1
|
Guo L, Ouyang X, Wang W, Qiu X, Zhao YL, Xu P, Tang H. Fine-tuning an aromatic ring-hydroxylating oxygenase to degrade high molecular weight polycyclic aromatic hydrocarbon. J Biol Chem 2024; 300:107343. [PMID: 38705395 PMCID: PMC11176777 DOI: 10.1016/j.jbc.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Guo L, Ouyang X, Wang W, Huang Y, Qiu X, Xu P, Tang H. Characterization of a novel aromatic ring-hydroxylating oxygenase, NarA2B2, from thermophilic Hydrogenibacillus sp. strain N12. Appl Environ Microbiol 2023; 89:e0086523. [PMID: 37819076 PMCID: PMC10617421 DOI: 10.1128/aem.00865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are harmful to human health due to their carcinogenic, teratogenic, and mutagenic effects. A thermophilic Hydrogenibacillus sp. strain N12 capable of degrading a variety of PAHs and derivatives was previously isolated. In this study, an aromatic ring-hydroxylating oxygenase, NarA2B2, was identified from strain N12, with substrate specificity including naphthalene, phenanthrene, dibenzothiophene, fluorene, acenaphthene, carbazole, biphenyl, and pyrene. NarA2B2 was proposed to add one or two atoms of molecular oxygen to the substrate and catalyze biphenyl at C-2, 2 or C-3, 4 positions with different characteristics than before. The key catalytic amino acids, H222, H227, and D379, were identified as playing a pivotal role in the formation of the 2-his-1-carboxylate facial triad. Furthermore, we conducted molecular docking and molecular dynamics simulations, notably, D219 enhanced the stability of the iron center by forming two stable hydrogen bonds with H222, while the mutation of F216, T223, and H302 modulated the catalytic activity by altering the pocket's size and shape. Compared to the wild-type (WT) enzyme, the degradation ratios of acenaphthene by F216A, T223A, and H302A had an improvement of 23.08%, 26.87%, and 29.52%, the degradation ratios of naphthalene by T223A and H302A had an improvement of 51.30% and 65.17%, while the degradation ratio of biphenyl by V236A had an improvement of 77.94%. The purified NarA2B2 was oxygen-sensitive when it was incubated with L-ascorbic acid in an anaerobic environment, and its catalytic activity was restored in vitro. These results contribute to a better understanding of the molecular mechanism responsible for PAHs' degradation in thermophilic microorganisms.IMPORTANCE(i) A novel aromatic ring-hydroxylating oxygenase named NarA2B2, capable of degrading multiple polycyclic aromatic hydrocarbons and derivatives, was identified from the thermophilic microorganism Hydrogenibacillus sp. N12. (ii) The degradation characteristics of NarA2B2 were characterized by adding one or two atoms of molecular oxygen to the substrate. Unlike the previous study, NarA2B2 catalyzed biphenyl at C-2, 2 or C-3, 4 positions. (iii) Catalytic sites of NarA2B2 were conserved, and key amino acids F216, D219, H222, T223, H227, V236, F243, Y300, H302, W316, F369, and D379 played pivotal roles in catalysis, as confirmed by protein structure prediction, molecular docking, molecular dynamics simulations, and point mutation.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqun Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Tian Y, Kong H, Ban X, Li C, Gu Z, Li Z. Distribution of Aromatic Amino Acid Residues in Substrate-Binding Regions Modulates Substrate Specificity of Microbial Debranching Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463425 DOI: 10.1021/acs.jafc.3c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Debranching enzymes (DBEs) directly hydrolyze α-1,6-glucosidic linkages in glycogen, starch, and related polysaccharides, making them important in the starch processing industry. However, the ambiguous substrate specificity usually restricts synergistic catalysis with other amylases for improving starch utilization. Herein, a glycogen-debranching enzyme from Saccharolobus solfataricus (SsGDE) and two isoamylases from Pseudomonas amyloderamosa (PaISO) and Chlamydomonas reinhardtii (CrISO) were used to investigate the molecular mechanism of substrate specificity. Along with the structure-based computational analysis, the aromatic residues in the substrate-binding region of DBEs played an important role in binding substrates. The aromatic residues in SsGDE appeared clustered, contributing to a small substrate-binding region. In contrast, the aromatic residues in isoamylase were distributed dispersedly, forming a large active site. The distinct characteristics of substrate-binding regions in SsGDE and isoamylase might explain their substrate preferences for maltodextrin and amylopectin, respectively. By modulating the substrate-binding region of SsGDE, variants Y323F and V375F were obtained with significantly enhanced activities, and the activities of Y323F and V375F increased by 30 and 60% for amylopectin, and 20 and 23% for DE4 maltodextrin, respectively. This study revealed the molecular mechanisms underlying the substrate specificity for SsGDE and isoamylases, providing a route for engineering enzymes to achieve higher catalytic performance.
