1
|
King J, Pohlmann A, Dziadek K, Beer M, Wernike K. Cattle connection: molecular epidemiology of BVDV outbreaks via rapid nanopore whole-genome sequencing of clinical samples. BMC Vet Res 2021; 17:242. [PMID: 34247601 PMCID: PMC8272987 DOI: 10.1186/s12917-021-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kamila Dziadek
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
2
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
3
|
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious diseases of cattle with respect to animal health and economic impact. Its stealthy nature, prolonged transient infections, and the presence of persistently infected (PI) animals as efficient reservoirs were responsible for its ubiquitous presence in cattle populations worldwide. Whereas it was initially thought that the infection was impossible to control, effective systematic control strategies have emerged over the last 25 years. The common denominators of all successful control programs were systematic control, removal of PI animals, movement controls for infected herds, strict biosecurity, and surveillance. Scandinavian countries, Austria, and Switzerland successfully implemented these control programs without using vaccination. Vaccination as an optional and additional control tool was used by e.g., Germany, Belgium, Ireland, and Scotland. The economic benefits of BVD control programs had been assessed in different studies.
Collapse
Affiliation(s)
- Volker Moennig
- Institute of Virology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany.
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany.
| |
Collapse
|
4
|
Abstract
Despite having very limited coding capacity, RNA viruses are able to withstand challenge of antiviral drugs, cause epidemics in previously exposed human populations, and, in some cases, infect multiple host species. They are able to achieve this by virtue of their ability to multiply very rapidly, coupled with their extraordinary degree of genetic heterogeneity. RNA viruses exist not as single genotypes, but as a swarm of related variants, and this genomic diversity is an essential feature of their biology. RNA viruses have a variety of mechanisms that act in combination to determine their genetic heterogeneity. These include polymerase fidelity, error-mitigation mechanisms, genomic recombination, and different modes of genome replication. RNA viruses can vary in their ability to tolerate mutations, or “genetic robustness,” and several factors contribute to this. Finally, there is evidence that some RNA viruses exist close to a threshold where polymerase error rate has evolved to maximize the possible sequence space available, while avoiding the accumulation of a lethal load of deleterious mutations. We speculate that different viruses have evolved different error rates to complement the different “life-styles” they possess.
Collapse
Affiliation(s)
- J.N. Barr
- University of Leeds, Leeds, United Kingdom
| | - R. Fearns
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Goller KV, Dräger C, Höper D, Beer M, Blome S. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo. Arch Virol 2015; 160:3121-5. [PMID: 26392285 DOI: 10.1007/s00705-015-2611-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Recently, CP7_E2alf (SuvaxynCSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.
Collapse
Affiliation(s)
- Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
7
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Castro EF, Campos RH, Cavallaro LV. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus. PLoS One 2014; 9:e100528. [PMID: 24950191 PMCID: PMC4065067 DOI: 10.1371/journal.pone.0100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1–5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1–5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Collapse
Affiliation(s)
- Eliana F. Castro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía V. Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Galli A, Bukh J. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol 2014; 22:354-64. [DOI: 10.1016/j.tim.2014.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
|
10
|
Productive homologous and non-homologous recombination of hepatitis C virus in cell culture. PLoS Pathog 2013; 9:e1003228. [PMID: 23555245 PMCID: PMC3610614 DOI: 10.1371/journal.ppat.1003228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023] Open
Abstract
Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and thereby lead to improved therapy. Our findings suggest mechanisms for occurrence of recombinants observed in patients. Genetic recombination is the alternative joining of nucleic acids leading to novel combinations of genetic information. While DNA recombination in cells is of importance for evolution and adaptive immunity, RNA recombination often has only transient effects. However, RNA viruses are rapidly evolving and recombination can be an important evolutionary step in addition to mutations introduced by the viral polymerase. Recombination can allow escape from the host immune system and from antiviral treatment, and recombination of live attenuated viral vaccines has led to re-emergence of disease. Hepatitis C virus (HCV) is an important human pathogen that chronically infects more than 130 million worldwide and leads to serious liver disease. For HCV, naturally occurring recombinants are rare but clinically important. HCV recombination constitutes a challenge to antiviral treatment and can potentially provide an escape mechanism for the virus. In this study, we established an assay for HCV RNA recombination and characterized the emerging homologous and non-homologous recombinant viruses. Interestingly, recombination did not depend on viral replication, occurred most efficiently between isolates of the same genotype and did not occur with strong site-specificity. Better diagnosis of clinically important recombinants and an increased knowledge on viral recombination could strengthen antiviral and vaccine development.
