1
|
Charudattan R. Use of plant viruses as bioherbicides: the first virus-based bioherbicide and future opportunities. PEST MANAGEMENT SCIENCE 2024; 80:103-114. [PMID: 37682594 DOI: 10.1002/ps.7760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Until recently, only a few plant viruses had been studied for use as biological control agents for weeds, but none had been developed into a registered bioherbicide. This position changed in 2014, when the US Environmental Protection Agency granted an unrestricted Section 3 registration for tobacco mild green mosaic virus (TMGMV) strain U2 as a herbicide active ingredient for a commercial bioherbicide (SolviNix LC). It is approved for the control of tropical soda apple (TSA, Solanum viarum), an invasive 'noxious weed' in the United States. TSA is a problematic weed in cattle pastures and natural areas in Florida. The TMGMV-U2 product kills TSA consistently, completely, and within a few weeks after its application. It is part of the TSA integrated best management practice in Florida along with approved chemical herbicides and a classical biocontrol agent, Gratiana boliviana (Coleoptera: Chrysomelidae). TMGMV is nonpathogenic and nontoxic to humans, animals, and other fauna, environmentally safe, and as effective as chemical herbicides. Unlike the insect biocontrol agent, TMGMV kills and eliminates the weed from fields and helps recycle the dead biomass in the soil. Here the discovery, proof of concept, mode of action, risk analyses, application methods and tools, field testing, and development of the virus as the commercial product are reviewed. Also reviewed here are the data and scientific justifications advanced to answer the concerns raised about the use of the virus as a herbicide. The prospects for discovery and development of other plant-virus-based bioherbicides are discussed. © 2023 Society of Chemical Industry.
Collapse
|
2
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
3
|
Fine Mapping the Soybean Mosaic Virus Resistance Gene in Soybean Cultivar Heinong 84 and Development of CAPS Markers for Rapid Identification. Viruses 2022; 14:v14112533. [PMID: 36423142 PMCID: PMC9697120 DOI: 10.3390/v14112533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Heinong 84 is one of the major soybean varieties growing in Northeast China, and is resistant to the infection of all strains of soybean mosaic virus (SMV) in the region including the most prevalent strain, N3. However, the resistance gene(s) in Heinong 84 and the resistant mechanism are still elusive. In this study, genetic and next-generation sequencing (NGS)-based bulk segregation analysis (BSA) were performed to map the resistance gene using a segregation population from the cross of Heinong 84 and a susceptible cultivar to strain N3, Zhonghuang 13. Results show that the resistance of Heinong 84 is controlled by a dominant gene on chromosome 13. Further analyses suggest that the resistance gene in Heinong 84 is probably an allele of Rsv1. Finally, two pairs of single-nucleotide-polymorphism (SNP)-based primers that are tightly cosegregated with the resistance gene were designed for rapidly identifying resistant progenies in breeding via the cleaved amplified polymorphic sequence (CAPS) assay.
Collapse
|
4
|
Usovsky M, Chen P, Li D, Wang A, Shi A, Zheng C, Shakiba E, Lee D, Canella Vieira C, Lee YC, Wu C, Cervantez I, Dong D. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses 2022; 14:1122. [PMID: 35746594 PMCID: PMC9230979 DOI: 10.3390/v14061122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV-soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype-strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA;
| | - Pengyin Chen
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Dexiao Li
- College of Agronomy, Northwest University of Agriculture, Jiangling, Xianyang 712100, China;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Ehsan Shakiba
- Rice Research and Extension Center, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Stuttgart, AR 72160, USA;
| | - Dongho Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Caio Canella Vieira
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Yi Chen Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Innan Cervantez
- Bayer CropScience, Global Soybean Breeding, 1781 Gavin Road, Marion, AR 72364, USA;
| | - Dekun Dong
- Soybean Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
5
|
Gao L, Wu Y, An J, Huang W, Liu X, Xue Y, Luan X, Lin F, Sun L. Pathogenicity and genome-wide sequence analysis reveals relationships between soybean mosaic virus strains. Arch Virol 2022; 167:517-529. [PMID: 35024966 PMCID: PMC8755985 DOI: 10.1007/s00705-021-05271-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Soybean mosaic virus (SMV) is the most prevalent viral pathogen in soybean. In China, the SMV strains SC and N are used simultaneously in SMV resistance assessments of soybean cultivars, but the pathogenic relationship between them is unclear. In this study, SMV strains N1 and N3 were found to be the most closely related to SC18. Moreover, N3 was found to be more virulent than N1. A global pathotype classification revealed the highest level of genetic diversity in China. The N3 type was the most frequent and widespread worldwide, implying that SMV possibly originated in China and spread across continents through the dissemination of infected soybean. It also suggests that the enhanced virulence of N3 facilitated its spread and adaptability in diverse geographical and ecological regions worldwide. Phylogenetic analysis revealed prominent geographical associations among SMV strains/isolates, and genomic nucleotide diversity analysis and neutrality tests demonstrated that the whole SMV genome is under negative selection, with the P1 gene being under the greatest selection pressure. The results of this study will facilitate the nationwide use of SMV-resistant soybean germplasm and could provide useful insights into the molecular variability, geographical distribution, phylogenetic relationships, and evolutionary history of SMV around the world.
Collapse
Affiliation(s)
- Le Gao
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, China.
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie An
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Zehra A, Swapnil P. Role of Microbial Bioagents as Elicitors in Plant Defense Regulation. TRANSCRIPTION FACTORS FOR BIOTIC STRESS TOLERANCE IN PLANTS 2022:103-128. [DOI: 10.1007/978-3-031-12990-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
7
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
8
|
Zanardo LG, Trindade TA, Mar TB, Barbosa TMC, Milanesi DF, Alves MS, Lima RRPN, Zerbini FM, Janssen A, Mizubuti ESG, Elliot SL, Carvalho CM. Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Res 2021; 303:198389. [PMID: 33716182 DOI: 10.1016/j.virusres.2021.198389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Major themes in pathogen evolution are emergence, evolution of virulence, host adaptation and the processes that underlie them. RNA viruses are of particular interest due to their rapid evolution. The in vivo molecular evolution of an RNA plant virus was demonstrated here using a necrotic isolate of cowpea mild mottle virus (CPMMV) and a susceptible soybean genotype submitted to serial inoculations. We show that the virus lost the capacity to cause necrosis after six passages through the host plant. When a severe bottleneck was imposed, virulence reduction occurred in the second passage. The change to milder symptoms had fitness benefits for the virus (higher RNA accumulation) and for its vector, the whitefly Bemisia tabaci. Genetic polymorphisms were highest in ORF1 (viral replicase) and were independent of the symptom pattern. Recombination was a major contributor to this diversity - even with the strong genetic bottleneck, recombination events and hot spots were detected within ORF1. Virulence reduction was associated with different sites in ORF1 associated to recombination events in both experiments. Overall, the results demonstrate that the reduction in virulence was a consequence of the emergence of new variants, driven by recombination. Besides providing details of the evolutionary mechanisms behind a reduction in virulence and its effect under viral and vector fitness, we propose that this recombination-driven switch in virulence allows the pathogen to rapidly adapt to a new host and, potentially, switch back.
