of early genes, stimulation of late gene expression, and viral DNA replication. The protein interactions required for IE0 or IE1 to achieve these varied roles are not well defined, so to identify proteins that interact with IE0 and IE1, tandem affinity purification (TAP) and LC-MS/MS was used. Analysis of purified proteins identified AC16 (DA26, BV/ODV-E26) from TAP tagged IE0 virus infected Sf9 cells. Co-immunoprecipitation confirmed that AC16 interacts with both IE0 and IE1 and yeast 2-hybrid analysis mapped the domain required for interaction with AC16. Mutation of the AC16 binding domain enhanced BV production by viruses expressing only IE0 but had no effect if only IE1 is expressed. An ac16 deletion virus was constructed and was shown not to affect the temporal expression of IE0 and IE1; however the relative level of IE0 to IE1 was significantly increased.
Collapse
Affiliation(s)
- Yingchao Nie
- Plant Science, Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada V6T 1Z4
| | | | | |
Collapse
|
38
|
Transactivator IE1 is required for baculovirus early replication events that trigger apoptosis in permissive and nonpermissive cells. J Virol 2008; 83:262-72. [PMID: 18945761 DOI: 10.1128/jvi.01827-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immediate early viral protein IE1 is a potent transcriptional activator encoded by baculoviruses. Although the requirement of IE1 for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is well established, the functional roles of IE1 during infection are unclear. Here, we used RNA interference to ablate IE1, plus its splice variant IE0, and thereby define in vivo activities of these early proteins, including gene-specific regulation and induction of host cell apoptosis. Confirming an essential replicative role, simultaneous ablation of IE1 and IE0 by gene-specific double-stranded RNAs inhibited AcMNPV late gene expression, reduced yields of budded virus by more than 1,000-fold, and blocked production of occluded virus particles. Depletion of IE1 and IE0 had no effect on early expression of the envelope fusion protein gene gp64 but abolished early expression of the caspase inhibitor gene p35, which is required for prevention of virus-induced apoptosis. Thus, IE1 is a positive, gene-specific transactivator. Whereas an AcMNPV p35 deletion mutant caused widespread apoptosis in permissive Spodoptera frugiperda cells, ablation of IE1 and IE0 prevented this apoptosis. Silencing of ie-1 also prevented AcMNPV-induced apoptosis in nonpermissive Drosophila melanogaster cells. Thus, de novo synthesis of IE1 is required for virus-induced apoptosis. We concluded that IE1 causes apoptosis directly or contributes indirectly by promoting virus replication events that subsequently trigger cell death. This study reveals that IE1 is a gene-selective transcriptional activator which is required not only for expedition of virus multiplication but also for blocking of its own proapoptotic activity by upregulation of baculovirus apoptotic suppressors.
Collapse
|
39
|
Liu C, Li Z, Wu W, Li L, Yuan M, Pan L, Yang K, Pang Y. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly. Virology 2008; 382:59-68. [PMID: 18851866 DOI: 10.1016/j.virol.2008.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/10/2008] [Accepted: 09/03/2008] [Indexed: 01/09/2023]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc(ac53KO-PH-GFP)) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc(ac53KO-PH-GFP) could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Characterization of Bombyx mori nucleopolyhedrovirus with a deletion of bm118. Virus Res 2008; 135:220-9. [DOI: 10.1016/j.virusres.2008.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/24/2022]
|
41
|
Yuan M, Wu W, Liu C, Wang Y, Hu Z, Yang K, Pang Y. A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment. Virology 2008; 379:87-96. [PMID: 18656219 DOI: 10.1016/j.virol.2008.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) is a highly conserved baculovirus gene of unknown function. In the present study, we generated a knockout of the p48 gene in an AcMNPV bacmid and investigated the role of P48 in baculovirus life cycle. The p48-null Bacmid vAc(P48-KO-PH-GFP) was unable to propagate in cell culture, while a 'repair' Bacmid vAc(P48-REP-PH-GFP) was able to replicate in a manner similar to a wild-type Bacmid vAc(PH-GFP). Titration assays and Western blotting confirmed that vAc(P48-KO-PH-GFP) was unable to produce budded viruses (BVs). qPCR analysis showed that p48 deletion did not affect viral DNA replication. Electron microscopy indicated that P48 was required for nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and their subsequent occlusion. Confocal analysis showed that P48 prominently condensed in the centre of the nucleus. Our results demonstrate that P48 plays an essential role in BV production and ODV envelopment in the AcMNPV life cycle.