Collapse
|
11
|
Reiter J, Pérez-Vilaró G, Scheller N, Mina LB, Díez J, Meyerhans A. Hepatitis C virus RNA recombination in cell culture. J Hepatol 2011; 55:777-83. [PMID: 21334392 DOI: 10.1016/j.jhep.2010.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The Hepatitis C virus (HCV) exhibits large genetic diversity, both on a global scale and at the level of the infected individual. A major underlying mechanism of the observed sequence differences is error-prone virus replication by the viral RNA polymerase NS5B. In addition, based on phylogenetic comparisons of patient-derived HCV sequences, there is evidence of HCV recombination. However, to date little is known about the frequency by which recombination events occur in HCV and under what conditions recombination may become important in HCV evolution. We, therefore, aimed to set up an experimental model system that would allow us to analyze and to characterize recombination events during HCV replication. METHODS A neomycin-selectable, HCV replicon-based recombination detection system was established. HCV replicons were mutated within either the neomycin-phosphotransferase gene or the NS5B polymerase. Upon co-transfection of hepatic cells lines, recombination between the mutated sites is necessary to restore the selectable phenotype. RESULTS Recombinants were readily detected with frequencies correlating to the distance between the mutations. The recombinant frequency normalized to a crossover range of one nucleotide was around 4 × 10(-8). CONCLUSIONS An experimental system to select for HCV recombinants in cell culture was successfully established. It allowed deriving first estimates of recombinant frequencies. Based on these, recombination in HCV seems rare. However, due to the rapid virus turnover and the large number of HCV-infected liver cells in vivo, it is expected that recombination will be of biological importance when strong selection pressures are operative.
Collapse
Affiliation(s)
- Jochen Reiter
- Department of Virology, Saarland University, D-66421 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Kalhoro NH, Veits J, Rautenschlein S, Zimmer G. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine 2009; 27:1174-83. [DOI: 10.1016/j.vaccine.2008.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/25/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022]
|
13
|
Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host. J Virol 2008; 82:9717-29. [PMID: 18653456 DOI: 10.1128/jvi.00782-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the important livestock pathogens classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), cytopathogenic (cp) and non-cp viruses are distinguished according to the induction of apoptosis in infected tissue culture cells. However, it is currently unknown whether cp CSFV differs from non-cp CSFV with regard to virulence in the acutely infected host. In this study, we generated helper virus-independent CSFV Alfort-Jiv, which encompasses sequences encoding domain Jiv-90 of cellular J-domain protein interacting with viral protein (Jiv). Expanding the knowledge of BVDV, our results suggest that Jiv acts as a regulating cofactor for the nonstructural (NS) protein NS2 autoprotease of CSFV and initiates NS2-3 cleavage in trans. For Alfort-Jiv, the resulting expression of large amounts of NS3 correlated with increased viral RNA synthesis and viral cytopathogenicity. Moreover, both cp Alfort-Jiv and the parental non-cp CSFV strain Alfort-p447 efficiently replicate in cell culture. Animal experiments demonstrated that in contrast to parental non-cp Alfort-p447, infection with cp Alfort-Jiv did not cause disease in pigs but induced high levels of neutralizing antibodies, thus elucidating that cp CSFV is highly attenuated in its natural host. In contrast to virulent Alfort-p447, the attenuated CSFV strain Alfort-Jiv induces the expression of cellular Mx protein in porcine PK-15 cells. Accordingly, the remarkable difference between cp and non-cp CSFV with regard to the ability to cause classical swine fever in pigs correlates with different effects of cp and non-cp CSFV on cellular antiviral defense mechanisms.