Collapse
Affiliation(s)
- Larissa G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tiago A Trindade
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Talita B Mar
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tarsiane M C Barbosa
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diogo F Milanesi
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Murilo S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Roberta R P N Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil; IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Simon L Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudine M Carvalho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
9
|
Clarke R, Webster CG, Kehoe MA, Coutts BA, Broughton S, Warmington M, Jones RAC. Epidemiology of Zucchini yellow mosaic virus in cucurbit crops in a remote tropical environment. Virus Res 2020; 281:197897. [PMID: 32087188 DOI: 10.1016/j.virusres.2020.197897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022]
Abstract
In the remote Ord River Irrigation Area (ORIA) in tropical northwest Australia, severe Zucchini yellow mosaic virus (ZYMV) epidemics threaten dry season (April-October) cucurbit crops. In 2016-2017, wet season (November-March) sampling studies found a low incidence ZYMV infection in wild Cucumis melo and Citrullus lanatus var. citroides plants, and both volunteer and garden crop cucurbits. Such infections enable its persistence in the wet season, and act as reservoirs for its spread to commercial cucurbit crops during the dry season. Tests on 1019 samples belonging to 55 species from 23 non-cucurbitaceous plant families failed to detect ZYMV. It was also absent from wild cucurbit weeds within sandalwood plantations. The transmission efficiencies of a local isolate by five aphid species found in the ORIA were: 10 % (Aphis craccivora), 7% (A. gossypii), 4% (A. nerii), and 0% (Rhopalosiphum maidis and Hysteroneura setariae). In 2016-2017, in all-year-round trapping at five representative sites, numbers of winged aphids caught were greatest in July-August (i.e. mid growing season) but varied widely between trap sites reflecting local aphid host abundance and year. Apart from one localised exception in 2017, flying aphid numbers caught and ZYMV spread in data collection blocks during 2015-2017 resembled what occurred commercial cucurbit crops. When ZYMV spread from external infection sources into melon blocks, its predominant spread pattern consisted of 1 or 2 plant infection foci often occurring at their margins. In addition, when plants of 29 cucurbit cultivars were inoculated with an ORIA isolate and two other ZYMV isolates and the phenotypes elicited were compared, they resembled each other in overall virulence. However, depending upon isolate-cultivar combination, differences in symptom expression and severity occurred, and one isolate caused a systemic hypersensitive phenotype in honeydew melon cvs Estilo and Whitehaven. When the new genomic RNA sequences of 19 Australian isolates were analysed, all seven ORIA isolates fitted within ZYMV phylogroup B, which also included two from southwest Australia, whereas the remaining 10 isolates were all within minor phylogroups A-I or A-II. Based on previous research and the additional knowledge of ZYMV epidemic drivers established here, an integrated disease management strategy targeting ZYMV spread was devised for the ORIA's cucurbit industry.
Collapse
Affiliation(s)
| | - Craig G Webster
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Monica A Kehoe
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Brenda A Coutts
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Sonya Broughton
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Mark Warmington
- Department of Primary Industries and Regional Development, Kununurra, WA 6743, Australia
| | - Roger A C Jones
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia; Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
10
|
Soybean Resistance to Soybean Mosaic Virus. PLANTS 2020; 9:plants9020219. [PMID: 32046350 PMCID: PMC7076706 DOI: 10.3390/plants9020219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.
Collapse
|
11
|
Tian A, Miyashita S, Ando S, Takahashi H. Single Amino Acid Substitutions in the Cucumber Mosaic Virus 1a Protein Induce Necrotic Cell Death in Virus-Inoculated Leaves without Affecting Virus Multiplication. Viruses 2020; 12:v12010091. [PMID: 31941092 PMCID: PMC7019621 DOI: 10.3390/v12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
When Arabidopsis thaliana ecotype Col-0 was inoculated with a series of reassortant viruses created by exchanging viral genomic RNAs between two strains of cucumber mosaic virus (CMV), CMV(Y), and CMV(H), cell death developed in the leaves inoculated with reassortant CMV carrying CMV(H) RNA1 encoding 1a protein, but not in noninoculated upper leaves. In general, cell death in virus-infected plants is a critical event for virus survival because virus multiplication is completely dependent on host cell metabolism. However, interestingly, this observed cell death did not affect either virus multiplication in the inoculated leaves or systemic spread to noninoculated upper leaves. Furthermore, the global gene expression pattern of the reassortant CMV-inoculated leaves undergoing cell death was clearly different from that in hypersensitive response (HR) cell death, which is coupled with resistance to CMV. These results indicated that the observed cell death does not appear to be HR cell death but rather necrotic cell death unrelated to CMV resistance. Interestingly, induction of this necrotic cell death depended on single amino acid substitutions in the N-terminal region surrounding the methyltransferase domain of the 1a protein. Thus, development of necrotic cell death might not be induced by non-specific damage as a result of virus multiplication, but by a virus protein-associated mechanism. The finding of CMV 1a protein-mediated induction of necrotic cell death in A. thaliana, which is not associated with virus resistance and HR cell death, has the potential to provide a new pathosystem to study the role of cell death in virus–host plant interactions.
Collapse
|
12
|
Tomlinson KR, Pablo‐Rodriguez JL, Bunawan H, Nanyiti S, Green P, Miller J, Alicai T, Seal SE, Bailey AM, Foster GD. Cassava brown streak virus Ham1 protein hydrolyses mutagenic nucleotides and is a necrosis determinant. MOLECULAR PLANT PATHOLOGY 2019; 20:1080-1092. [PMID: 31154674 PMCID: PMC6640186 DOI: 10.1111/mpp.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.
Collapse
Affiliation(s)
- Katie R. Tomlinson
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - José Luis Pablo‐Rodriguez
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- CINVESTAVCampus IrapuatoMexico
| | - Hamidun Bunawan
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan Malaysia, UKMBangi43600Selangor Darul EhsanMalaysia
| | - Sarah Nanyiti
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- National Crops Resources Research Institute (NaCRRI)P.O. Box 7084KampalaUganda
| | - Patrick Green
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Josie Miller
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI)P.O. Box 7084KampalaUganda
| | - Susan E. Seal
- Natural Resources InstituteChatham Maritime, KentME4 4TBUK
| | - Andy M. Bailey
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Gary D. Foster
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| |
Collapse
|
13
|
Luan H, Niu H, Luo J, Zhi H. Soybean Cytochrome b5 Is a Restriction Factor for Soybean Mosaic Virus. Viruses 2019; 11:E546. [PMID: 31212671 PMCID: PMC6631803 DOI: 10.3390/v11060546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybeans (Glycine max). In this study, an interaction between the SMV P3 protein and cytochrome b5 was detected by yeast two-hybrid assay, and bimolecular fluorescence complementation assay showed that the interaction took place at the cell periphery. Further, the interaction was confirmed by co-immunoprecipitation analysis. Quantitative real-time polymerase chain reaction analysis revealed that GmCYB5 gene was differentially expressed in resistant and susceptible soybean plants after inoculation with SMV-SC15 strain. To test the involvement of this gene in SMV resistance, the GmCYB5 was silenced using a bean pod mottle virus (BPMV)-based vector construct. Results showed that GmCYB5-1 was 83% and 99% downregulated in susceptible (NN1138-2) and resistant (RN-9) cultivars, respectively, compared to the empty vector-treated plants. Silencing of GmCYB5 gene promotes SMV replication in soybean plants. Our results suggest that during SMV infection, the host CYB5 protein targets P3 protein to inhibit its proliferation. Taken together, these results suggest that CYB5 is an important factor in SMV infection and replication in soybeans, which could help soybean breeders develop SMV resistant soybean cultivars.