Collapse
Affiliation(s)
- Yixiong Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| |
Collapse
|
4
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
5
|
Jiménez-Volkerink SN, Jordán M, Singleton DR, Grifoll M, Vila J. Bacterial benz(a)anthracene catabolic networks in contaminated soils and their modulation by other co-occurring HMW-PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121624. [PMID: 37059172 DOI: 10.1016/j.envpol.2023.121624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants in a number of point source contaminated sites, where they are found embedded in complex mixtures containing different polyaromatic compounds. The application of bioremediation technologies is often constrained by unpredictable end-point concentrations enriched in recalcitrant high molecular weight (HMW)-PAHs. The aim of this study was to elucidate the microbial populations and potential interactions involved in the biodegradation of benz(a)anthracene (BaA) in PAH-contaminated soils. The combination of DNA stable isotope probing (DNA-SIP) and shotgun metagenomics of 13C-labeled DNA identified a member of the recently described genus Immundisolibacter as the key BaA-degrading population. Analysis of the corresponding metagenome assembled genome (MAG) revealed a highly conserved and unique genetic organization in this genus, including novel aromatic ring-hydroxylating dioxygenases (RHD). The influence of other HMW-PAHs on BaA degradation was ascertained in soil microcosms spiked with BaA and fluoranthene (FT), pyrene (PY) or chrysene (CHY) in binary mixtures. The co-occurrence of PAHs resulted in a significant delay in the removal of PAHs that were more resistant to biodegradation, and this delay was associated with relevant microbial interactions. Members of Immundisolibacter, associated with the biodegradation of BaA and CHY, were outcompeted by Sphingobium and Mycobacterium, triggered by the presence of FT and PY, respectively. Our findings highlight that interacting microbial populations modulate the fate of PAHs during the biodegradation of contaminant mixtures in soils.
Collapse
Affiliation(s)
- Sara N Jiménez-Volkerink
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Maria Jordán
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708-0287, USA
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Joaquim Vila
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| |
Collapse
|
6
|
Silva NM, Romagnoli CL, Santiago CRDN, de Lacerda JPA, Leão SC, Digiampietri LA, Viana-Niero C. Multi-Approach Characterization of Novel Pyrene-Degrading Mycolicibacterium austroafricanum Isolates Lacking nid Genes. Microorganisms 2023; 11:1413. [PMID: 37374915 DOI: 10.3390/microorganisms11061413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds that are widespread in the environment, arising from the incomplete combustion of organic material, as well as from human activities involving petrol exploitation, petrochemical industrial waste, gas stations, and environmental disasters. PAHs of high molecular weight, such as pyrene, have carcinogenic and mutagenic effects and are considered pollutants. The microbial degradation of PAHs occurs through the action of multiple dioxygenase genes (nid), which are localized in genomic island denominate region A, and cytochrome P450 monooxygenases genes (cyp) dispersed in the bacterial genome. This study evaluated pyrene degradation by five isolates of Mycolicibacterium austroafricanum using 2,6-dichlorophenol indophenol (DCPIP assay), gas chromatography/mass spectrometry (CG/MS), and genomic analyses. Two isolates (MYC038 and MYC040) exhibited pyrene degradation indexes of 96% and 88%, respectively, over a seven-day incubation period. Interestingly, the genomic analyses showed that the isolates do not have nid genes, which are involved in PAH biodegradation, despite their ability to degrade pyrene, suggesting that degradation may occur due to the presence of cyp150 genes, or even genes that have not yet been described. To the best of our knowledge, this is the first report of isolates without nid genes demonstrating the ability to degrade pyrene.
