1
|
Omar S, Woodman ZL. The evolution of envelope function during coinfection with phylogenetically distinct human immunodeficiency virus. BMC Infect Dis 2024; 24:934. [PMID: 39251948 PMCID: PMC11385138 DOI: 10.1186/s12879-024-09805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Coinfection with two phylogenetically distinct Human Immunodeficiency Virus-1 (HIV-1) variants might provide an opportunity for rapid viral expansion and the emergence of fit variants that drive disease progression. However, autologous neutralising immune responses are known to drive Envelope (Env) diversity which can either enhance replicative capacity, have no effect, or reduce viral fitness. This study investigated whether in vivo outgrowth of coinfecting variants was linked to pseudovirus and infectious molecular clones' infectivity to determine whether diversification resulted in more fit virus with the potential to increase disease progression. RESULTS For most participants, emergent recombinants displaced the co-transmitted variants and comprised the major population at 52 weeks postinfection with significantly higher entry efficiency than other co-circulating viruses. Our findings suggest that recombination within gp41 might have enhanced Env fusogenicity which contributed to the increase in pseudovirus entry efficiency. Finally, there was a significant correlation between pseudovirus entry efficiency and CD4 + T cell count, suggesting that the enhanced replicative capacity of recombinant variants could result in more virulent viruses. CONCLUSION Coinfection provides variants with the opportunity to undergo rapid recombination that results in more infectious virus. This highlights the importance of monitoring the replicative fitness of emergent viruses.
Collapse
Affiliation(s)
- Shatha Omar
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, TB Genomics Group, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zenda L Woodman
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
He L, McAndrew R, Barbu R, Gifford G, Halacoglu C, Drouin-Allaire C, Weber L, Kristensen LG, Gupta S, Chen Y, Petzold CJ, Allaire M, Li KH, Ralston CY, Gochin M. Structure and Interactions of HIV-1 gp41 CHR-NHR Reverse Hairpin Constructs Reveal Molecular Determinants of Antiviral Activity. J Mol Biol 2024; 436:168650. [PMID: 38866091 PMCID: PMC11297672 DOI: 10.1016/j.jmb.2024.168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.
Collapse
Affiliation(s)
- Li He
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Ryan McAndrew
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Razvan Barbu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Grant Gifford
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Cari Halacoglu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Camille Drouin-Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lindsey Weber
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Azizi H, Knapp JP, Li Y, Berger A, Lafrance MA, Pedersen J, de la Vega MA, Racine T, Kang CY, Mann JFS, Dikeakos JD, Kobinger G, Arts EJ. Optimal Expression, Function, and Immunogenicity of an HIV-1 Vaccine Derived from the Approved Ebola Vaccine, rVSV-ZEBOV. Vaccines (Basel) 2023; 11:977. [PMID: 37243081 PMCID: PMC10223473 DOI: 10.3390/vaccines11050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates.
Collapse
Affiliation(s)
- Hiva Azizi
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1N 5A2, Canada
| | - Jason P. Knapp
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Yue Li
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Alice Berger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
| | - Marc-Alexandre Lafrance
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
| | - Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
| | - Marc-Antoine de la Vega
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Trina Racine
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (H.A.); (A.B.); (M.-A.L.); (J.P.); (M.-A.d.l.V.); (T.R.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Jamie F. S. Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, BS40 5DU Bristol, UK;
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Eric J. Arts
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada; (J.P.K.); (Y.L.); (C.-Y.K.); (J.D.D.)
| |
Collapse
|
4
|
Bell BN, Bruun TUJ, Friedland N, Kim PS. HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proc Natl Acad Sci U S A 2023; 120:e2215792120. [PMID: 36795752 PMCID: PMC9974412 DOI: 10.1073/pnas.2215792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
HIV-1 strains are categorized into one of three neutralization tiers based on the relative ease by which they are neutralized by plasma from HIV-1-infected donors not on antiretroviral therapy; tier-1 strains are particularly sensitive to neutralization while tier-2 and tier-3 strains are increasingly difficult to neutralize. Most broadly neutralizing antibodies (bnAbs) previously described target the native prefusion conformation of HIV-1 Envelope (Env), but the relevance of the tiered categories for inhibitors targeting another Env conformation, the prehairpin intermediate, is not well understood. Here, we show that two inhibitors targeting distinct highly conserved regions of the prehairpin intermediate have strikingly consistent neutralization potencies (within ~100-fold for a given inhibitor) against strains in all three neutralization tiers of HIV-1; in contrast, best-in-class bnAbs targeting diverse Env epitopes vary by more than 10,000-fold in potency against these strains. Our results indicate that antisera-based HIV-1 neutralization tiers are not relevant for inhibitors targeting the prehairpin intermediate and highlight the potential for therapies and vaccine efforts targeting this conformation.
Collapse
Affiliation(s)
- Benjamin N. Bell
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Theodora U. J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
5
|
Orkin C, Cahn P, Castagna A, Emu B, Harrigan P, Kuritzkes DR, Nelson M, Schapiro J. Opening the door on entry inhibitors in HIV: Redefining the use of entry inhibitors in heavily treatment experienced and treatment-limited individuals living with HIV. HIV Med 2022; 23:936-946. [PMID: 35293094 PMCID: PMC9546304 DOI: 10.1111/hiv.13288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Entry inhibitors are a relatively new class of antiretroviral therapy and are typically indicated in heavily treatment experienced individuals living with HIV. Despite this, there is no formal definition of 'heavily treatment experienced'. Interpretation of this term generally includes acknowledgement of multidrug resistance and reflects the fact that patients in need of further treatment options may have experienced multiple lines of therapy. However, it fails to recognize treatment limiting factors including contraindications, age-associated comorbidities, and difficulty adhering to regimens. METHODS This manuscript follows a roundtable discussion and aims to identify the unmet needs of those living with HIV who are in need of further treatment options, to broaden the definition of heavily treatment experienced and to clarify the use of newer agents, with an emphasis on the potential role of entry inhibitors, in this population. RESULTS/CONCLUSIONS Within the entry inhibitor class, mechanisms of action differ between agents; resistance to one subclass does not confer resistance to others. Combinations of entry inhibitors should be considered in the same regimen, and if lack of response is seen to one entry inhibitor another can be tried. When selecting an entry inhibitor, physicians should account for patient preferences and needs as well as agent-specific clinical characteristics. Absence of documented multidrug resistance should not exclude an individual from treatment with an entry inhibitor; entry inhibitors are a valuable treatment option for all individuals who are treatment limited or treatment exhausted. We should advocate for additional clinical trials that help define the role of entry inhibitors in people with exhausted/limited ART options other than drug resistance.