Collapse
Affiliation(s)
- Hexiang Luan
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haopeng Niu
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinyan Luo
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. MOLECULAR PLANT PATHOLOGY 2018; 19:1563-1579. [PMID: 29134790 PMCID: PMC6638002 DOI: 10.1111/mpp.12644] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
TAXONOMY Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.
Collapse
Affiliation(s)
- M. R. Hajimorad
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTN 37996USA
| | - L. L. Domier
- United States Department of Agriculture‐Agricultural Research Service and Department of Crop SciencesUniversity of IllinoisUrbanaIL 61801USA
| | - S. A. Tolin
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - S. A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
15
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
16
|
Jones RAC, Vincent SJ. Strain-Specific Hypersensitive and Extreme Resistance Phenotypes Elicited by Potato virus Y Among 39 Potato Cultivars Released in Three World Regions Over a 117-Year Period. PLANT DISEASE 2018; 102:185-196. [PMID: 30673468 DOI: 10.1094/pdis-06-17-0901-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Strain-specific hypersensitive (HR) and extreme resistance (ER) phenotypes elicited in potato plants by three Potato virus Y (PVY) isolates in strain groups PVYO (BL and DEL3) and PVYD (KIP1) were studied. PVYO and PVYD isolates elicit HR genes Ny or putative Nd, respectively, and all three isolates elicit ER gene Ry. They were inoculated to 39 Australasian, European, or North American potato cultivars released over a 117-year period and harvested tubers were replanted. Both primary and secondary symptoms were recorded. Two European cultivars always developed ER following sap and graft inoculation and, thus, carried comprehensive PVY resistance gene Ry. One Australasian and two European cultivars always developed susceptible phenotypes and, thus, lacked genes Ry, Ny, and putative Nd. Sap inoculation with isolate KIP1 elicited localized HR (LHR) in 31 cultivars and both LHR and systemic HR (SHR) in three others; thus, all carried putative Nd. Isolates BL and DEL3 both elicited susceptible phenotypes in 11 of these 34 cultivars but LHR alone, SHR alone, or both LHR and SHR in the other 23 which, therefore, all carry Ny. With these two isolates, SHR expression ranged from very severe to very weak, with the greatest numbers of isolate-cultivar combinations occurring in the severe category with BL (n = 11) and moderate category (n = 12) with DEL3. Within the same isolate-cultivar combination, overall, SHR symptom expression was weaker with secondary than primary infection. With both primary and secondary infection, SHR expression was most severe with KIP1 and weakest with DEL3. Genes Ny and putative Nd were present in cultivars released between 1939 and 2010 or 1893 and 2010, respectively, occurring in cultivars from all three world regions. These findings have important implications concerning breeding new PVY-resistant potato cultivars, especially for countries lacking healthy seed potato stocks, or where subsistence farmers cannot afford them. An alternative to including gene Ry is incorporating as many strain-specific PVY resistance genes as possible.
Collapse
Affiliation(s)
- Roger A C Jones
- Department of Agriculture and Food, Bentley Delivery Centre, WA 6983, Australia; and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA 6009, Australia
| | - Stuart J Vincent
- Department of Agriculture and Food, Bentley Delivery Centre, WA 6983, Australia
| |
Collapse
|
17
|
Seo JK, Kwak HR, Choi B, Han SJ, Kim MK, Choi HS. Movement protein of broad bean wilt virus 2 serves as a determinant of symptom severity in pepper. Virus Res 2017; 242:141-145. [PMID: 28970056 DOI: 10.1016/j.virusres.2017.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Broad bean wilt virus 2 (BBWV2, genus Fabavirus, family Secoviridae) has a wide host range and infects many economically important crops. Various isolates of BBWV2 have been identified from diverse host plants, and their molecular and biological characteristics have been investigated. In our previous study, we demonstrated that BBWV2 RNA2 contains a symptom determinant(s) capable of enhancing symptom severity by utilizing infectious full-length cDNA clones of two distinct strains of BBWV2, pBBWV2-PAP1 (a severe strain) and pBBWV2-RP1 (a mild strain). In the present study, to identify the symptom determinant(s) of BBWV2, we exploited disease responses of pBBWV2-PAP1- and pBBWV2-RP1-derived chimeric viruses and amino acid substitution mutant viruses in Nicotiana benthamiana and pepper (Capsicum annuum Quarri) and demonstrated that the movement protein (MP) encoded in BBWV RNA2 is the determinant of disease symptom severity in both plants. A single amino acid substitution in the MP was sufficient for changing symptom severity of BBWV2. Our finding provides a role for the MP as a symptom determinant in BBWV2 and increases the understanding of the basis of molecular interactions between host plants and BBWV2.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Boram Choi
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Mi-Kyeong Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
18
|
Chen H, Adam Arsovski A, Yu K, Wang A. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to Soybean mosaic virus infection in soybean. MOLECULAR PLANT PATHOLOGY 2017; 18:391-404. [PMID: 27019403 PMCID: PMC6638201 DOI: 10.1111/mpp.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 05/23/2023]
Abstract
Rsv1, a single dominant resistance locus in soybean, confers extreme resistance to the majority of Soybean mosaic virus (SMV) strains, but is susceptible to the G7 strain. In Rsv1-genotype soybean, G7 infection provokes a lethal systemic hypersensitive response (LSHR), a delayed host defence response. The Rsv1-mediated LSHR signalling pathway remains largely unknown. In this study, we employed a genome-wide investigation to gain an insight into the molecular interplay between SMV G7 and Rsv1-genotype soybean. Small RNA (sRNA), degradome and transcriptome sequencing analyses were used to identify differentially expressed genes (DEGs) and microRNAs (DEMs) in response to G7 infection. A number of DEGs, DEMs and microRNA targets, and the interaction network of DEMs and their target mRNAs responsive to G7 infection, were identified. Knock-down of one of the identified DEGs, the eukaryotic translation initiation factor 5A (eIF5A), diminished the LSHR and enhanced viral accumulation, suggesting the essential role of eIF5A in the G7-induced, Rsv1-mediated LSHR signalling pathway. This work provides an in-depth genome-wide analysis of high-throughput sequencing data, and identifies multiple genes and microRNA signatures that are associated with the Rsv1-mediated LSHR.