Collapse
Affiliation(s)
- Natalia Maria Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Camila Lopes Romagnoli
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | | | - João Paulo Amorim de Lacerda
- Laboratory of Chemistry and Manufactured Products, Institute of Technological Research, São Paulo 05508-901, Brazil
| | - Sylvia Cardoso Leão
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | | | - Cristina Viana-Niero
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-901, Brazil
| |
Collapse
|
7
|
Huang Y, Li L, Yin X, Zhang T. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach. ENVIRONMENTAL MICROBIOME 2023; 18:39. [PMID: 37122013 PMCID: PMC10150532 DOI: 10.1186/s40793-023-00497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbon (PAH) contamination has been a worldwide environmental issue because of its impact on ecosystems and human health. Biodegradation plays an important role in PAH removal in natural environments. To date, many PAH-degrading strains and degradation genes have been reported. However, a comprehensive PAH-degrading gene database is still lacking, hindering a deep understanding of PAH degraders in the era of big data. Furthermore, the relationships between the PAH-catabolic genotype and phenotype remain unclear. RESULTS Here, we established a bacterial PAH-degrading gene database and explored PAH biodegradation capability via a genome-function relationship approach. The investigation of functional genes in the experimentally verified PAH degraders indicated that genes encoding hydratase-aldolase could serve as a biomarker for preliminarily identifying potential degraders. Additionally, a genome-centric interpretation of PAH-degrading genes was performed in the public genome database, demonstrating that they were ubiquitous in Proteobacteria and Actinobacteria. Meanwhile, the global phylogenetic distribution was generally consistent with the culture-based evidence. Notably, a few strains affiliated with the genera without any previously known PAH degraders (Hyphomonas, Hoeflea, Henriciella, Saccharomonospora, Sciscionella, Tepidiphilus, and Xenophilus) also bore a complete PAH-catabolic gene cluster, implying their potential of PAH biodegradation. Moreover, a random forest analysis was applied to predict the PAH-degrading trait in the complete genome database, revealing 28 newly predicted PAH degraders, of which nine strains encoded a complete PAH-catabolic pathway. CONCLUSIONS Our results established a comprehensive PAH-degrading gene database and a genome-function relationship approach, which revealed several potential novel PAH-degrader lineages. Importantly, this genome-centric and function-oriented approach can overcome the bottleneck of conventional cultivation-based biodegradation research and substantially expand our current knowledge on the potential degraders of environmental pollutants.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
8
|
Zhang X, Wang X, Li Y, Ning G, Zhang Q, Zhang X, Zheng W, Yang Z. Differences in adsorption, transmembrane transport and degradation of pyrene and benzo[a]pyrene by Bacillus sp. strain M1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114328. [PMID: 36436257 DOI: 10.1016/j.ecoenv.2022.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In a previous study our group identified Bacillus sp. strain M1 as an efficient decomposer of high molecular weight-polycyclic aromatic hydrocarbons (HMW-PAHs). Interestingly, its removal efficiency for benzo[a]pyrene (BaP) was nearly double that of pyrene (Pyr), which was the reverse of what is reported for most other species. Here we compared the differential steps of biosorption, transmembrane transport and biodegradation of Pyr and BaP by strain M1 in order to assist in targeted selection of dominant strains and their degradation efficiency in the remediation of these two HMW-PAHs. The overall biosorption efficiency for BaP was 19% higher than that for Pyr, and the time needed to reach BaP peak adsorption efficiency was 4 days shorter than for Pyr. Transmembrane transport of the PAHs was compared in presence of sodium azide which inhibits ATP synthesis and metabolism. This indicated that both Pyr and BaP entered the cells by the same means of passive transport. Biodegradation of Pyr and BaP did not differ in the early stage of culture, but around days 5-7, the biodegradation efficiency of BaP was significantly (30-61%) higher than that of Pyr. Key enzymes involved in these processes were identified and their activity differed, with intracellular gentisate 1,2-dioxygenase and extracellular polyphenol oxidase as likely candidates to be involved in BaP degradation, while intracellular catechol-1,2- dioxygenase and salicylate hydroxylase are more likely involved in Pyr degradation. These results provide new insights for sustainable environmental remediation of pyrene and benzo(a)pyrene by these bacteria.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Xiaomin Wang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Yan Li
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Guohui Ning
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Qian Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Xuena Zhang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China
| | - Wei Zheng
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Zhixin Yang
- College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding 0710001, Hebei Province, PR China; Key Laboratory for Farmland Eco-Environment, Baoding 0710001, Hebei Province, PR China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, PR China.