Collapse
Affiliation(s)
| | - Pedro Cahn
- Fundacion HuespedBuenos AiresArgentina
- Buenos Aires University Medical SchoolBuenos AiresArgentina
| | - Antonella Castagna
- Vita‐Salute San Raffaele UniversitySan Raffaele Scientific InstituteMilanItaly
| | - Brinda Emu
- Yale School of MedicineNew HavenConnecticutUSA
| | | | | | | | | |
Collapse
|
6
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
Wang H, Li Y, Li Y, Li B, Zhu X, Yan D, Li M, Wu W, Sun M, Yang R. Variations in Env at amino acids 328 and 330 affect HIV-1 replicative fitness and entry inhibitor sensitivity. Virus Res 2021; 299:198424. [PMID: 33862046 DOI: 10.1016/j.virusres.2021.198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
While the variations in the HIV-1 Env V3 loop have been the focus of much research to explore its functional effect, how specific mutations of certain amino acids in the V3 loop affect viral fitness remains unclear. In this study, we evaluated a series of natural polymorphisms at positions 328 and 330 with different combinations of adjacent glycosylation sites in the HIV-1 subtype B backbone to address their role in replicative fitness and sensitivity to entry inhibitors based on analysis of env sequence frequency at the population level. Pairwise growth competition experiment showed that wild-type virus with major consensus amino acids obviously had higher replicative fitness (P < 0.001). A change at position 328 to a less frequently occurring amino acid, K, together with a mutated N332 glycosylation site harbored lower fitness and became more sensitive to coreceptor antagonists (AMD3100), fusion inhibitors (T20) and sCD4. A change at position 330 to a less frequently occurring amino acid, Y, together with a mutated N332 glycosylation site resulted in higher fitness and less sensitivity to entry inhibitors (T20, AMD3100, and sCD4), and viruses containing both changes showed intermediate activity. It seems that the H330Y mutation compensated for the reduced replicative capacity caused by the Q328 K mutation. Moreover, viruses that showed lower replicative fitness also exhibited slower entry kinetics, lower levels of replication intermediates and protein packaging, and a lower ability to replicate in primary peripheral blood mononuclear cells (PBMCs). The findings highlight the functional effect of variations at 328 and 330 in the V3 loop on replicative fitness and may benefit HIV-1 treatment by helping predict the sensitivity to entry inhibitors.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yang Li
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ya Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingxiang Li
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Dongshan Yan
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Mingyu Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wenying Wu
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Sun
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Rongge Yang
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
9
|
Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence 2021; 11:400-413. [PMID: 32375558 PMCID: PMC7219522 DOI: 10.1080/21505594.2020.1760443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ongoing with current combinations of antiretroviral drugs for the treatment of Human Immunodeficiency Virus (HIV) infection can successfully maintain long-term suppression of HIV-1 replication in plasma. Still, none of these therapies is capable of extinguishing the virus from the long-lived cellular reservoir, including monocyte-derived macrophages (MDM), that means the principal obstacle to HIV cure. MDM are widely distributed in all tissues and organs, including central system nervous (CNS) where they represent the most frequent HIV-infected cells that means the principal obstacle to HIV cure. Current FDA-approved antiretroviral drugs target viral reverse transcriptase, protease, integrase, and entry processes (coreceptor or fusion blockade). It is desirable to continue to develop new antiretrovirals directed against alternative targets in the virus lifecycle in order to further optimize therapeutic options, overcome resistance to existing medications, and potentially contribute to the elimination of viral reservoirs.This review provides a comprehensive overview of the activity of antiretroviral drugs (classical and upcoming) in monocytes-derived macrophages (MDM). Defining the antiviral activity of these drugs in this important cellular HIV-1 reservoir provides crucial hints about their efficacy in HIV-1 infected patients.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ana Borrajo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy.,Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
10
|
Chang L, Zhao J, Guo F, Ji H, Zhang L, Jiang X, Wang L. HIV-1 gp41 genetic diversity and enfuvirtide resistance-associated mutations among enfuvirtide-naïve patients in southern China. Virus Res 2020; 292:198215. [PMID: 33166562 DOI: 10.1016/j.virusres.2020.198215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) increasing molecular diversity and emergence of drug resistant mutants remain a major concern in China. Enfuvirtide (ENF/T-20) is the first entry inhibitor used in patients failing highly active antiretroviral therapy (HAART). However, data on HIV-1 gp41genetic diversity and primary ENF resistance-associated mutations among treatment-naïve patients in China is limited. The objective was to identify molecular diversity and ENF resistance patterns of HIV-1 in southern China, using envelope (env) gp41 sequences and bioinformatics tools, which may help optimize antiretroviral therapy. METHODS From November 2018 to January 2019, 439 blood plasma samples from ENF-naïve patients were collected from Shenzhen, Wuhan and Chongqing, of which 396 HIV env regions were sequenced and subtyped, and were performed the analysis of drug resistance-associated mutations (DRMs). RESULTS The main subtypes were circulating recombinant form (CRF) 01_AE (30.6 %) and CRF07_BC (48.7 %). CRF55_01B had been the fourth subtype in the study, and many rare CRFs were observed. Notably, CRF02_AG and CRF_BF strains typically found in Africa and US respectively were identified amongst Chinese patients. Known DRMs were detected in 27.5 % (109/396) of ENF treatment-naïve patients. One major DRM (L44 M), many secondary DRMs (including N126 K, E137 K, S138A), and lots of polymorphisms were found in the study, which have been proved to elevate resistance to ENF. CONCLUSIONS HIV-1 molecular diversity was observed in the study, which indicating that HIV-1 variability is becoming increasingly complex in southern China. A diverse set of primary DRMs discovered in this study described the serious threat to ART, which reminds us the urgent need of timely surveillance of HIV-1 viral diversity and drug resistance in China.
Collapse
Affiliation(s)
- Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Junpeng Zhao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Fei Guo
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lu Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
11
|
Sitthicharoenchai P, Alnajjar S, Ackermann MR. A model of respiratory syncytial virus (RSV) infection of infants in newborn lambs. Cell Tissue Res 2020; 380:313-324. [PMID: 32347384 PMCID: PMC7223741 DOI: 10.1007/s00441-020-03213-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
Many animal models have been established for respiratory syncytial virus (RSV) infection of infants with the purpose of studying the pathogenesis, immunological response, and pharmaceutical testing and the objective of finding novel therapies and preventive measures. This review centers on a neonatal lamb model of RSV infection that has similarities to RSV infection of infants. It includes a comprehensive description of anatomical and immunological similarities between ovine and human lungs along with comparison of pulmonary changes and immune responses with RSV infection. These features make the newborn lamb an effective model for investigating key aspects of RSV infection in infants. The importance of RSV lamb model application in preclinical therapeutic trials and current updates on new studies with the RSV-infected neonatal lamb are also highlighted.
Collapse
Affiliation(s)
- Panchan Sitthicharoenchai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA USA
| | - Sarhad Alnajjar
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
- LambCure LLC, Corvallis, OR USA
| | - Mark R. Ackermann
- LambCure LLC, Corvallis, OR USA
- Department of Biomedical Sciences and Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR USA
| |
Collapse
|
12
|
Barreto Vasconcelos AL, Monteiro-Cunha JP. HIVfird: A Tool for Detection of Resistance to Fusion Inhibitor Drugs in HIV-1 Sequences. AIDS Res Hum Retroviruses 2019; 35:941-947. [PMID: 31280582 DOI: 10.1089/aid.2019.0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fusion inhibitors are antiretroviral (ARV) drugs that prevent HIV-1 entry into host cells. Enfuvirtide (ENF) is the only ARV drug marketed in this class and, like other HIV drugs, it has been associated with the emergence and selection of therapeutic-resistant HIV-1 strains. The aims of this work were to develop a computational tool capable of identifying and classifying mutations associated with resistance to Enfuvirtide and to evaluate the prevalence of these mutations among the HIV-1 sequences deposited in public databases. The HIVfird (HIV-1 fusion inhibitor resistance detector) was developed using the PHP programming language, using 30 DNA bases obtained from the HIV-1 HXB2 gp41 protein as a reference. To assess the level of resistance in HIV-1 populations, sequences were retrieved from the Los Alamos National Laboratory (LANL) database. The HIVfird is hosted at www.hivfird.ics.ufba.br, fully functional and available for public use. Twenty-five amino acid substitutions and 15 combinations were found to be associated with some level of resistance to ENF. These mutations are located at positions 36-45 of gp41, with 36, 38, 43, and 44 having the greatest diversity and frequency of variations associated with drug resistance. Resistance mutations were found in 3.16% and 4.67% of the circulating HIV-1 isolates in the world and Brazil, respectively. Subtype B showed a significantly higher ENF resistance rate (4.9%) compared to other genetic forms, while subtype C presented the lowest rate (0.9%). We present here HIVfird, an online tool that might assist in the therapeutic management of HIV-1 patients with multiple drug failure and in population-based analysis of drug resistance.
Collapse
|
13
|
Meng G, Pu J, Li Y, Han A, Tian Y, Xu W, Zhang T, Li X, Lu L, Wang C, Jiang S, Liu K. Design and Biological Evaluation of m-Xylene Thioether-Stapled Short Helical Peptides Targeting the HIV-1 gp41 Hexameric Coiled-Coil Fusion Complex. J Med Chem 2019; 62:8773-8783. [PMID: 31513410 DOI: 10.1021/acs.jmedchem.9b00882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptide-based inhibition of fusion remains an attractive goal in antihuman immunodeficiency virus (HIV) research based on its potential for the development of technically and economically desirable antiviral agents. Herein, we report the use of the dithiol bisalkylation reaction to generate a series of m-xylene thioether-stapled 22-residue α-helical peptides that have been identified as fusion inhibitors targeting HIV-1 glycoprotein 41 (gp41). The peptide sequence is based on the helix-zone binding domain of the gp41 C-terminal heptad repeat region. We found that one of these stapled peptides, named hCS6ERE, showed promising inhibitory potency against HIV-1 Env-mediated cell-cell fusion and viral replication at a level comparable to the clinically used 36-mer peptide T20. Furthermore, combining hCS6ERE with a fusion inhibitor having a different target site, such as HP23, produced synergistic anti-HIV-1 activity. Collectively, our study offers new insight into the design of anti-HIV peptides with short sequences.