Collapse
Affiliation(s)
- Hui Chen
- London Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaONCanadaN5T 4T3
- Department of BiologyUniversity of Western OntarioLondonONCanadaN6A 5B7
| | - Andrej Adam Arsovski
- London Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaONCanadaN5T 4T3
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri‐Food CanadaHarrowONCanadaN0R 1G0
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaONCanadaN5T 4T3
- Department of BiologyUniversity of Western OntarioLondonONCanadaN6A 5B7
| |
Collapse
|
19
|
Liu JZ, Fang Y, Pang H. The Current Status of the Soybean- Soybean Mosaic Virus (SMV) Pathosystem. Front Microbiol 2016; 7:1906. [PMID: 27965641 PMCID: PMC5127794 DOI: 10.3389/fmicb.2016.01906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with the newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Hongxi Pang
- College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Tatineni S, Wosula EN, Bartels M, Hein GL, Graybosch RA. Temperature-Dependent Wsm1 and Wsm2 Gene-Specific Blockage of Viral Long-Distance Transport Provides Resistance to Wheat streak mosaic virus and Triticum mosaic virus in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:724-738. [PMID: 27551888 DOI: 10.1094/mpmi-06-16-0110-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein-tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | | | - Melissa Bartels
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Gary L Hein
- 2 Department of Entomology, University of Nebraska-Lincoln; and
| | - Robert A Graybosch
- 3 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| |
Collapse
|
21
|
Luan H, Shine MB, Cui X, Chen X, Ma N, Kachroo P, Zhi H, Kachroo A. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis. PLANT PHYSIOLOGY 2016; 172:221-34. [PMID: 27356973 PMCID: PMC5074642 DOI: 10.1104/pp.16.00505] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.
Collapse
Affiliation(s)
- Hexiang Luan
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - M B Shine
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Xiaoyan Cui
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Xin Chen
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Na Ma
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Pradeep Kachroo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Haijan Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Aardra Kachroo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| |
Collapse
|
22
|
Wang Y, Hajimorad MR. Gain of virulence by Soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host. MOLECULAR PLANT PATHOLOGY 2016; 17:1154-9. [PMID: 26662495 PMCID: PMC6638382 DOI: 10.1111/mpp.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
'Gene-for-gene' theory predicts that gain of virulence by an avirulent pathogen on plants expressing resistance (R) genes is associated with fitness loss in susceptible hosts. However, the validity of this prediction has been studied in only a few plant viral pathosystems. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to test this prediction. In Rsv4-genotype soybeans, P3 of avirulent SMV strains provokes an as yet uncharacterized resistance mechanism that restricts the invading virus to the inoculated leaves. A single amino acid substitution in P3 functionally converts an avirulent to a virulent strain, suggesting that the genetic composition of P3 plays a crucial role in virulence on Rsv4-genotype soybeans. In this study, we examined the impact of gain of virulence mutation(s) on the fitness of virulent variants derived from three avirulent SMV strains in a soybean genotype lacking the Rsv4 gene. Our data demonstrate that gain of virulence mutation(s) by all avirulent viruses on Rsv4-genotype soybean is associated with a relative fitness loss in a susceptible host. The implications of this finding on the durable deployment of the Rsv4 gene in soybean are discussed.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
23
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
24
|
Nyalugwe EP, Barbetti MJ, Clode PL, Jones RAC. Systemic Hypersensitive Resistance to Turnip mosaic virus in Brassica juncea is Associated With Multiple Defense Responses, Especially Phloem Necrosis and Xylem Occlusion. PLANT DISEASE 2016; 100:1261-1270. [PMID: 30686210 DOI: 10.1094/pdis-12-15-1459-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Systemic hypersensitive resistance (SHR) caused by Turnip mosaic virus (TuMV) was studied by light microscopy and histochemical analysis in stem cross sections of Brassica juncea (Indian mustard) plants. Ten TuMV isolates were inoculated to leaves of susceptible line JM 06006, cv. Oasis CI, which carries TuMV systemic hypersensitivity gene TuRBJU 01, and F3 progeny plants obtained from a cross between them. Systemic mosaic (SM) symptoms were induced by all 10 isolates in plants of JM 06006, and by resistance-breaking isolate NSW-3 in all cv. Oasis CI and F3 plants. With the other nine isolates, cv. Oasis CI plants developed SHR while F3 progeny plants segregated for both phenotypes; mock-inoculated control plants never became infected. Presence of SHR did not delay systemic invasion as this commenced within 2 hours after inoculation (hai) and was almost complete by 72 hai regardless of whether plants subsequently developed SHR or SM. When stem cross sections sampled 9 to 12 days after inoculation were examined for the plant defense responses, phloem necrosis, hydrogen peroxide accumulation, and additional lignin deposition, sections from plants with SHR demonstrated all of these characteristics, but sections from plants with SM or mock-inoculation did not. Based on consolidated data from all isolates except NSW-3, stems developing SHR had significantly more occluded xylem vessels (P < 0.001) compared with stems from plants developing SM or mock-inoculated plants. Both light microscopy and histochemical tests with phloroglucinol-HCl and toluidine blue O indicated that the xylem occlusions could be gels. Thus, phloem necrosis, xylem occlusion, lignification, and hydrogen peroxide accumulation were all associated with the SHR in B. juncea plants carrying TuMV hypersensitivity gene TuRBJU 01. In addition, virus inclusion bodies were fewer in sections from plants with SHR. Phloem necrosis was apparently acting as the primary cause of SHR and xylem occlusion as an important secondary cause.
Collapse
Affiliation(s)
- Eviness P Nyalugwe
- School of Plant Biology and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Martin J Barbetti
- School of Plant Biology and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Roger A C Jones
- School of Plant Biology and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia, and Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia
| |
Collapse
|
25
|
Sempere RN, Gómez-Aix C, Ruíz-Ramón F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates. PHYTOPATHOLOGY 2016; 106:395-406. [PMID: 26667188 DOI: 10.1094/phyto-10-15-0277-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.