Collapse
|
14
|
Couvreur B, Letellier C, Olivier F, Dehan P, Elouahabi A, Vandenbranden M, Ruysschaert JM, Hamers C, Pastoret PP, Kerkhofs P. Sequence-optimised E2 constructs from BVDV-1b and BVDV-2 for DNA immunisation in cattle. Vet Res 2007; 38:819-34. [PMID: 17727807 DOI: 10.1051/vetres:2007037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 05/14/2007] [Indexed: 11/14/2022] Open
Abstract
We report DNA immunisation experiments in cattle using plasmid constructs that encoded glycoprotein E2 from bovine viral diarrhoea virus (BVDV)-1 (E2.1) and BVDV-2 (E2.2). The coding sequences were optimised for efficient expression in mammalian cells. A modified leader peptide sequence from protein gD of BoHV1 was inserted upstream of the E2 coding sequences for efficient membrane export of the proteins. Recombinant E2 were efficiently expressed in COS7 cells and they presented the native viral epitopes as judged by differential recognition by antisera from cattle infected with BVDV-1 or BVDV-2. Inoculation of pooled plasmid DNA in young cattle elicited antibodies capable of neutralising viral strains representing the major circulating BVDV genotypes.
Collapse
Affiliation(s)
- Bernard Couvreur
- Department of Virology, Veterinary and Agrochemical Research Centre, Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gallei A, Widauer S, Thiel HJ, Becher P. Mutations in the palm region of a plus-strand RNA virus polymerase result in attenuated phenotype. J Gen Virol 2006; 87:3631-3636. [PMID: 17098978 DOI: 10.1099/vir.0.81809-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional structure of RNA-dependent RNA polymerases (RdRps) is highly conserved among RNA viruses. In a previous study, a unique set of mutant strains of Bovine viral diarrhea virus was obtained, encompassing either a genomic deletion of six codons or duplications of between 1 and 45 codons; these mutations affect different parts of the palm region, the most conserved part of RdRps containing the catalytic centre. In the present study, a detailed characterization of the RdRp mutant viruses was performed, demonstrating different degrees of a small-plaque phenotype in cell culture, correlating with significantly reduced viral RNA synthesis and delayed virus replication. Taken together, the results of this study demonstrate a surprising flexibility within the palm region of a plus-strand RNA virus RdRp, resulting in viral attenuation in vitro. This interesting insight into an essential viral protein may have implications for the development of vaccines and attenuated viral vectors.
Collapse
Affiliation(s)
- Andreas Gallei
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität, Frankfurter Straße 107, D-35392 Giessen, Germany
| | - Simone Widauer
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität, Frankfurter Straße 107, D-35392 Giessen, Germany
| | - Heinz-Jürgen Thiel
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität, Frankfurter Straße 107, D-35392 Giessen, Germany
| | - Paul Becher
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität, Frankfurter Straße 107, D-35392 Giessen, Germany
| |
Collapse
|
16
|
van Leeuwen HC, Liefhebber JMP, Spaan WJM. Repair and polyadenylation of a naturally occurring hepatitis C virus 3' nontranslated region-shorter variant in selectable replicon cell lines. J Virol 2006; 80:4336-43. [PMID: 16611892 PMCID: PMC1472026 DOI: 10.1128/jvi.80.9.4336-4343.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 3' nontranslated region (NTR) of the hepatitis C virus (HCV) genome is highly conserved and contains specific cis-acting RNA motifs that are essential in directing the viral replication machinery to initiate at the correct 3' end of the viral genome. Since the ends of viral genomes may be damaged by cellular RNases, preventing the initiation of viral RNA replication, stable RNA hairpin structures in the 3' NTR may also be essential in host defense against exoribonucleases. During 3'-terminal sequence analysis of serum samples of a patient with chronic hepatitis related to an HCV1b infection, a number of clones were obtained that were several nucleotides shorter at the extreme 3' end of the genome. These shorter 3' ends were engineered in selectable HCV replicons in order to enable the study of RNA replication in cell culture. When in vitro-transcribed subgenomic RNAs, containing shorter 3' ends, were introduced into Huh-7 cells, a few selectable colonies were obtained, and the 3' terminus of these subgenomic RNAs was sequenced. Interestingly, most genomes recovered from these colonies had regained the wild-type 3' ends, showing that HCV, like several other positive-stranded RNA viruses, has developed a strategy to repair deleted 3' end nucleotides. Furthermore, we found several genomes in these replicon colonies that contained a poly(A) tail and a short linker sequence preceding the poly(A) tail. After recloning and subsequent passage in Huh-7 cells, these poly(A) tails persisted and varied in length. In addition, the connecting linker became highly diverse in sequence and length, suggesting that these tails are actively replicated. The possible terminal repair mechanisms, including roles for the poly(A) tail addition, are discussed.
Collapse
Affiliation(s)
- Hans C van Leeuwen
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|