Collapse
Affiliation(s)
- Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Yue Li
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aixin Han
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Xue Li
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , 310 East 67th Street , New York , New York 10065 , United States
| | - Keliang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China.,State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| |
Collapse
|
14
|
Smith M, Hoffman J, Sojar H, Aalinkeel R, Hsiao CB, Hicar MD. Assessment of Antibody Interference of Enfuvirtide (T20) Function Shows Assay Dependent Variability. Curr HIV Res 2019; 16:404-415. [PMID: 30836922 PMCID: PMC6710457 DOI: 10.2174/1570162x17666190228154850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Background: During HIV infection, fusion of the viral and cellular membranes is dependent on folding of the gp41 trimer into a six-helix bundle. Fusion inhibitors, such as the antiretroviral Enfuvirtide (T20), interfere with the formation of the gp41 six-helix bundle. Recent in vitro studies reveal that the gp41 immunodominant region one targeting antibody 3D6 can block T20 interference, but the clinical and pathophysiologic significance of this finding is unclear. Objective/Method: We have previously characterized a number of antibodies that target conformational epitopes on gp41and herein characterized their ability to interfere with T20 in multiple assays and assess their prevalence in HIV infected subjects. Results: The T20 interference by antibody 3D6 was confirmed in a CHO-HXB2 envelope/ HeLaT4+ cell culture assay. Antibodies that target an immunodominant region one epitope, as well as a gp41 discontinuous epitope, also interfered in this assay, however, not all antibodies that targeted these epitopes showed T20 interference. This response was not due to the direct binding of T20 by the antibodies and could not be replicated utilizing TZM-bl and HL2/3 cells. Notably, serum competition studies on a panel of HIV subjects demonstrate that these conformational targeting antibodies are common in the HIV population. Conclusion: The relatively common nature of antibodies targeting these epitopes, the disparate in vitro results, and lack of reported clinical failures ascribed to such antibodies leads us to conclude that antibody interference of T20 is likely not clinically relevant. However, this warrants continued consideration with the advancement of other fusion inhibitors.
Collapse
Affiliation(s)
- Michele Smith
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jonathon Hoffman
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Ravikumar Aalinkeel
- Jacobs School of Medicine and Biomedical Sciences, Department of Medicine, Division of Allergy Immunology and Rheumatology, University at Buffalo, Buffalo, NY, United States
| | - Chiu-Bin Hsiao
- Temple University School of Medicine, Pittsburgh, PA, United States.,Allegheny General Hospital, Pittsburgh, PA, United States
| | - Mark Daniel Hicar
- Department of Pediatrics, School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| |
Collapse
|
15
|
Garg H, Joshi A. Host and Viral Factors in HIV-Mediated Bystander Apoptosis. Viruses 2017; 9:v9080237. [PMID: 28829402 PMCID: PMC5579491 DOI: 10.3390/v9080237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr., El Paso, TX 79905, USA.
| | - Anjali Joshi
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr., El Paso, TX 79905, USA.
| |
Collapse
|
16
|
Ahn KW, Root MJ. Complex interplay of kinetic factors governs the synergistic properties of HIV-1 entry inhibitors. J Biol Chem 2017; 292:16498-16510. [PMID: 28696261 DOI: 10.1074/jbc.m117.791731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/09/2017] [Indexed: 01/04/2023] Open
Abstract
The homotrimeric HIV-1 envelope glycoprotein (Env) undergoes receptor-triggered structural changes that mediate viral entry through membrane fusion. This process is inhibited by chemokine receptor antagonists (CoRAs) that block Env-receptor interactions and by fusion inhibitors (FIs) that disrupt Env conformational transitions. Synergy between CoRAs and FIs has been attributed to a CoRA-dependent decrease in the rate of viral membrane fusion that extends the lifetime of the intermediate state targeted by FIs. Here, we demonstrated that the magnitude of CoRA/FI synergy unexpectedly depends on FI-binding affinity and the stoichiometry of chemokine receptor binding to trimeric Env. For C-peptide FIs (clinically represented by enfuvirtide), synergy waned as binding strength decreased until inhibitor combinations behaved additively. Curiously, this affinity dependence on synergy was absent for 5-Helix-type FIs. We linked this complex behavior to the CoRA dependence of Env deactivation following FI binding. For both FI classes, reducing chemokine receptor levels on target cells or eliminating competent chemokine receptor-binding sites on Env trimers resulted in a loss of synergistic activity. These data imply that the stoichiometry required for CoRA/FI synergy exceeds that required for HIV-1 entry. Our analysis suggests two distinct roles for chemokine receptor binding, one to trigger formation of the FI-sensitive intermediate state and another to facilitate subsequent conformational transitions. Together, our results could explain the wide variety of previously reported activities for CoRA/FI combinations. These findings also have implications for the combined use of CoRAs and FIs in antiviral therapies and point to a multifaceted role for chemokine receptor binding in promoting HIV-1 entry.
Collapse
Affiliation(s)
- Koree W Ahn
- From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Michael J Root
- From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
17
|
Alam M, Kuwata T, Shimura K, Yokoyama M, Ramirez Valdez KP, Tanaka K, Maruta Y, Oishi S, Fujii N, Sato H, Matsuoka M, Matsushita S. Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology 2016; 13:70. [PMID: 27670680 PMCID: PMC5037607 DOI: 10.1186/s12977-016-0304-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants that are resistant to fusion inhibitors. RESULTS Mutations that confer resistance to four fusion inhibitors, enfuvirtide, C34, SC34, and SC34EK, were introduced into the envelope of HIV-1JR-FL, a CCR5-tropic tier 2 strain. Pseudoviruses with these mutations were prepared and used for the assessment of neutralization sensitivity to an array of antibodies. The resulting neutralization data indicate that the potencies of some antibodies, especially of those against the CD4 binding site, V3 loop, and membrane-proximal external region epitopes, were increased by the mutations in gp41 that conferred resistance to the fusion inhibitors. C34-, SC34-, and SC34EK-resistant mutants showed more sensitivity to monoclonal antibodies than enfuvirtide-resistant mutants. An analysis of C34-resistant mutations revealed that the I37K mutation in gp41 HR1 is a key mutation for C34 resistance, low infectivity, neutralization sensitivity, epitope exposure, and slow fusion kinetics. The N126K mutation in the gp41 HR2 domain contributed to C34 resistance and neutralization sensitivity to anti-CD4 binding site antibodies. In the absence of L204I, the effect of N126K was antagonistic to that of I37K. The results of a molecular dynamic simulation of the envelope trimer confirmation suggest that an I37K mutation induces the augmentation of structural fluctuations prominently in the interface between gp41 and gp120. Our observations indicate that the "conformational unmasking" of envelope glycoprotein by an I37K mutation is one of the mechanisms of neutralization sensitivity enhancement. Furthermore, the enhanced neutralization of C34-resistant mutants in vivo was shown by its high rate of neutralization by IgG from HIV patient samples. CONCLUSIONS Mutations in gp41 that confer fusion inhibitor resistance exert enhanced sensitivity to broad neutralizing antibodies (e.g., VRC01 and 10E8) and other conventional antibodies developed in HIV-1 infected patients. Therefore, next-generation fusion inhibitors and monoclonal antibodies could be a potential combination for future regimens of combined antiretroviral therapy.
Collapse
Affiliation(s)
- Muntasir Alam
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Takeo Kuwata
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kristel Paola Ramirez Valdez
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuki Tanaka
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shuzo Matsushita
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| |
Collapse
|
18
|
Hikichi Y, Yokoyama M, Takemura T, Fujino M, Kumakura S, Maeda Y, Yamamoto N, Sato H, Matano T, Murakami T. Increased HIV-1 sensitivity to neutralizing antibodies by mutations in the Env V3-coding region for resistance to CXCR4 antagonists. J Gen Virol 2016; 97:2427-2440. [PMID: 27368421 DOI: 10.1099/jgv.0.000536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 passage in cell culture in the presence of chemokine receptor antagonists can result in selection of viruses with env mutations that confer resistance to these inhibitors. In the present study, we examined the effect of HIV-1env mutations that confer resistance to CXCR4 antagonists on envelope (Env) sensitivity to neutralizing antibodies (NAbs). Serial passage of CXCR4-tropic HIV-1 NL4-3 in PM1/CCR5 cells under CXCR4 antagonists KRH-3955, AMD3100 and AMD070 yielded two KRH-3955-resistant, one AMD3100-resistant and one AMD070-resistant viruses. These viruses had multiple env mutations including the Env gp120 V3 region. The majority of viruses having these CXCR4 antagonist-resistant Envs showed higher sensitivity to NAbs 447-52D, b12 and 2F5 targeting the V3 region, the gp120 CD4-binding site and the gp41 membrane proximal region, respectively, compared to NL4-3 WT virus. Recombinant NL4-3 viruses with the V3-coding region replaced with those derived from the CXCR4 antagonist-resistant viruses showed increased sensitivity to NAbs b12, 2F5 and 447-52D. Molecular dynamics simulations of Env gp120 outer domains predicted that the V3 mutations increased levels of fluctuations at the tip and stem of the V3 loop. These results indicate that mutations in the V3-coding region that result in loss of viral sensitivity to CXCR4 antagonists increase viral sensitivity to NAbs, providing insights into our understanding of the interplay of viral Env accessibility to chemokine receptors and sensitivity to NAbs.