Collapse
Affiliation(s)
- Raquel N Sempere
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Cristina Gómez-Aix
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Fabiola Ruíz-Ramón
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Pedro Gómez
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Beata Hasiów-Jaroszewska
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - María Amelia Sánchez-Pina
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Miguel A Aranda
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| |
Collapse
|
26
|
Kwak HR, Lee YJ, Kim J, Kim MK, Kim JS, Choi HS, Seo JK. A determinant of disease symptom severity is located in RNA2 of broad bean wilt virus 2. Virus Res 2016; 211:25-8. [PMID: 26428303 DOI: 10.1016/j.virusres.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022]
Abstract
Broad bean wilt virus 2 (BBWV2), which belongs to the genus Fabavirus, is a destructive pathogen of many economically important horticultural and ornamental crops. In this study, we constructed infectious full-length cDNA clones of two distinct isolates of BBWV2 under control of the cauliflower mosaic virus 35S promoter. BBWV2-PAP1 isolated from paprika (Capsicum annuum var. gulosum) induces severe disease symptoms in various pepper varieties, whereas BBWV2-RP1 isolated from red pepper (Capsicum annuum L.) causes mild symptoms. Agrobacterium-mediated inoculation of the infectious cDNA clones of BBWV2-PAP1 and RP1 resulted in the same symptoms as the original virus isolates. The infectious cDNA clones of BBWV2-PAP1 and RP1 were used to examine the symptoms induced by pseudorecombinants between the two isolates to localize in which of the two genomic RNAs are the symptom severity determinants in BBWV2. The pseudorecombinant of RP1-RNA1 and PAP1-RNA2 induced severe symptoms, similar to those caused by the parental isolate PAP1, whereas the pseudorecombinant of PAP1-RNA1 and RP1-RNA2 induced mild symptoms, similar to those caused by the parental isolate RP1. Our results suggest that BBWV2 RNA2 contains a symptom determinant(s) capable of enhancing symptom severity.
Collapse
Affiliation(s)
- Hae-Ryun Kwak
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Ye-Ji Lee
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jaedeok Kim
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Mi-Kyeong Kim
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jeong-Soo Kim
- Department of Plant Medicine, Andong National University, Andong 760-749, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea.
| | - Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea.
| |
Collapse
|
27
|
Zhou GC, Shao ZQ, Ma FF, Wu P, Wu XY, Xie ZY, Yu DY, Cheng H, Liu ZH, Jiang ZF, Chen QS, Wang B, Chen JQ. The evolution of soybean mosaic virus: An updated analysis by obtaining 18 new genomic sequences of Chinese strains/isolates. Virus Res 2015; 208:189-98. [PMID: 26103098 DOI: 10.1016/j.virusres.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Soybean mosaic virus (SMV) is widely recognized as a highly damaging pathogen of soybean, and various strains/isolates have been reported to date. However, the pathogenic differences and phylogenetic relationships of these SMV strains/isolates have not been extensively studied. In the present work, by first obtaining 18 new genomic sequences of Chinese SMV strains/isolates and further compiling these with available data, we have explored the evolution of SMV from multiple aspects. First, as in other potyviruses, recombination has occurred frequently during SMV evolution, and a total of 32 independent events were detected. Second, using a maximum-likelihood method and removing recombinant fragments, a phylogeny covering 83 SMV sequences sampled from all over the world was reconstructed and the results showed four separate SMV clades, with clade I and II recovered for the first time. Third, the population structure analysis of SMV revealed significant genetic differentiations between China and two other countries (Korea and U.S.A.). Fourth, certain SMV-encoded genes, such as P1, HC-Pro and P3, exhibited higher non-synonymous substitution rate (dN) than synonymous substitution rate (dS), indicating that positive selection has influenced these genes. Finally, four Chinese SMV strains/isolates were selected for inoculation of both USA and Chinese differential soybean cultivars, and their pathogenic phenotypes were significantly different from that of the American strains. Overall, these findings have further broadened our understanding on SMV evolution, which would assist researchers to better deal with this harmful virus.
Collapse
Affiliation(s)
- Guang-Can Zhou
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhu-Qing Shao
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ping Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Yi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhong-Yun Xie
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Zhi-Hua Liu
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, China
| | - Zhen-Feng Jiang
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
28
|
Wang Y, Khatabi B, Hajimorad MR. Amino acid substitution in P3 of Soybean mosaic virus to convert avirulence to virulence on Rsv4-genotype soybean is influenced by the genetic composition of P3. MOLECULAR PLANT PATHOLOGY 2015; 16:301-7. [PMID: 25040594 PMCID: PMC6638367 DOI: 10.1111/mpp.12175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modification of avirulence factors of plant viruses by one or more amino acid substitutions converts avirulence to virulence on hosts containing resistance genes. Limited experimental studies have been conducted on avirulence/virulence factors of plant viruses, in particular those of potyviruses, to determine whether avirulence/virulence sites are conserved among strains. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to determine whether: (i) avirulence/virulence determinants of SMV reside exclusively on P3 regardless of virus strain; and (ii) the sites residing on P3 and crucial for avirulence/virulence of isolates belonging to strain G2 are also involved in virulence of avirulent isolates belonging to strain G7. The results confirm that avirulence/virulence determinants of SMV on Rsv4-genotype soybean reside exclusively on P3. Furthermore, the data show that sites involved in the virulence of SMV on Rsv4-genotype soybean vary among strains, with the genetic composition of P3 playing a crucial role.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
29
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
30
|
Galvez LC, Banerjee J, Pinar H, Mitra A. Engineered plant virus resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:11-25. [PMID: 25438782 DOI: 10.1016/j.plantsci.2014.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 06/04/2023]
Abstract
Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.
Collapse
Affiliation(s)
- Leny C Galvez
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Joydeep Banerjee
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Hasan Pinar
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Amitava Mitra
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA.
| |
Collapse
|
31
|
Seo JK, Kwon SJ, Cho WK, Choi HS, Kim KH. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci Rep 2014; 4:5905. [PMID: 25082428 PMCID: PMC5379993 DOI: 10.1038/srep05905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023] Open
Abstract
Effector-triggered immunity (ETI) is an active immune response triggered by interactions between host resistance proteins and their cognate effectors. Although ETI is often associated with the hypersensitive response (HR), various R genes mediate an HR-independent process known as extreme resistance (ER). In the soybean-Soybean mosaic virus (SMV) pathosystem, the strain-specific CI protein of SMV functions as an effector of Rsv3-mediated ER. In this study, we used the soybean (Rsv3)-SMV (CI) pathosystem to gain insight into the molecular signaling pathway involved in ER. We used genome-wide transcriptome analysis to identify a subset of the type 2C protein phophatase (PP2C) genes that are specifically up-regulated in Rsv3-mediated ER. Gain-of-function analysis of the most significantly expressed soybean PP2C gene, GmPP2C3a, showed that ABA-induced GmPP2C3a functions as a key regulator of Rsv3-mediated ER. Our results further suggest that the primary mechanism of ER against viruses is the inhibition of viral cell-to-cell movement by callose deposition in an ABA signaling-dependent manner.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Sun-Jung Kwon
- Horticultural and Crop Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 440-310, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
32
|
Feng X, Poplawsky AR, Nikolaeva OV, Myers JR, Karasev AV. Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean. PHYTOPATHOLOGY 2014; 104:786-793. [PMID: 24915430 DOI: 10.1094/phyto-08-13-0243-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bean common mosaic virus (BCMV) exists as a complex of strains classified by reactions to resistance genes found in common bean (Phaseolus vulgaris); seven BCMV pathotypes have been distinguished thus far, numbered I to VII. Virus genetic determinants involved in pathogenicity interactions with resistance genes have not yet been identified. Here, we describe the characterization of two novel field isolates of BCMV that helped to narrow down these genetic determinants interacting with specific P. vulgaris resistance factors. Based on a biological characterization on common bean differentials, both isolates were classified as belonging to pathotype VII, similar to control isolate US10, and both isolates exhibited the B serotype. The whole genome was sequenced for both isolates and found to be 98 to 99% identical to the BCMV isolate RU1 (pathotype VI), and a single name was retained: BCMV RU1-OR. To identify a genetic determinant of BCMV linked to the BCMV pathotype VII, the whole genome was also sequenced for two control isolates, US10 and RU1-P. Inspection of the nucleotide sequences for BCMV RU1-OR and US10 (both pathotype VII) and three closely related sequences of BCMV (RU1-P, RU1-D, and RU1-W, all pathotype VI) revealed that RU1-OR originated through a series of recombination events between US10 and an as-yet-unidentified BCMV parental genome, resulting in changes in virus pathology. The data obtained suggest that a fragment of the RU1-OR genome between positions 723 and 1,961 nucleotides that is common to US10 and RU1-OR in the P1-HC-Pro region of the BCMV genome may be responsible for the ability to overcome resistance in bean conferred by the bc-2(2) gene. This is the first report of a virus genetic determinant responsible for overcoming a specific BCMV resistance gene in common bean.