Collapse
Affiliation(s)
- Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Fang M, Nie Y, Dai X, Theilmann DA. Identification of AcMNPV EXON0 (ac141) domains required for efficient production of budded virus, dimerization and association with BV/ODV-C42 and FP25. Virology 2008; 375:265-76. [DOI: 10.1016/j.virol.2008.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 12/29/2007] [Accepted: 01/28/2008] [Indexed: 11/30/2022]
|
43
|
Roles of LEF-4 and PTP/BVP RNA triphosphatases in processing of baculovirus late mRNAs. J Virol 2008; 82:5573-83. [PMID: 18385232 DOI: 10.1128/jvi.00058-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases.
Collapse
|
44
|
AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene. Virology 2008; 375:277-91. [PMID: 18328526 DOI: 10.1016/j.virol.2008.01.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/02/2008] [Accepted: 01/29/2008] [Indexed: 11/20/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac143 (odv-e18) is a late gene that encodes for a predicted 9.6 kDa structural protein that locates to the occlusion derived viral envelope and viral induced intranuclear microvesicles [Braunagel, S.C., He, H., Ramamurthy, P., and Summers, M.D. (1996). Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222, 100-114.]. In this study we demonstrate that ac143 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To examine the role of ac143 in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac143 knockout (KO) virus (AcBAC(ac142)(REP-ac143KO)). Fluorescence and light microscopy showed that infection by AcBAC(ac142)(REP-ac143KO) is limited to a single cell and titration assays confirmed that AcBAC(ac142)(REP-ac143KO) was unable to produce budded virus (BV). Progression to very late phases of the viral infection was evidenced by the development of occlusion bodies in the nuclei of transfected cells. This correlated with the fact that viral DNA replication was unaffected in AcBAC(ac142)(REP-ac143KO) transfected cells. The entire ac143 promoter, which includes three late promoter motifs, is contained within the ac142 open reading frame. Different deletion mutants of this region showed that the integrity of the ac142-ac143 core gene cluster was required for the bacmids to display wild-type patterns of viral replication, BV production and RNA transcription.
Collapse
|
45
|
McCarthy CB, Dai X, Donly C, Theilmann DA. Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment. Virology 2008; 372:325-39. [DOI: 10.1016/j.virol.2007.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/27/2007] [Accepted: 10/18/2007] [Indexed: 12/01/2022]
|
46
|
Ke J, Wang J, Deng R, Wang X. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation. Virology 2008; 374:421-31. [PMID: 18241908 DOI: 10.1016/j.virol.2007.12.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 11/20/2007] [Accepted: 12/18/2007] [Indexed: 11/29/2022]
Abstract
Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis.
Collapse
Affiliation(s)
- Jianhao Ke
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | | | | | | |
Collapse
|
47
|
Wang Y, Wu W, Li Z, Yuan M, Feng G, Yu Q, Yang K, Pang Y. ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus. Virology 2007; 367:71-81. [PMID: 17573091 DOI: 10.1016/j.virol.2007.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/10/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
orf18 (ac18) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, an ac18 knockout AcMNPV bacmid was generated to determine the role of ac18 in baculovirus life cycle. After transfection of Sf-9 cells, the ac18-null mutant showed similar infection pattern to the parent virus and the ac18 repair virus with respect to the production of infectious budded virus, occlusion bodies, or the formation of nucleocapsids as visualized by electron microscopy. The deletion mutant did not reduce AcMNPV infectivity for Trichoplusia ni in LD(50) bioassay; however, it did take 24 h longer for deleted mutant to kill T. ni larvae than wild-type virus in LT(50) bioassay. Our results demonstrate that ac18 is not essential for viral propagation both in vitro and in vivo, but it may play a role in efficient virus infection in T. ni larvae.