Collapse
Affiliation(s)
- Yuta Hikichi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi Murayama-shi, 208-0011 Tokyo, Japan
| | - Taichiro Takemura
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, 852-8523 Nagasaki, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| | - Sei Kumakura
- Kureha Corporation, 3-26-2, Hyakunin-cho, Shinjuku-ku, 169-8503 Tokyo, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, 860-8556 Kumamoto, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi Murayama-shi, 208-0011 Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| |
Collapse
|
19
|
Abstract
ABSTRACT HIV resistance against currently approved entry inhibitors, the chemokine receptor-5 (CCR5) antagonist maraviroc and the fusion inhibitor enfuvirtide (T-20), manifests in a complex manner that is distinct from the resistance patterns against other classes of antiretroviral drugs. Several attachment and fusion inhibitors are currently under various stages of development. Whereas CCR5 co-receptor antagonists have been widely studied until now, because patients who lack CCR5 are healthy and protected to some extent from HIV-infection, CXCR4-antagonist development has been slower, due to limited antiviral activity and potential toxicity given that CXCR4 may have essential cellular functions. Novel fusion inhibitor development is focusing on orally available small-molecule inhibitors that might replace T-20, which needs to be administered by subcutaneous injection.
Collapse
Affiliation(s)
- Victor G Kramer
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry. PLoS Pathog 2015; 11:e1004595. [PMID: 25569556 PMCID: PMC4287578 DOI: 10.1371/journal.ppat.1004595] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. Our estimates of the HIV-1 entry stoichiometry, that is the number of envelope glycoprotein trimers needed to mediate fusion of viral and target cell membrane, close an important gap in our understanding of the HIV entry process. As we show, stoichiometric requirements for envelope trimers differ between HIV strains and steer virus entry efficacy and virus entry kinetics. Thus, the entry stoichiometry has important implications for HIV transmission, as demands on trimer numbers will dictate the infectivity of virus populations, target cell preferences and virus inactivation by trimer-targeting inhibitors and neutralizing antibodies. Beyond this, our data contribute to the general understanding of mechanisms and energetic requirements of protein-mediated membrane fusion, as HIV entry proved to follow similar stoichiometries as described for Influenza virus HA and SNARE protein mediated membrane fusion. In summary, our findings provide a relevant contribution towards a refined understanding of HIV-1 entry and pathogenesis with particular importance for ongoing efforts to generate neutralizing antibody based therapeutics and vaccines targeting the HIV-1 envelope trimer.
Collapse
|
21
|
Ma X, Tan J, Su M, Li C, Zhang X, Wang C. Molecular dynamics studies of the inhibitor C34 binding to the wild-type and mutant HIV-1 gp41: inhibitory and drug resistant mechanism. PLoS One 2014; 9:e111923. [PMID: 25393106 PMCID: PMC4230944 DOI: 10.1371/journal.pone.0111923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 10/08/2014] [Indexed: 11/20/2022] Open
Abstract
Mutations on NHR (N-terminal heptad repeat) associated with resistance to fusion inhibitor were observed. In addition, mutations on CHR (C-terminal heptad repeat) accompanied NHR mutations of gp41 are noted in many cases, like N43D/S138A double mutation. In this work, we explored the drug resistant mechanism of N43D mutation and the role of S138A second mutation in drug resistance. The binding modes of the wild type gp41 and the two mutants, N43D and N43D/S138A, with the HIV-1 fusion inhibitor C34, a 34-residue peptide mimicking CHR of gp41, were carried out by using molecular dynamics simulations. Based on the MD simulations, N43D mutation affects not only the stability of C34 binding, but also the binding energy of the inhibitor C34. Because N43D mutation may also affect the stable conformation of 6-HB, we introduced S138A second mutation into CHR of gp41 and determined the impact of this mutation. Through the comparative analysis of MD results of the N43D mutant and the N43D/S138A mutant, we found that CHR with S138A mutation shown more favorable affinity to NHR. Compelling differences in structures have been observed for these two mutants, particularly in the binding modes and in the hydrophobic interactions of the CHR (C34) located near the hydrophobic groove of the NHR. Because the conformational stability of 6-HB is important to HIV-1 infection, we suggested a hypothetical mechanism for the drug resistance: N43D single mutation not only impact the binding of inhibitor, but also affect the affinity between NHR and CHR of gp41, thus may reduce the rate of membrane fusion; compensatory mutation S138A would induce greater hydrophobic interactions between NHR and CHR, and render the CHR more compatible to NHR than inhibitors.
Collapse
Affiliation(s)
- Xueting Ma
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
- * E-mail:
| | - Min Su
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Cunxin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
22
|
De Feo CJ, Wang W, Hsieh ML, Zhuang M, Vassell R, Weiss CD. Resistance to N-peptide fusion inhibitors correlates with thermodynamic stability of the gp41 six-helix bundle but not HIV entry kinetics. Retrovirology 2014; 11:86. [PMID: 25274545 PMCID: PMC4190581 DOI: 10.1186/s12977-014-0086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) undergoes conformational changes that mediate fusion between virus and host cell membranes. These changes involve transient exposure of two heptad-repeat domains (HR1 and HR2) in the gp41 subunit and their subsequent self-assembly into a six-helix bundle (6HB) that drives fusion. Env residues and features that influence conformational changes and the rate of virus entry, however, are poorly understood. Peptides corresponding to HR1 and HR2 (N and C peptides, respectively) interrupt formation of the 6HB by binding to the heptad repeats of a fusion-intermediate conformation of Env, making the peptides valuable probes for studying Env conformational changes. RESULTS Using a panel of Envs that are resistant to N-peptide fusion inhibitors, we investigated relationships between virus entry kinetics, 6HB stability, and resistance to peptide fusion inhibitors to elucidate how HR1 and HR2 mutations affect Env conformational changes and virus entry. We found that gp41 resistance mutations increased 6HB stability without increasing entry kinetics. Similarly, we show that increased 6HB thermodynamic stability does not correlate with increased entry kinetics. Thus, N-peptide fusion inhibitors do not necessarily select for Envs with faster entry kinetics, nor does faster entry kinetics predict decreased potency of peptide fusion inhibitors. CONCLUSIONS These findings provide new insights into the relationship between 6HB stability and viral entry kinetics and mechanisms of resistance to inhibitors targeting fusion-intermediate conformations of Env. These studies further highlight how residues in HR1 and HR2 can influence virus entry by altering stability of the 6HB and possibly other conformations of Env that affect rate-limiting steps in HIV entry.
Collapse
Affiliation(s)
- Christopher J De Feo
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Meng-Lun Hsieh
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Michigan State University, Department of Biochemistry and Molecular Biology, Lansing, MI, 48824, USA.
| | - Min Zhuang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Russell Vassell
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
23
|
Cross-resistance mechanism of respiratory syncytial virus against structurally diverse entry inhibitors. Proc Natl Acad Sci U S A 2014; 111:E3441-9. [PMID: 25092342 DOI: 10.1073/pnas.1405198111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading pediatric pathogen that is responsible for a majority of infant hospitalizations due to viral disease. Despite its clinical importance, no vaccine prophylaxis against RSV disease or effective antiviral therapeutic is available. In this study, we established a robust high-throughput drug screening protocol by using a recombinant RSV reporter virus to expand the pool of RSV inhibitor candidates. Mechanistic characterization revealed that a potent newly identified inhibitor class blocks viral entry through specific targeting of the RSV fusion (F) protein. Resistance against this class was induced and revealed overlapping hotspots with diverse, previously identified RSV entry blockers at different stages of preclinical and clinical development. A structural and biochemical assessment of the mechanism of unique, broad RSV cross-resistance against structurally distinct entry inhibitors demonstrated that individual escape hotspots are located in immediate physical proximity in the metastable conformation of RSV F and that the resistance mutations lower the barrier for prefusion F triggering, resulting in an accelerated RSV entry kinetics. One resistant RSV recombinant remained fully pathogenic in a mouse model of RSV infection. By identifying molecular determinants governing the RSV entry machinery, this study spotlights a molecular mechanism of broad RSV resistance against entry inhibition that may affect the impact of diverse viral entry inhibitors presently considered for clinical use and outlines a proactive design for future RSV drug discovery campaigns.