Collapse
|
33
|
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:307. [PMID: 25018765 PMCID: PMC4073217 DOI: 10.3389/fpls.2014.00307] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 05/17/2023]
Abstract
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Patrick Butterbach
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
34
|
Lim HS, Nam J, Seo EY, Nam M, Vaira AM, Bae H, Jang CY, Lee CH, Kim HG, Roh M, Hammond J. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein. Virology 2014; 452-453:264-78. [PMID: 24606704 DOI: 10.1016/j.virol.2014.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/01/2013] [Accepted: 01/25/2014] [Indexed: 11/15/2022]
Abstract
Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CPSP) with that from AltMV-Po (CP(Po)) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP(Po) [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CPSP but not CP(Po) interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CPSP than CP(Po) in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Jiryun Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Eun-Young Seo
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Moon Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Anna Maria Vaira
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA; Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135, Italy.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Geongsan 712-749, Republic of Korea.
| | - Chan-Yong Jang
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Cheol Ho Lee
- Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704, Republic of Korea.
| | - Hong Gi Kim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Mark Roh
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA; Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714, Republic of Korea.
| | - John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA.
| |
Collapse
|
35
|
Abstract
Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.
Collapse
Affiliation(s)
- John H Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
36
|
Khatabi B, Wen RH, Hajimorad MR. Fitness penalty in susceptible host is associated with virulence of Soybean mosaic virus on Rsv1-genotype soybean: a consequence of perturbation of HC-Pro and not P3. MOLECULAR PLANT PATHOLOGY 2013; 14:885-97. [PMID: 23782556 PMCID: PMC6638797 DOI: 10.1111/mpp.12054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The multigenic Rsv1 locus in the soybean plant introduction (PI) 'PI96983' confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV-N, but not SMV-G7 and SMV-G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as 'Williams82' (rsv1), SMV-N induces severe disease symptoms and accumulates to a high level, whereas both SMV-G7 and SMV-G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV-N on Rsv1-genotype soybean requires concurrent mutations in both the helper-component proteinase (HC-Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide-binding leucine-rich repeat (NB-LRR) class, within the Rsv1 locus, independently mediating the recognition of HC-Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV-N on Rsv1-genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV-N, in Williams82 (rsv1). Furthermore, the evaluation of SMV-N-derived HC-Pro and P3 chimeras, containing homologous sequences from virulent SMV-G7 or SMV-G7d strains, as well as SMV-N-derived variants containing HC-Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC-Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1-genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC-Pro, but not in P3.
Collapse
Affiliation(s)
- B Khatabi
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
37
|
Tian YP, Valkonen JPT. Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:297-305. [PMID: 23113714 DOI: 10.1094/mpmi-09-12-0219-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato virus Y (PVY) (genus Potyvirus) is the most economically damaging and widely distributed virus in potato. Spread of PVY in the field is controlled by growing resistant cultivars. The dominant potato gene Ny(tbr) for hypersensitive resistance (HR) controls ordinary PVY strains (PVY(O)) but is overcome by PVY(N) strains. Studies with infectious PVY chimeras and mutants indicated that the viral determinants necessary and sufficient to overcome Ny(tbr) reside within the helper component proteinase (HC-Pro) (residues 227 to 327). Specifically, eight residues and the modeled three-dimensional conformation of this HC-Pro region distinguish PVY(N) from PVY(O) strains. According to the model, the conserved IGN and CCCT motifs implicated in potyvirus replication and movement, respectively, are situated in a coiled structure and an α-helix, respectively, within this region in PVY(O); however, their locations are reversed in PVY(N). Two residues (R269 and K270) are crucial for the predicted PVY(O)-specific HC-Pro conformation. Two viral chimeras triggered Ny(tbr) and induced veinal necrosis in tobacco, which is novel for PVY. One chimera belonged to strain group PVY(E). Our results suggest a structure-function relationship in recognition of PVY(O) HC-Pro by Ny(tbr), reveal HC-Pro amino acid signatures specific to PVY(O) and PVY(N), and facilitate identification of PVY strains overcoming Ny(tbr).
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, Finland
| | | |
Collapse
|
38
|
Wen RH, Khatabi B, Ashfield T, Saghai Maroof MA, Hajimorad MR. The HC-Pro and P3 cistrons of an avirulent Soybean mosaic virus are recognized by different resistance genes at the complex Rsv1 locus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:203-15. [PMID: 23051173 DOI: 10.1094/mpmi-06-12-0156-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The complex Rsv1 locus in soybean plant introduction (PI) 'PI96983' confers extreme resistance (ER) against Soybean mosaic virus (SMV) strain N but not SMV-G7 and SMV-G7d. Both the SMV helper-component proteinase (HC-Pro) and P3 cistrons can serve as avirulence factors recognized by Rsv1. To understand the genetics underlying recognition of the two cistrons, we have utilized two soybean lines (L800 and L943) derived from crosses between PI96983 (Rsv1) and Lee68 (rsv1) with distinct recombination events within the Rsv1 locus. L800 contains a single PI96983-derived member (3gG2) of an Rsv1-associated subfamily of nucleotide-binding leucine-rich repeat (NB-LRR) genes. In contrast, although L943 lacks 3gG2, it contains a suite of five other NB-LRR genes belonging to the same family. L800 confers ER against SMV-N whereas L943 allows limited replication at the inoculation site. SMV-N-derived chimeras containing HC-Pro from SMV-G7 or SMV-G7d gained virulence on L943 but not on L800 whereas those with P3 replacement gained virulence on L800 but not on L943. In reciprocal experiments, SMV-G7- and SMV-G7d-derived chimeras with HC-Pro replacement from SMV-N lost virulence on L943 but retained virulence on L800 whereas those with P3 replacement lost virulence on L800 while remaining virulent on L943. These data demonstrate that distinct resistance genes at the Rsv1 locus, likely belonging to the NB-LRR class, mediate recognition of HC-Pro and P3.