Collapse
Affiliation(s)
- Yanjie Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fang M, Dai X, Theilmann DA. Autographa californica multiple nucleopolyhedrovirus EXON0 (ORF141) is required for efficient egress of nucleocapsids from the nucleus. J Virol 2007; 81:9859-69. [PMID: 17626083 PMCID: PMC2045402 DOI: 10.1128/jvi.00588-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) exon0 (orf141) has been shown to be required for the efficient production of budded virus (BV). The deletion of exon0 reduces the level of BV production by up to 99% (X. Dai, T. M. Stewart, J. A. Pathakamuri, Q. Li, and D. A. Theilmann, J. Virol. 78:9633-9644, 2004); however, the function or mechanism by which EXON0 affects BV production is unknown. In this study, we further elucidated the function of EXON0 by investigating the localization of EXON0 in infected Sf9 cells and in virions and by identifying interactions between EXON0 and other viral proteins. In addition, electron microscopy was used to study the cellular localization of nucleocapsids in cells transfected with an exon0 knockout (KO) virus. The results showed that EXON0 was localized to both the cytoplasm and the nuclei of infected Sf9 cells throughout the infection. Western blotting results also showed that EXON0 was purified along with BV and occlusion-derived virus (ODV). The fractionation of BV into the nucleocapsid and envelope components showed that EXON0 localized to the BV nucleocapsid. Yeast two-hybrid screening, coimmunoprecipitation, and confocal microscopy revealed that it interacted with nucleocapsid proteins FP25 and BV/ODV-C42. Cells transfected with the exon0 KO virus exhibited normally appearing nucleocapsids in the nuclei in numbers equal to those in the nuclei of cells transfected with the EXON0 repaired virus. In contrast, the numbers of nucleocapsids in the cytoplasm of cells transfected with the exon0 KO virus were significantly lower than those in the cytoplasm of cells transfected with the repaired virus. These results support the conclusion that EXON0 is required in the BV pathway for the efficient egress of nucleocapsids from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Minggang Fang
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Box 5000, Summerland, BC, Canada
| | | | | |
Collapse
|
49
|
Yamagishi J, Burnett ED, Harwood SH, Blissard GW. The AcMNPV pp31 gene is not essential for productive AcMNPV replication or late gene transcription but appears to increase levels of most viral transcripts. Virology 2007; 365:34-47. [PMID: 17467768 PMCID: PMC2680720 DOI: 10.1016/j.virol.2007.02.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/14/2006] [Accepted: 02/20/2007] [Indexed: 11/20/2022]
Abstract
The pp31 gene of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes a phosphorylated DNA binding protein that associates with virogenic stroma in the nuclei of infected cells. Prior studies of pp31 by transient late expression assays suggested that pp31 may play an important role in transcription of AcMNPV late genes [Todd, J. W., Passarelli, A. L., and Miller, L. K. (1995). Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. J. Virol. 69, 968-974] although genetic studies of the closely related BmNPV pp31 gene suggested that pp31 may be dispensable [Gomi, S., Zhou, C. E., Yih, W., Majima, K., and Maeda, S. (1997). Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. Virology 230 (1), 35-47]. In the current study, we examined the role of the pp31 gene in the context of the AcMNPV genome during infection. We used a BACmid-based system to generate a pp31 knockout in the AcMNPV genome. The pp31 knockout was subsequently rescued by reinserting the pp31 gene into the polyhedrin locus of the same virus genome. We found that pp31 was not essential for viral replication although the absence of pp31 resulted in a lower viral titer. Analysis of viral DNA replication in the absence of pp31 showed that the kinetics of viral DNA replication were unaffected. An AcMNPV oligonucleotide microarray was used to compare gene expression from all AcMNPV genes in the presence or absence of pp31. In the absence of pp31, a modest reduction in transcripts was detected for many viral genes (99 genes) while no substantial increase or decrease was observed for 43 genes. Transcripts from 6 genes (p6.9, ORF 97, ORF 60, ORF 98, ORF 102 and chitinase) were reduced by 66% or more compared to the levels detected from the control virus. Microarray results were further examined by qPCR analysis of selected genes. In combination, these data show that deletion of the pp31 gene was not lethal and did not appear to affect viral DNA replication but resulted in an apparent modest down-regulation of a subset of AcMNPV genes that included both early and late genes.
Collapse
Affiliation(s)
- Junya Yamagishi
- Boyce Thompson Institute at Cornell University, Ithaca, NY 14853
| | | | | | - Gary W. Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, NY 14853
| |
Collapse
|
50
|
Feng Q, Liu Y, Qu X, Deng H, Ding M, Lau TLT, Yu ACH, Chen J. Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. DNA Cell Biol 2007; 25:668-73. [PMID: 17184168 DOI: 10.1089/dna.2006.25.668] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The baculovirus surface display technique has provided an ideal tool to display foreign proteins with natural conformation, functions, and immunogenicity. In this work, we explored the application of this technique on SARS-associated coronavirus (SARS-CoV) spike (S) protein, and further analyzed the immunogenicity of displayed S protein. The entire ectodomain of S protein was fused between the gp64 signal peptide and the VSV-G membrane anchor and successfully displayed on the baculovirus surface. Subcutaneous injection with purified S-displayed baculoviruses without adjuvant elicited highly effective production of specific and neutralizing antibodies against S protein in mice. These results confirmed a successful surface display of S protein on baculoviruse, and suggested a potential role of S-displayed baculoviruses as a novel live virus-based vaccine candidate for SARS-CoV.
Collapse
Affiliation(s)
- Qian Feng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|