| |
Collapse
|
9
|
Zhang L, Liu H, Dai J, Xu P, Tang H. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. MLIFE 2022; 1:287-302. [PMID: 38818225 PMCID: PMC10989954 DOI: 10.1002/mlf2.12032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 06/01/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent pollutants with adverse biological effects and pose a serious threat to ecological environments and human health. The previously isolated phenanthrene-degrading bacterial consortium (PDMC) consists of the genera Sphingobium and Pseudomonas and can degrade a wide range of PAHs. To identify the degradation mechanism of PAHs in the consortium PDMC, metagenomic binning was conducted and a Sphingomonadales assembly genome with 100% completeness was obtained. Additionally, Sphingobium sp. SHPJ-2, an efficient degrader of PAHs, was successfully isolated from the consortium PDMC. Strain SHPJ-2 has powerful degrading abilities and various degradation pathways of high-molecular-weight PAHs, including fluoranthene, pyrene, benzo[a]anthracene, and chrysene. Two ring-hydroxylating dioxygenases, five cytochrome P450s, and a pair of electron transfer chains associated with PAH degradation in strain SHPJ-2, which share 83.0%-99.0% similarity with their corresponding homologous proteins, were identified by a combination of Sphingomonadales assembly genome annotation, reverse-transcription quantitative polymerase chain reaction and heterologous expression. Furthermore, when coexpressed in Escherichia coli BL21(DE3) with the appropriate electron transfer chain, PhnA1B1 could effectively degrade chrysene and benzo[a]anthracene, while PhnA2B2 degrade fluoranthene. Altogether, these results provide a comprehensive assessment of strain SHPJ-2 and contribute to a better understanding of the molecular mechanism responsible for the PAH degradation.
Collapse
Affiliation(s)
| | - Huan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Peralta H, Aguilar A, Cancino-Díaz JC, Cuevas-Rico EA, Carmona-González A, Cruz-Maya JA, Jan-Roblero J. Determination of the metabolic pathways for degradation of naphthalene and pyrene in Amycolatopsis sp. Poz14. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109268. [PMID: 35026398 DOI: 10.1016/j.cbpc.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute important soil contaminants derived from petroleum. Poz14 strain can degrade pyrene and naphthalene. Its genome presented 9333 genes, among them those required for PAHs degradation. By phylogenomic analysis, the strain might be assigned to Amycolatopsis nivea. The strain was grown in glucose, pyrene, and naphthalene to compare their proteomes; 180 proteins were detected in total, and 90 of them were exclusives for xenobiotic conditions. Functions enriched with the xenobiotics belonged to transcription, translation, modification of proteins and transport of inorganic ions. Enriched pathways were pentose phosphate, proteasome and RNA degradation; in contrast, in glucose were glycolysis/gluconeogenesis and glyoxylate cycle. Proteins proposed to participate in the upper PAHs degradation were multicomponent oxygenase complexes, Rieske oxygenases, and dioxygenases; in the lower pathways were ortho-cleavage of catechol, phenylacetate, phenylpropionate, benzoate, and anthranilate. The catechol dioxygenase activity was measured and found increased when the strain was grown in naphthalene. Amycolatopsis sp. Poz14 genome and proteome revealed the PAHs degradation pathways and functions helping to contend the effects of such process.
Collapse
Affiliation(s)
- Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. postal 565-A, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Aguilar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. postal 565-A, Cuernavaca, Morelos 62210, Mexico
| | - Juan Carlos Cancino-Díaz
- Laboratorio de Inmunomicrobiología, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Eduardo Abiud Cuevas-Rico
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Alejandra Carmona-González
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Juan Antonio Cruz-Maya
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| | - Janet Jan-Roblero
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico.