Collapse
Affiliation(s)
- R-H Wen
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang C, Grosic S, Whitham SA, Hill JH. The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1307-13. [PMID: 22712511 DOI: 10.1094/mpmi-02-12-0046-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soybean mosaic virus (SMV) is a major viral pathogen of soybean. Among the three SMV resistance genes, Rsv1 mediates extreme resistance (ER) against most SMV strains, including the β-glucuronidase-tagged G2 isolate that was previously used in studies of Rsv1. Using virus-induced gene silencing (VIGS), we screened 82 VIGS constructs to identify genes that play a role in Rsv1-mediated ER to SMV infection. The target genes included putative Rsv1 candidate genes, soybean orthologs to known defense-signaling genes, and 62 WRKY transcription factors. We identified eight VIGS constructs that compromised Rsv1-mediated resistance when the target genes were silenced, including GmEDR1, GmEDS1, GmHSP90, GmJAR1, GmPAD4, and two WRKY transcription factors. Together, our results provide new insight into the soybean signaling network required for ER against SMV.
Collapse
Affiliation(s)
- Chunquan Zhang
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, USA.
| | | | | | | |
Collapse
|
40
|
Chowda-Reddy RV, Sun H, Hill JH, Poysa V, Wang A. Simultaneous mutations in multi-viral proteins are required for soybean mosaic virus to gain virulence on soybean genotypes carrying different R genes. PLoS One 2011; 6:e28342. [PMID: 22140577 PMCID: PMC3227670 DOI: 10.1371/journal.pone.0028342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/06/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV.
Collapse
Affiliation(s)
- R. V. Chowda-Reddy
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Haiyue Sun
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - John H. Hill
- Department of Plant Pathology, Iowa State University, Ames, Iowa, United States of America
| | - Vaino Poysa
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
41
|
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011; 92:2691-2705. [PMID: 21900418 DOI: 10.1099/vir.0.034603-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.
Collapse
Affiliation(s)
- Vicente Pallas
- Instituto de Biología Molecular y Celular de las Plantas, CSIC-Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
42
|
Nakahara KS, Kitazawa H, Atsumi G, Choi SH, Suzuki Y, Uyeda I. Screening and analysis of genes expressed upon infection of broad bean with Clover yellow vein virus causing lethal necrosis. Virol J 2011; 8:355. [PMID: 21767375 PMCID: PMC3158773 DOI: 10.1186/1743-422x-8-355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Clover yellow vein virus (ClYVV) causes lethal systemic necrosis in legumes, including broad bean (Vicia faba) and pea (Pisum sativum). To identify host genes involved in necrotic symptom expression after ClYVV infection, we screened cDNA fragments in which expression was changed in advance of necrotic symptom expression in broad bean (V. faba cv. Wase) using the differential display technique and secondarily with Northern blot analysis. Expression changes were confirmed in 20 genes, and the six that exhibited the most change were analyzed further. These six genes included a gene that encodes a putative nitrate-induced NOI protein (VfNOI), and another was homologous to an Arabidopsis gene that encodes a glycine- and proline-rich protein GPRP (VfGPRP). We recently reported that necrotic symptom development in ClYVV-infected pea is associated with expression of salicylic acid (SA)-dependent pathogenesis-related (PR) proteins and requires SA-dependent host responses. Interestingly, VfNOI and VfGPRP expression was correlated with that of the putative SA-dependent PR proteins in ClYVV-infected broad bean. However, broad bean infected with a recombinant ClYVV expressing the VfGPRP protein showed weaker symptoms and less viral multiplication than that infected with ClYVV expressing the GFP protein. These results imply that VfGPRP plays a role in defense against ClYVV rather than in necrotic symptom expression.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiroaki Kitazawa
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Go Atsumi
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Sun Hee Choi
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuji Suzuki
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Ichiro Uyeda
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
43
|
Komatsu K, Hashimoto M, Maejima K, Shiraishi T, Neriya Y, Miura C, Minato N, Okano Y, Sugawara K, Yamaji Y, Namba S. A necrosis-inducing elicitor domain encoded by both symptomatic and asymptomatic Plantago asiatica mosaic virus isolates, whose expression is modulated by virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:408-20. [PMID: 21190438 DOI: 10.1094/mpmi-12-10-0279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hajimorad MR, Wen RH, Eggenberger AL, Hill JH, Maroof MAS. Experimental adaptation of an RNA virus mimics natural evolution. J Virol 2011; 85:2557-64. [PMID: 21191023 PMCID: PMC3067964 DOI: 10.1128/jvi.01935-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022] Open
Abstract
Identification of virulence determinants of viruses is of critical importance in virology. In search of such determinants, virologists traditionally utilize comparative genomics between a virulent and an avirulent virus strain and construct chimeras to map their locations. Subsequent comparison reveals sequence differences, and through analyses of site-directed mutants, key residues are identified. In the absence of a naturally occurring virulent strain, an avirulent strain can be functionally converted to a virulent variant via an experimental evolutionary approach. However, the concern remains whether experimentally evolved virulence determinants mimic those that have evolved naturally. To provide a direct comparison, we exploited a plant RNA virus, soybean mosaic virus (SMV), and its natural host, soybean. Through a serial in vivo passage experiment, the molecularly cloned genome of an avirulent SMV strain was converted to virulent variants on functionally immune soybean genotypes harboring resistance factor(s) from the complex Rsv1 locus. Several of the experimentally evolved virulence determinants were identical to those discovered through a comparative genomic approach with a naturally evolved virulent strain. Thus, our observations validate an experimental evolutionary approach to identify relevant virulence determinants of an RNA virus.