Collapse
|
24
|
Panos G, Watson DC. Effect of HIV-1 subtype and tropism on treatment with chemokine coreceptor entry inhibitors; overview of viral entry inhibition. Crit Rev Microbiol 2014; 41:473-87. [DOI: 10.3109/1040841x.2013.867829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Reversible and efficient activation of HIV-1 cell entry by a tyrosine-sulfated peptide dissects endocytic entry and inhibitor mechanisms. J Virol 2014; 88:4304-18. [PMID: 24478426 DOI: 10.1128/jvi.03447-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 membranes contain gp120-gp41 trimers. Binding of gp120 to CD4 and a coreceptor (CCR5 or CXCR4) reduces the constraint on metastable gp41, enabling a series of conformational changes that cause membrane fusion. An analytic difficulty occurs because these steps occur slowly and asynchronously within cohorts of adsorbed virions. We previously isolated HIV-1JRCSF variants that efficiently use CCR5 mutants severely damaged in the tyrosine-sulfated amino terminus or extracellular loop 2. Surprisingly, both independent adaptations included gp120 mutations S298N, F313L, and N403S, supporting other evidence that they function by weakening gp120's grip on gp41 rather than by altering gp120 binding to specific CCR5 sites. Although several natural HIV-1 isolates reportedly use CCR5(Δ18) (CCR5 with a deletion of 18 N-terminal amino acids, including the tyrosine-sulfated region) when the soluble tyrosine-sulfated peptide is present, we show that HIV-1JRCSF with the adaptive mutations [HIV-1JRCSF(Ad)] functions approximately 100 times more efficiently and that coreceptor activation is reversible, enabling synchronous efficient entry control under physiological conditions. This system revealed that three-stranded gp41 folding intermediates susceptible to the inhibitor enfuvirtide form slowly and asynchronously on cell surface virions but resolve rapidly, with virions generally forming only one target. Adsorbed virions asynchronously and transiently become competent for entry at 37°C but are inactivated if the CCR5 peptide is absent during their window of opportunity. This competency is conferred by endocytosis, which results in inactivation if the peptide is absent. For both wild-type and adapted HIV-1 isolates, early gp41 refolding steps obligatorily occur on cell surfaces, whereas the final step(s) is endosomal. This system powerfully dissects HIV-1 entry and inhibitor mechanisms. IMPORTANCE We present a powerful means to reversibly and efficiently activate or terminate HIV-1 entry by adding or removing a tyrosine-sulfated CCR5 peptide from the culture medium. This system uses stable cell clones and a variant of HIV-1JRCSF with three adaptive mutations. It enabled us to show that CCR5 coreceptor activation is rapidly reversible and to dissect aspects of entry that had previously been relatively intractable. Our analyses elucidate enfuvirtide (T-20) function and suggest that HIV-1 virions form only one nonredundant membrane fusion complex on cell surfaces. Additionally, we obtained novel and conclusive evidence that HIV-1 entry occurs in an assembly line manner, with some steps obligatorily occurring on cell surfaces and with final membrane fusion occurring in endosomes. Our results were confirmed for wild-type HIV-1. Thus, our paper provides major methodological and mechanistic insights about HIV-1 infection.
Collapse
|
26
|
Acharya P, Luongo TS, Louder MK, McKee K, Yang Y, Kwon YD, Mascola JR, Kessler P, Martin L, Kwong PD. Structural basis for highly effective HIV-1 neutralization by CD4-mimetic miniproteins revealed by 1.5 Å cocrystal structure of gp120 and M48U1. Structure 2013; 21:1018-29. [PMID: 23707685 DOI: 10.1016/j.str.2013.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
The interface between the HIV-1 gp120 envelope glycoprotein and the CD4 receptor contains an unusual interfacial cavity, the "Phe43 cavity", which CD4-mimetic miniproteins with nonnatural extensions can potentially utilize to enhance their neutralization of HIV-1. Here, we report cocrystal structures of HIV-1 gp120 with miniproteins M48U1 and M48U7, which insert cyclohexylmethoxy and 5-hydroxypentylmethoxy extensions, respectively, into the Phe43 cavity. Both inserts displayed flexibility and hydrophobic interactions, but the M48U1 insert showed better shape complementarity with the Phe43 cavity than the M48U7 insert. Subtle alteration in the gp120 conformation played a substantial role in optimizing fit. With M48U1, these translated into a YU2-gp120 affinity of 0.015 nM and neutralization of all 180 circulating HIV-1 strains tested, except clade-A/E isolates with noncanonical Phe43 cavities. Ligand chemistry, shape complementarity, surface burial, and gp120 conformation act in concert to modulate binding of ligands to the gp120-Phe43 cavity and, when optimized, can effect near-pan-neutralization of HIV-1.
Collapse
Affiliation(s)
- Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
HIV-1 resistance mechanism to an electrostatically constrained peptide fusion inhibitor that is active against T-20-resistant strains. Antimicrob Agents Chemother 2013; 57:4035-8. [PMID: 23689710 DOI: 10.1128/aac.00237-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
T-20EK is a novel fusion inhibitor designed to have enhanced α-helicity over T-20 (enfuvirtide) through engineered electrostatic interactions between glutamic acid (E) and lysine (K) substitutions. T-20EK efficiently suppresses wild-type and T-20-resistant variants. Here, we selected T-20EK-resistant variants. A combination of L33S and N43K substitutions in gp41 were required for high resistance to T-20EK. While these substitutions also caused resistance to T-20, they did not cause cross-resistance to other known fusion inhibitors.
Collapse
|
28
|
Abstract
The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse transcriptase inhibitors (NNRTIs), (2) non-nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).
Collapse
Affiliation(s)
- Eric J Arts
- Ugandan CFAR Laboratories, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
29
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
30
|
Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res 2013; 98:158-70. [PMID: 23541872 DOI: 10.1016/j.antiviral.2013.03.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Entry of HIV into target cells is a complex, multi-stage process involving sequential attachment and CD4 binding, coreceptor binding, and membrane fusion. HIV entry inhibitors are a complex group of drugs with multiple mechanisms of action depending on the stage of the viral entry process they target. Two entry inhibitors are currently approved for the treatment of HIV-infected patients. Maraviroc, a CCR5 antagonist, blocks interactions between the viral envelope proteins and the CCR5 coreceptor. Enfuvirtide, a fusion inhibitor, disrupts conformational changes in gp41 that drive membrane fusion. A wide array of additional agents are in various stages of development. This review covers the entry inhibitors and their use in the treatment of HIV-infected patients.
Collapse
Affiliation(s)
- Aiman A Haqqani
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
31
|
Chong H, Yao X, Qiu Z, Sun J, Zhang M, Waltersperger S, Wang M, Liu S, Cui S, He Y. Short‐peptide fusion inhibitors with high potency against wild‐type and enfuvirtide‐resistant HIV‐1. FASEB J 2012; 27:1203-13. [DOI: 10.1096/fj.12-222547] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xue Yao
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zonglin Qiu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianping Sun
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Meng Zhang
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | | - Meitian Wang
- Swiss Light SourcePaul Scherrer InstituteVilligenSwitzerland
| | - Shan‐Lu Liu
- Department of Molecular Microbiology and ImmunologyUniversity of MissouriColumbiaMissouriUSA
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research CenterInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
32
|
Abstract
Apoptosis of uninfected bystander cells is a key element of HIV pathogenesis and believed to be the driving force behind the selective depletion of CD4+ T cells leading to immunodeficiency. While several viral proteins have been implicated in this process the complex interaction between Env glycoprotein expressed on the surface of infected cells and the receptor and co-receptor expressing bystander cells has been proposed as a major mechanism. HIV-1 utilizes CD4 as the primary receptor for entry into cells; however, it is the viral co-receptor usage that greatly influences CD4 decline and progression to AIDS. This phenomenon is relatively simple for X4 viruses, which arise later during the course of the disease, are considered to be highly fusogenic, and cause a rapid CD4+ T cell decline. However, in contrast, R5 viruses in general have a greater transmissibility, are encountered early during the disease and have a lesser pathogenic potential than the former. The above generalization gets complicated in numerous situations where R5 viruses persist throughout the disease and are capable of causing a rigorous CD4+ T cell decline. This review will discuss the multiple factors that are reported to influence HIV induced bystander apoptosis and pathogenesis including Env glycoprotein phenotype, virus tropism, disease stage, co-receptor expression on CD4+ T cells, immune activation and therapies targeting the viral envelope.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Excellence for Infectious Disease, Department of Biomedical Science, Texas Tech University Health Sciences Center, 5001 El Paso Dr, MSB-1 Annex, El Paso, TX 79905, USA.
