Abedon ST. Look Who's Talking: T-Even Phage Lysis Inhibition, the Granddaddy of Virus-Virus Intercellular Communication Research.
Viruses 2019;
11:v11100951. [PMID:
31623057 PMCID:
PMC6832632 DOI:
10.3390/v11100951]
[Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
That communication can occur between virus-infected cells has been appreciated for nearly as long as has virus molecular biology. The original virus communication process specifically was that seen with T-even bacteriophages-phages T2, T4, and T6-resulting in what was labeled as a lysis inhibition. Another proposed virus communication phenomenon, also seen with T-even phages, can be described as a phage-adsorption-induced synchronized lysis-inhibition collapse. Both are mediated by virions that were released from earlier-lysing, phage-infected bacteria. Each may represent ecological responses, in terms of phage lysis timing, to high local densities of phage-infected bacteria, but for lysis inhibition also to locally reduced densities of phage-uninfected bacteria. With lysis inhibition, the outcome is a temporary avoidance of lysis, i.e., a lysis delay, resulting in increased numbers of virions (greater burst size). Synchronized lysis-inhibition collapse, by contrast, is an accelerated lysis which is imposed upon phage-infected bacteria by virions that have been lytically released from other phage-infected bacteria. Here I consider some history of lysis inhibition, its laboratory manifestation, its molecular basis, how it may benefit expressing phages, and its potential ecological role. I discuss as well other, more recently recognized examples of virus-virus intercellular communication.
Collapse