| |
Collapse
|
11
|
Gleeson DB, Martin BC, Lardner T, Ball AS, Grice K, Holman AI, Trolove A, Manix M, Tibbett M, Bending GD, Hilton S, Ryan MH. Natural attenuation of legacy hydrocarbon spills in pristine soils is feasible despite difficult environmental conditions in the monsoon tropics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149335. [PMID: 34371400 DOI: 10.1016/j.scitotenv.2021.149335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The Kimberley region of Western Australia is a National Heritage listed region that is internationally recognised for its environmental and cultural significance. However, petroleum spills have been reported at a number of sites across the region, representing an environmental concern. The region is also characterised as having low soil nutrients, high temperatures and monsoonal rain - all of which may limit the potential for natural biodegradation of petroleum. Therefore, this work evaluated the effect of legacy petroleum hydrocarbons on the indigenous soil microbial community (across the domains Archaea, Bacteria and Fungi) at three sites in the Kimberley region. At each site, soil cores were removed from contaminated and control areas and analysed for total petroleum hydrocarbons, soil nutrients, pH and microbial community profiling (using16S rRNA and ITS sequencing on the Illumina MiSeq Platform). The presence of petroleum hydrocarbons decreased microbial diversity across all kingdoms, altered the structure of microbial communities and increased the abundance of putative hydrocarbon degraders (e.g. Mycobacterium, Acremonium, Penicillium, Bjerkandera and Candida). Microbial community shifts from contaminated soils were also associated with an increase in soil nutrients (notably Colwell P and S). Our study highlights the long-term effect of legacy hydrocarbon spills on soil microbial communities and their diversity in remote, infertile monsoonal soils, but also highlights the potential for natural attenuation to occur in these environments.
Collapse
Affiliation(s)
- Deirdre B Gleeson
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| | - Belinda C Martin
- Ooid Scientific, South Fremantle 6162, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Tim Lardner
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | | | - Kliti Grice
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley 6102, Australia
| | - Alex I Holman
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley 6102, Australia
| | | | - Megan Manix
- Horizon Power, 18 Brodie Hall Drive, Bentley 6102, Australia
| | - Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AH, UK; School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Megan H Ryan
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| |
Collapse
|
12
|
Comparative Analysis of Bile-Salt Degradation in Sphingobium sp. Strain Chol11 and Pseudomonas stutzeri Strain Chol1 Reveals Functional Diversity of Proteobacterial Steroid Degradation Enzymes and Suggests a Novel Pathway for Side Chain Degradation. Appl Environ Microbiol 2021; 87:e0145321. [PMID: 34469190 DOI: 10.1128/aem.01453-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The reaction sequence for aerobic degradation of bile salts by environmental bacteria resembles degradation of other steroid compounds. Recent findings show that bacteria belonging to the Sphingomonadaceae use a pathway variant for bile-salt degradation. This study addresses this so-called Δ4,6-variant by comparative analysis of unknown degradation steps in Sphingobium sp. strain Chol11 with known reactions found in Pseudomonas stutzeri Chol1. Investigations of strain Chol11 revealed an essential function of the acyl-CoA dehydrogenase (ACAD) Scd4AB for growth with bile salts. Growth of the scd4AB deletion mutant was restored with a metabolite containing a double bond within the side chain which was produced by the Δ22-ACAD Scd1AB from P. stutzeri Chol1. Expression of scd1AB in the scd4AB deletion mutant fully restored growth with bile salts, while expression of scd4AB only enabled constricted growth in P. stutzeri Chol1 scd1A or scd1B deletion mutants. Strain Chol11 Δscd4A accumulated hydroxylated steroid metabolites which were degraded and activated with coenzyme A by the wild type. Activities of five Rieske type monooxygenases of strain Chol11 were screened by heterologous expression and compared to the B-ring cleaving KshABChol1 from P. stutzeri Chol1. Three of the Chol11 enzymes catalyzed B-ring cleavage of only Δ4,6-steroids, while KshABChol1 was more versatile. Expression of a fourth KshA homolog, Nov2c228, led to production of metabolites with hydroxylations at an unknown position. These results indicate functional diversity of proteobacterial enzymes for bile-salt degradation and suggest a novel side chain degradation pathway involving an essential ACAD reaction and a steroid hydroxylation step. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds in different aspects. First, it further elucidates an unexplored variant in the degradation of bile-salt side chains by sphingomonads, a group of environmental bacteria that is well-known for their broad metabolic capabilities. Moreover, it adds a so far unknown hydroxylation of steroids to the reactions Rieske monooxygenases can catalyze with steroids. Additionally, it analyzes a proteobacterial ketosteroid-9α-hydroxylase and shows that this enzyme is able to catalyze side reactions with nonnative substrates.