Collapse
Affiliation(s)
- M R Hajimorad
- Department of Entomology and Plant Pathology, The University of Tennessee, 205 Ellington Plant Sciences Bldg., Knoxville, TN 37996, USA.
| | | | | | | | | |
Collapse
|
45
|
Seo JK, Sohn SH, Kim KH. A single amino acid change in HC-Pro of soybean mosaic virus alters symptom expression in a soybean cultivar carrying Rsv1 and Rsv3. Arch Virol 2011; 156:135-41. [PMID: 20938695 DOI: 10.1007/s00705-010-0829-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/29/2010] [Indexed: 01/22/2023]
Abstract
It is generally believed that infidelity of RNA virus replication combined with R-gene-driven selection is one of the major evolutionary forces in overcoming host resistance. In this study, we utilized an avirulent soybean mosaic virus (SMV) mutant to examine the possibility of emergence of mutant viruses capable of overcoming R-gene-mediated resistance during serial passages. Interestingly, we found that the emerged progeny virus induced severe rugosity and local necrotic lesions in Jinpumkong-2 (Rsv1 + Rsv3) plants, while SMV-G7H provoked a lethal systemic hypersensitive response. Genome sequence analysis of the emerged progeny virus revealed that the mutation in CI that had caused SMV-G7H to lose its virulence was restored to the original sequence, and a single amino acid was newly introduced into HC-Pro, which means that the symptom alteration was due to this single amino acid mutation in HC-Pro. Our results suggest that SMV HC-Pro functions as a symptom determinant in the SMV-soybean pathosystem.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Korea
| | | | | |
Collapse
|
46
|
Chowda-Reddy RV, Sun H, Chen H, Poysa V, Ling H, Gijzen M, Wang A. Mutations in the P3 protein of Soybean mosaic virus G2 isolates determine virulence on Rsv4-genotype soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:37-43. [PMID: 20795856 DOI: 10.1094/mpmi-07-10-0158] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two Soybean mosaic virus (SMV) G2 isolates, L and L-RB, sharing high-sequence similarly but differing in ability to break Rsv4-mediated resistance in soybean, were investigated. Infectious clones corresponding to these two isolates and their chimeric clones resulting from swapping different regions of genomic cDNA between L and L-RB were constructed. Only L-RB or chimeras containing the middle fragment of L-RB cDNA showed virulence on Rsv4-genotype soybean. Sequence comparison analysis revealed that the middle genomic region of L and L-RB encodes four different amino acids. Point mutagenesis demonstrated that a single amino acid substitution (Q1033K) in the P3 protein determined virulence toward Rsv4 resistance. In addition, six new SMV Rsv4 resistance-breaking isolates, variants of the second passage on Williams 82 infected with the chimeras or mutants noninfectious on soybean carrying Rsv4, were obtained. Sequencing data indicated that these new isolates contain either the Q1033K mutation or a new substitution (G1054R) in P3. Site-directed mutagenesis confirmed the virulence role of the G1054R mutation on Rsv4-genotype soybean. Taken together, these data suggest that P3 of the SMV G2 strain is an avirulent determinant for Rsv4 and one single nucleotide mutation in P3 may be sufficient to compromise its elicitor function.
Collapse
Affiliation(s)
- R V Chowda-Reddy
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Yamaji Y, Hamada K, Yoshinuma T, Sakurai K, Yoshii A, Shimizu T, Hashimoto M, Suzuki M, Namba S, Hibi T. Inhibitory effect on the tobacco mosaic virus infection by a plant RING finger protein. Virus Res 2010; 153:50-7. [PMID: 20621138 DOI: 10.1016/j.virusres.2010.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/18/2022]
Abstract
In the yeast two-hybrid screening of plant factors interacting with tobacco mosaic virus (TMV) RNA-dependent RNA polymerase (RdRp), we found a protein containing a RING finger motif in tobacco (Nicotiana tabacum) and designated it as TARF (TMV-associated RING finger protein). TARF is a homologue of a Lotus japonicus RING finger protein (LjnsRING) involved in the symbiotic interaction between L. japonicus and Mesorhizobium loti. When TARF was silenced by virus-induced gene silencing (VIGS) method, TMV RNA accumulation as well as the number of foci formed by GFP-tagged TMV increased drastically. Transient overexpression of TARF reduced the accumulation of TMV. Moreover, TARF transcription was rapidly upregulated by the inoculation of TMV in tobacco plants. These results indicated that TARF is a RING finger protein that inhibits the accumulation of TMV via the interaction of TMV RdRp.
Collapse
Affiliation(s)
- Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 2010; 76:1-32. [PMID: 20965070 DOI: 10.1016/s0065-3527(10)76001-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Virus infection may damage the plant, and plant defenses are effective against viruses; thus, it is currently assumed that plants and viruses coevolve. However, and despite huge advances in understanding the mechanisms of pathogenicity and virulence in viruses and the mechanisms of virus resistance in plants, evidence in support of this hypothesis is surprisingly scant, and refers almost only to the virus partner. Most evidence for coevolution derives from the study of highly virulent viruses in agricultural systems, in which humans manipulate host genetic structure, what determines genetic changes in the virus population. Studies have focused on virus responses to qualitative resistance, either dominant or recessive but, even within this restricted scenario, population genetic analyses of pathogenicity and resistance factors are still scarce. Analyses of quantitative resistance or tolerance, which could be relevant for plant-virus coevolution, lag far behind. A major limitation is the lack of information on systems in which the host might evolve in response to virus infection, that is, wild hosts in natural ecosystems. It is presently unknown if, or under which circumstances, viruses do exert a selection pressure on wild plants, if qualitative resistance is a major defense strategy to viruses in nature, or even if characterized genes determining qualitative resistance to viruses did indeed evolve in response to virus infection. Here, we review evidence supporting plant-virus coevolution and point to areas in need of attention to understand the role of viruses in plant ecosystem dynamics, and the factors that determine virus emergence in crops.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
49
|
Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Okano Y, Kagiwada S, Namba S. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:283-93. [PMID: 20121450 DOI: 10.1094/mpmi-23-3-0283] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory Of Plant Pathology, Department Of Agricultural And Environmental Biology, Graduate School Of Agricultural And Life Sciences, The University Of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seo JK, Kang SH, Seo BY, Jung JK, Kim KH. Mutational analysis of interaction between coat protein and helper component-proteinase of Soybean mosaic virus involved in aphid transmission. MOLECULAR PLANT PATHOLOGY 2010; 11:265-76. [PMID: 20447275 PMCID: PMC6640531 DOI: 10.1111/j.1364-3703.2009.00603.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Soybean mosaic virus (SMV), a member of the genus Potyvirus, is transmitted by aphids in a non-persistent manner. It has been well documented that the helper component-proteinase (HC-Pro) plays a role as a 'bridge' between virion particles and aphid stylets in the aphid transmission of potyviruses. Several motifs, including the KITC and PTK motifs on HC-Pro and the DAG motif on the coat protein (CP), have been found to be involved in aphid transmission. Previously, we have shown strong interaction between SMV CP and HC-Pro in a yeast two-hybrid system (YTHS). In this report, we further analysed this CP-HC-Pro interaction based on YTHS and an in vivo binding assay to identify crucial amino acid residues for this interaction. Through this genetic approach, we identified two additional amino acid residues (H256 on CP and R455 on HC-Pro), as well as G12 on the DAG motif, crucial for the CP-HC-Pro interaction. We introduced mutations into the identified residues using an SMV infectious clone and showed that these mutations affected the efficiency of aphid transmission of SMV. We also investigated the involvement of the PTK and DAG motifs in the CP-HC-Pro interaction and aphid transmission of SMV. Our results support the concept that physical interaction between CP and HC-Pro is important for potyviral aphid transmission. Based on the combination of our current results with previous findings, the possibility that aphid transmission may be regulated by more complex molecular interactions than the simple involvement of HC-Pro as a bridge is discussed.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | |
Collapse
|