| | | | | |
Collapse
|
33
|
Role of human immunodeficiency virus type 1 envelope structure in the induction of broadly neutralizing antibodies. J Virol 2012; 86:13152-63. [PMID: 23015715 DOI: 10.1128/jvi.01110-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very soon after the discovery of neutralizing antibodies (NAbs) toward human immunodeficiency virus type 1 (HIV-1) infection, it became apparent that characterization of these NAbs would be an important step in finding a cure for or a vaccine to eradicate HIV-1. Since the initial description of broadly cross-clade NAbs naturally produced in HIV-1 patients, numerous studies have described new viral targets for these antibodies. More recently, studies concerning new groups of patients able to control their viremia, such as long-term nonprogressors (LTNPs) or elite controllers, have described the generation of numerous envelope-targeted NAbs. Recent studies have marked a new stage in research on NAbs with the description of antibodies obtained from a worldwide screening of HIV-positive patients. These studies have permitted the discovery of NAb families with great potential for both neutralization and neutralization breadth, such as PG, PGT, CH, and highly active agonistic anti-CD4 binding site antibodies (HAADs), of which VRC01 and its variants are members. These antibodies are able to neutralize more than 80% of circulating strains without any autoreactivity and can be rapidly integrated into clinical trials in order to test their protective potential. In this review, we will focus on new insights into HIV-1 envelope structure and their implications for the generation of potent NAbs.
Collapse
|
34
|
Yao X, Chong H, Zhang C, Qiu Z, Qin B, Han R, Waltersperger S, Wang M, He Y, Cui S. Structural basis of potent and broad HIV-1 fusion inhibitor CP32M. J Biol Chem 2012; 287:26618-29. [PMID: 22679024 DOI: 10.1074/jbc.m112.381079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CP32M is a newly designed peptide fusion inhibitor possessing potent anti-HIV activity, especially against T20-resistant HIV-1 strains. In this study, we show that CP32M can efficiently inhibit a large panel of diverse HIV-1 variants, including subtype B', CRF07_BC, and CRF01_AE recombinants and naturally occurring or induced T20-resistant viruses. To elucidate its mechanism of action, we determined the crystal structure of CP32M complexed with its target sequence. Differing from its parental peptide, CP621-652, the (621)VEWNEMT(627) motif of CP32M folds into two α-helix turns at the N terminus of the pocket-binding domain, forming a novel layer in the six-helix bundle structure. Prominently, the residue Asn-624 of the (621)VEWNEMT(627) motif is engaged in the polar interaction with a hydrophilic ridge that borders the hydrophobic pocket on the N-terminal coiled coil. The original inhibitor design of CP32M provides several intra- and salt bridge/hydrogen bond interactions favoring the stability of the helical conformation of CP32M and its interactions with N-terminal heptad repeat (NHR) targets. We identified a novel salt bridge between Arg-557 on the NHR and Glu-648 of CP32M that is critical for the binding of CP32M and resistance against the inhibitor. Therefore, our data present important information for developing novel HIV-1 fusion inhibitors for clinical use.
Collapse
Affiliation(s)
- Xue Yao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9 Dong Dan San Tiao, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Francis JN, Redman JS, Eckert DM, Kay MS. Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. Bioconjug Chem 2012; 23:1252-8. [PMID: 22545664 DOI: 10.1021/bc300076f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The highly conserved HIV-1 gp41 "pocket" region is a promising target for inhibiting viral entry. PIE12-trimer is a protease-resistant trimeric d-peptide inhibitor that binds to this pocket and potently blocks HIV entry. PIE12-trimer also possesses a reserve of binding energy that provides it with a strong genetic barrier to resistance ("resistance capacitor"). Here, we report the design of a modular scaffold employing PEGs of discrete lengths for the efficient optimization and synthesis of PIE12-trimer. This scaffold also allows us to conjugate PIE12-trimer to several membrane-localizing cargoes, resulting in dramatically improved potency and retention of PIE12-trimer's ability to absorb the impact of resistance mutations. This scaffold design strategy should be of broad utility for the rapid prototyping of multimeric peptide inhibitors attached to potency- or pharmacokinetics-enhancing groups.
Collapse
Affiliation(s)
- J Nicholas Francis
- Department of Biochemistry, University of Utah School of Medicine , 15 N Medical Drive East Room 4100, Salt Lake City, Utah 84112-5650, United States
| | | | | | | |
Collapse
|
36
|
Vicriviroc resistance decay and relative replicative fitness in HIV-1 clinical isolates under sequential drug selection pressures. J Virol 2012; 86:6416-26. [PMID: 22491471 DOI: 10.1128/jvi.00286-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously described an HIV-1-infected individual who developed resistance to vicriviroc (VCV), an investigational CCR5 antagonist, during 28 weeks of therapy (Tsibris AM et al., J. Virol. 82:8210-8214, 2008). To investigate the decay of VCV resistance mutations, a standard clonal analysis of full-length env (gp160) was performed on plasma HIV-1 samples obtained at week 28 (the time of VCV discontinuation) and at three subsequent time points (weeks 30, 42, and 48). During 132 days, VCV-resistant HIV-1 was replaced by VCV-sensitive viruses whose V3 loop sequences differed from the dominant pretreatment forms. A deep-sequencing analysis showed that the week 48 VCV-sensitive V3 loop form emerged from a preexisting viral variant. Enfuvirtide was added to the antiretroviral regimen at week 30; by week 48, enfuvirtide treatment selected for either the G36D or N43D HR-1 mutation. Growth competition experiments demonstrated that viruses incorporating the dominant week 28 VCV-resistant env were less fit than week 0 viruses in the absence of VCV but more fit than week 48 viruses. This week 48 fitness deficit persisted when G36D was corrected by either site-directed mutagenesis or week 48 gp41 domain swapping. The correction of N43D, in contrast, restored fitness relative to that of week 28, but not week 0, viruses. Virus entry kinetics correlated with observed fitness differences; the slower entry of enfuvirtide-resistant viruses corrected to wild-type rates in the presence of enfuvirtide. These findings suggest that while VCV and enfuvirtide select for resistance mutations in only one env subunit, gp120 and gp41 coevolve to maximize viral fitness under sequential drug selection pressures.
Collapse
|
37
|
Miyamoto F, Kodama EN. Novel HIV-1 fusion inhibition peptides: designing the next generation of drugs. Antivir Chem Chemother 2012; 22:151-8. [PMID: 22182762 DOI: 10.3851/imp1930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 10/16/2022] Open
Abstract
The development of over 20 antiretroviral drugs has led to efficient and successful suppression of HIV-1 replication. In addition to common viral targets, such as reverse transcriptase and protease, new targets have been recently exploited, including integrase, fusion and cellular CCR5. Hence, combination antiretroviral therapy is continually improved by the development of these new agents, especially for patients infected with drug-resistant HIV-1. In this review, we focused on fusion inhibitory peptides that have been developed since the first HIV-1 fusion inhibitor, enfuvirtide (T-20). T-20, approved for clinical use in 2003, is a polypeptide comprising 36 amino acids derived from the HIV-1 gp41 C-terminal heptad repeat and provides a novel treatment strategy for HIV-1 therapy. T-20 is able to suppress HIV-1 replication, including viruses resistant to reverse transcriptase or protease inhibitors. However, after prolonged T-20-containing treatment regimens, HIV-1 acquires resistance to T-20. Therefore, our laboratory and others have developed novel fusion inhibitors, termed next-generation fusion inhibitors, including electrostatically constrained, mutation introduced, and trimer-form peptides.
Collapse
Affiliation(s)
- Fusako Miyamoto
- Division of Emerging Infectious Diseases, Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|
38
|
Wilen CB, Tilton JC, Doms RW. Molecular mechanisms of HIV entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:223-42. [PMID: 22297516 DOI: 10.1007/978-1-4614-0980-9_10] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) entry is a complex and intricate process that facilitates delivery of the viral genome to the host cell. The only viral surface protein, Envelope (Env), is composed of a trimer of gp120 and gp41 heterodimers. It is essentially a fusion machine cloaked in a shroud of carbohydrate structures and variable loops of amino acids that enable it to evade the humoral immune response. For entry to occur gp120 sequentially engages the host protein CD4 and then one of two chemokine coreceptors, either CCR5 or CXCR4. CD4 binding facilitates exposure and formation of the coreceptor-binding site, and coreceptor binding then triggers the membrane fusion machinery in the gp41 subunit. Our understanding of HIV entry has led to the development of successful small molecule inhibitors for the clinical treatment of HIV infection as well as insights into viral tropism and pathogenesis.
Collapse
Affiliation(s)
- Craig B Wilen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
39
|
Dimonte S, Mercurio F, Svicher V, Perno CF, Ceccherini-Silberstein F. Genetic and structural analysis of HIV-1 Rev responsive element related to V38A and T18A enfuvirtide resistance mutations. Intervirology 2011; 55:385-90. [PMID: 22188777 DOI: 10.1159/000334696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/24/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For the expression of late viral genes, HIV-1 efficiently exploits the nuclear export by using Rev viral protein, which specifically binds the RNA Rev Responsive Element (RRE). This region is contained within the gp120-gp41 encoding sequence. Enfuvirtide is the first approved HIV-1 fusion-inhibitor, and gp41 codons associated with primary enfuvirtide-resistance (amino-acids 36-45) are localized within the RRE structure. We previously found the co-presence of V38A+T18A resistance mutations in patients failing enfuvirtide. METHODS Collecting 476 and 135 HIV-1 B-subtype gp41 sequences from enfuvirtide-naïve and enfuvirtide-treated patients, respectively, two mutations previously found associated with enfuvirtide treatment, T18A and V38A, were analyzed. Moreover, the RNA secondary structure was displayed by CONTRAfold-software and the gp41 evolutionary pathways by a mutagenetic tree. RESULTS By modeling the RRE structure, we show that the T18 and V38 codons are base pairing within the RRE-stem-IIA, an important domain involved in Rev binding. While a structural RRE impairment in the presence of V38A alone was found, a restoration of the original RRE structure occurred in co-presence of V38A+T18A. By mutagenetic tree analysis, a compensatory evolution confirming our hypothesis on the structural modification mechanism was observed. CONCLUSION We show that enfuvirtide pressure may also affect specific RRE domains involved in Rev binding, thus requiring a compensatory evolution able to preserve the secondary structure of the RRE.
Collapse
Affiliation(s)
- Salvatore Dimonte
- University of Rome Tor Vergata, Rome, Italy. salvatore.dimonte @ uniroma2.it
| | | | | | | | | |
Collapse
|
40
|
HIV-1 clinical isolates resistant to CCR5 antagonists exhibit delayed entry kinetics that are corrected in the presence of drug. J Virol 2011; 86:1119-28. [PMID: 22090117 DOI: 10.1128/jvi.06421-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance.
Collapse
|
41
|
Selection with a peptide fusion inhibitor corresponding to the first heptad repeat of HIV-1 gp41 identifies two genetic pathways conferring cross-resistance to peptide fusion inhibitors corresponding to the first and second heptad repeats (HR1 and HR2) of gp41. J Virol 2011; 85:12929-38. [PMID: 21994458 DOI: 10.1128/jvi.05391-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We generated four HIV-1 cultures that are resistant to a peptide fusion inhibitor corresponding to the first heptad repeat of gp41 in order to study mechanisms of resistance and gain insights into envelope glycoprotein-mediated membrane fusion. Two genetic pathways emerged that were defined by acquisition of a specific mutation in either the first or second heptad repeat region of gp41 (HR1 or the HR2, respectively). Each pathway was enriched in mutations that clustered in either HR2 and V3 or in HR1 and residues in or near CD4 contact sites. The gp41 mutations in both pathways not only accounted for resistance to the selecting HR1 peptide but also conferred cross-resistance to HR2 peptide fusion inhibitors and enhanced the stability of the six-helix bundle formed by the self-assembly of HR1 and HR2. The gp120 mutations alone enhanced fusion but did not appear to directly contribute to resistance. The implications of these findings for resistance mechanisms and regulation of envelope-mediated fusion are discussed.
Collapse
|
42
|
Leung MYK, Cohen FS. Increasing hydrophobicity of residues in an anti-HIV-1 Env peptide synergistically improves potency. Biophys J 2011; 100:1960-8. [PMID: 21504732 DOI: 10.1016/j.bpj.2011.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 02/04/2023] Open
Abstract
T-20/Fuzeon/Enfuvirtide (ENF), a peptide inhibitor of HIV-1 infection, targets the grooves created by heptad repeat 2 (HR2) of Env's coiled-coil, but mutants resistant to ENF emerge. In this study, ENF-resistant mutants--V38A, N43D, N43D/S138A, Q40H/L45M--were combined with modified inhibitory peptides to identify what we believe to be novel ways to improve peptide efficacy. V38A did not substantially reduce infectivity, but was relatively resistant to inhibitory peptides. N43D was more resistant to inhibitory peptides than wild-type, but infectivity was reduced. The additional mutation S138A (N43D/S138A) increased infectivity and further reduced peptide inhibitory potency. It is concluded that S138A increased binding of HR2/ENF into grooves and that S138A compensated for electrostatic repulsion between N43D and HR2. The six-helix bundle structure indicated that E148A should increase hydrophobic interactions between the coiled-coil and peptide. Importantly, the modifications S138A and E148A in the same peptide retained potency against ENF-escape mutants. The double mutant's increase in potency was greater than the increases from the sum of S138A and E148A individually, showing that these two altered residues synergistically contributed to peptide binding. Isothermal titration calorimetry established that hydrophobic substitutions at positions S138 and E148 improved potency of inhibitory peptides against escape mutants by increasing enthalpic release of energy upon peptide binding.
Collapse
Affiliation(s)
- Michael Y K Leung
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
43
|
Zhuang K, Finzi A, Tasca S, Shakirzyanova M, Knight H, Westmoreland S, Sodroski J, Cheng-Mayer C. Adoption of an "open" envelope conformation facilitating CD4 binding and structural remodeling precedes coreceptor switch in R5 SHIV-infected macaques. PLoS One 2011; 6:e21350. [PMID: 21760891 PMCID: PMC3132741 DOI: 10.1371/journal.pone.0021350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIV(SF162P3N)-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more "open" envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an "open" envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4(low) cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch.
Collapse
Affiliation(s)
- Ke Zhuang
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Andres Finzi
- Division of AIDS, Department of Cancer Immunology and AIDS, Department of Pathology, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silvana Tasca
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Madina Shakirzyanova
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Heather Knight
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Susan Westmoreland
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Joseph Sodroski
- Division of AIDS, Department of Cancer Immunology and AIDS, Department of Pathology, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| |
Collapse
|
44
|
Baatz F, Nijhuis M, Lemaire M, Riedijk M, Wensing AMJ, Servais JY, van Ham PM, Hoepelman AIM, Koopmans PP, Sprenger HG, Devaux C, Schmit JC, Perez Bercoff D. Impact of the HIV-1 env genetic context outside HR1-HR2 on resistance to the fusion inhibitor enfuvirtide and viral infectivity in clinical isolates. PLoS One 2011; 6:e21535. [PMID: 21760896 PMCID: PMC3132734 DOI: 10.1371/journal.pone.0021535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/01/2011] [Indexed: 11/21/2022] Open
Abstract
Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1–HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1–HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1–HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1–HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy.
Collapse
Affiliation(s)
- Franky Baatz
- Laboratory of Retrovirology, CRP-Santé, Luxembourg, Luxembourg
| | - Monique Nijhuis
- Department of Virology, Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | - Morgane Lemaire
- Laboratory of Retrovirology, CRP-Santé, Luxembourg, Luxembourg
| | - Martiene Riedijk
- Department of Virology, Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
- Department of Internal Medicine and Infectious Diseases, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Petra M. van Ham
- Department of Virology, Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | - Andy I. M. Hoepelman
- Department of Internal Medicine and Infectious Diseases, UMC Utrecht, Utrecht, The Netherlands
| | - Peter P. Koopmans
- Division Infectious Diseases, Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Herman G. Sprenger
- Division of Infectious Diseases, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Carole Devaux
- Laboratory of Retrovirology, CRP-Santé, Luxembourg, Luxembourg
| | | | | |
Collapse
|
45
|
Single amino acid change in gp41 region of HIV-1 alters bystander apoptosis and CD4 decline in humanized mice. Virol J 2011; 8:34. [PMID: 21255440 PMCID: PMC3034703 DOI: 10.1186/1743-422x-8-34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background The mechanism by which HIV infection leads to a selective depletion of CD4 cells leading to immunodeficiency remains highly debated. Whether the loss of CD4 cells is a direct consequence of virus infection or bystander apoptosis of uninfected cells is also uncertain. Results We have addressed this issue in the humanized mouse model of HIV infection using a HIV variant with a point mutation in the gp41 region of the Env glycoprotein that alters its fusogenic activity. We demonstrate here that a single amino acid change (V38E) altering the cell-to-cell fusion activity of the Env minimizes CD4 loss in humanized mice without altering viral replication. This differential pathogenesis was associated with a lack of bystander apoptosis induction by V38E virus even in the presence of similar levels of infected cells. Interestingly, immune activation was observed with both WT and V38E infection suggesting that the two phenomena are likely not interdependent in the mouse model. Conclusions We conclude that Env fusion activity is one of the determinants of HIV pathogenesis and it may be possible to attenuate HIV by targeting gp41.
Collapse
|
46
|
Vaidya NK, Rong L, Marconi VC, Kuritzkes DR, Deeks SG, Perelson AS. Treatment-mediated alterations in HIV fitness preserve CD4+ T cell counts but have minimal effects on viral load. PLoS Comput Biol 2010; 6:e1001012. [PMID: 21124866 PMCID: PMC2991251 DOI: 10.1371/journal.pcbi.1001012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
For most HIV-infected patients, antiretroviral therapy controls viral replication. However, in some patients drug resistance can cause therapy to fail. Nonetheless, continued therapy with a failing regimen can preserve or even lead to increases in CD4+ T cell counts. To understand the biological basis of these observations, we used mathematical models to explain observations made in patients with drug-resistant HIV treated with enfuvirtide (ENF/T-20), an HIV-1 fusion inhibitor. Due to resistance emergence, ENF was removed from the drug regimen, drug-sensitive virus regrown, and ENF was re-administered. We used our model to study the dynamics of plasma-viral RNA and CD4+ T cell levels, and the competition between drug-sensitive and resistant viruses during therapy interruption and re-administration. Focusing on resistant viruses carrying the V38A mutation in gp41, we found ENF-resistant virus to be 17±3% less fit than ENF-sensitive virus in the absence of the drug, and that the loss of resistant virus during therapy interruption was primarily due to this fitness cost. Using viral dynamic parameters estimated from these patients, we show that although re-administration of ENF cannot suppress viral load, it can, in the presence of resistant virus, increase CD4+ T cell counts, which should yield clinical benefits. This study provides a framework to investigate HIV and T cell dynamics in patients who develop drug resistance to other antiretroviral agents and may help to develop more effective strategies for treatment. The impact of antiretroviral drug-resistance on viral load, CD4+ T cells, and clinical outcomes is complex. We used mathematical models to evaluate the benefits of HIV drug therapy in the presence of drug-resistant virus. As an example, we considered resistance to enfuvirtide, the first FDA-approved fusion inhibitor. If viral load increases on drug therapy due to drug resistance, therapy with this drug may be stopped. We found that the drug resistant virus is less fit than the drug-sensitive virus in the absence of drug, and this fitness disadvantage causes the loss of drug-resistant virus during drug interruption. After the drug-sensitive virus replaces resistant virus, enfuvirtide therapy was re-administered. Analyzing the resulting viral kinetics, we demonstrate that despite the inability of the re-administered drug to suppress viral load because of the continued presence of drug resistant virus, therapy still provides benefit to the patient by preserving or increasing peripheral blood CD4+ T cell levels.
Collapse
Affiliation(s)
- Naveen K. Vaidya
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Libin Rong
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, United States of America
| | - Vincent C. Marconi
- Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Daniel R. Kuritzkes
- Section of Retroviral Therapeutics, Brigham and Women's Hospital and Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- San Francisco General Hospital, San Francisco, California, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
47
|
Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol 2010; 84:11235-44. [PMID: 20719956 DOI: 10.1128/jvi.01339-10] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV gp41 N-trimer pocket region is an ideal viral target because it is extracellular, highly conserved, and essential for viral entry. Here, we report on the design of a pocket-specific D-peptide, PIE12-trimer, that is extraordinarily elusive to resistance and characterize its inhibitory and structural properties. D-peptides (peptides composed of D-amino acids) are promising therapeutic agents due to their insensitivity to protease degradation. PIE12-trimer was designed using structure-guided mirror-image phage display and linker optimization and is the first D-peptide HIV entry inhibitor with the breadth and potency required for clinical use. PIE12-trimer has an ultrahigh affinity for the gp41 pocket, providing it with a reserve of binding energy (resistance capacitor) that yields a dramatically improved resistance profile compared to those of other fusion inhibitors. These results demonstrate that the gp41 pocket is an ideal drug target and establish PIE12-trimer as a leading anti-HIV antiviral candidate.
Collapse
|
48
|
Distinct molecular pathways to X4 tropism for a V3-truncated human immunodeficiency virus type 1 lead to differential coreceptor interactions and sensitivity to a CXCR4 antagonist. J Virol 2010; 84:8777-89. [PMID: 20573813 DOI: 10.1128/jvi.00333-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the course of infection, transmitted HIV-1 isolates that initially use CCR5 can acquire the ability to use CXCR4, which is associated with an accelerated progression to AIDS. Although this coreceptor switch is often associated with mutations in the stem of the viral envelope (Env) V3 loop, domains outside V3 can also play a role, and the underlying mechanisms and structural basis for how X4 tropism is acquired remain unknown. In this study we used a V3 truncated R5-tropic Env as a starting point to derive two X4-tropic Envs, termed DeltaV3-X4A.c5 and DeltaV3-X4B.c7, which took distinct molecular pathways for this change. The DeltaV3-X4A.c5 Env clone acquired a 7-amino-acid insertion in V3 that included three positively charged residues, reestablishing an interaction with the CXCR4 extracellular loops (ECLs) and rendering it highly susceptible to the CXCR4 antagonist AMD3100. In contrast, the DeltaV3-X4B.c7 Env maintained the V3 truncation but acquired mutations outside V3 that were critical for X4 tropism. In contrast to DeltaV3-X4A.c5, DeltaV3-X4B.c7 showed increased dependence on the CXCR4 N terminus (NT) and was completely resistant to AMD3100. These results indicate that HIV-1 X4 coreceptor switching can involve (i) V3 loop mutations that establish interactions with the CXCR4 ECLs, and/or (ii) mutations outside V3 that enhance interactions with the CXCR4 NT. The cooperative contributions of CXCR4 NT and ECL interactions with gp120 in acquiring X4 tropism likely impart flexibility on pathways for viral evolution and suggest novel approaches to isolate these interactions for drug discovery.
Collapse
|
49
|
A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J Virol 2010; 84:8033-41. [PMID: 20519383 DOI: 10.1128/jvi.00469-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deadly paramyxovirus Nipah virus (NiV) contains a fusion glycoprotein (F) with canonical structural and functional features common to its class. Receptor binding to the NiV attachment glycoprotein (G) triggers F to undergo a two-phase conformational cascade: the first phase progresses from a metastable prefusion state to a prehairpin intermediate (PHI), while the second phase is marked by transition from the PHI to the six-helix-bundle hairpin. The PHI can be captured with peptides that mimic F's heptad repeat regions, and here we utilized a NiV heptad repeat peptide to quantify PHI formation and the half-lives (t(1/2)) of the first and second fusion cascade phases. We found that ephrinB2 receptor binding to G triggered approximately 2-fold more F than that triggered by ephrinB3, consistent with the increased rate and extent of fusion observed with ephrinB2- versus ephrinB3-expressing cells. In addition, for a series of hyper- and hypofusogenic F mutants, we quantified F-triggering capacities and measured the kinetics of their fusion cascade phases. Hyper- and hypofusogenicity can each be manifested through distinct stages of the fusion cascade, giving rise to vastly different half-lives for the first (t(1/2), 1.9 to 7.5 min) or second (t(1/2), 1.5 to 15.6 min) phase. While three mutants had a shorter first phase and a longer second phase than the wild-type protein, one mutant had the opposite phenotype. Thus, our results reveal multiple critical parameters that govern the paramyxovirus fusion cascade, and our assays should help efforts to elucidate other class I membrane fusion processes.
Collapse
|
50
|
The rare HIV-1 gp41 mutations 43T and 50V elevate enfuvirtide resistance levels of common enfuvirtide resistance mutations that did not impact susceptibility to sifuvirtide. Antiviral Res 2010; 86:253-60. [DOI: 10.1016/j.antiviral.2010.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 12/22/2022]
|