Collapse
|
13
|
Golubev SN, Muratova AY, Panchenko LV, Shchyogolev SY, Turkovskaya OV. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth. Microbiol Res 2021; 253:126885. [PMID: 34624611 DOI: 10.1016/j.micres.2021.126885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
This research was focused on the isolation and characterization of a PAH-catabolizing mycobacterial strain from the petroleum hydrocarbon-contaminated rhizosphere of alfalfa, as well as on revealing some points of interaction between the microorganism and the plant. Mycolicibacterium sp. PAM1, a pyrene degrader isolated from the niche of interest to us, can catabolize fluoranthene, anthracene, fluorene, and phenanthrene. On the basis of curves of PAM1 growth with different PAHs as the sole carbon sources and on the basis of PAH-degradation rates, we found that pollutant availability to the strain decreased in the sequence phenanthrene > fluorene > fluoranthene ∼ pyrene > anthracene. For each PAH, the catabolic products were identified. PAM1 was found to have the functional genes nidA and nidB. New data modeling the 2D and 3D structures, intrinsic structural disorder, and molecular dynamics of the nidA and nidB gene products were obtained. The identified genes and intermediates of pyrene degradation indicate that PAM1 has a PAH catabolic pathway that is peculiar to known mycobacterial pyrene degraders. PAM1 utilized some components of alfalfa root exudates as nutrients and promoted plant growth. The use of mycobacterial partners of alfalfa is attractive for enhancing the phytoremediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- Sergey N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation.
| | - Anna Yu Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Leonid V Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Sergey Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Olga V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| |
Collapse
|
14
|
Laothamteep N, Kawano H, Vejarano F, Suzuki-Minakuchi C, Shintani M, Nojiri H, Pinyakong O. Effects of environmental factors and coexisting substrates on PAH degradation and transcriptomic responses of the defined bacterial consortium OPK. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116769. [PMID: 33676341 DOI: 10.1016/j.envpol.2021.116769] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 05/12/2023]
Abstract
The present study showed that syntrophic associations in a defined bacterial consortium, named OPK, containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1, led to effective pyrene degradation over a wide range of pH values, temperatures and salinities, as well as in the presence of a second polycyclic aromatic hydrocarbon (PAH). Anthracene, phenanthrene or fluorene facilitated complete pyrene degradation within 9 days, while fluoranthene delayed pyrene degradation. Interestingly, fluoranthene degradation was enhanced in the presence of pyrene. Transcriptome analysis confirmed that Mycolicibacterium strains were the key PAH-degraders during the cometabolism of pyrene and fluoranthene. Notably, the transcription of genes encoding pyrene-degrading enzymes were shown to be important for enhanced fluoranthene degradation. NidAB was the major initial oxygenase involved in the degradation of pyrene and fluoranthene mixture. Other functional genes encoding ribosomal proteins, an iron transporter, ABC transporters and stress response proteins were induced in strains PO1 and PO2. Furthermore, an intermediate pyrene-degrading Novosphingobium strain contributed to protocatechuate degradation. The results demonstrated that synergistic interactions among the bacterial members (PO1, PO2 and PY1) of the consortium OPK promoted the simultaneous degradation of two high molecular weight (HMW) PAHs.
Collapse
Affiliation(s)
- Natthariga Laothamteep
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Felipe Vejarano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Lan P, Ye S, Banwell MG. The Application of Dioxygenase-Based Chemoenzymatic Processes to the Total Synthesis of Natural Products. Chem Asian J 2020; 14:4001-4012. [PMID: 31609526 DOI: 10.1002/asia.201900988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/18/2019] [Indexed: 12/14/2022]
Abstract
This Minireview describes the exploitation of certain enzymatically derived, readily accessible, and enantiomerically pure cis-1,2-dihydrocatechols as starting materials in the chemical synthesis of a range of biologically active natural products, most notably sesquiterpenoids and alkaloids.
Collapse
Affiliation(s)
- Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Sebastian Ye
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
16
|
Solyanikova IP, Emelyanova EV, Shumkova ES, Travkin VM. Pathways of 3-Chlorobenzoate Degradation by Rhodococcus opacus strains 1CP and 6a. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171905014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Lu C, Hong Y, Liu J, Gao Y, Ma Z, Yang B, Ling W, Waigi MG. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:773-782. [PMID: 31121542 DOI: 10.1016/j.envpol.2019.05.044] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/21/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
A bacterial community was enriched with polycyclic aromatic hydrocarbons (PAHs) polluted soil to better study PAH degradation by indigenous soil bacteria. The consortium degraded more than 52% of low molecular weight and 35% of high molecular weight (HMW) PAHs during 16 days in a soil leachate medium. 16S rRNA gene high-throughput sequencing and quantitative polymerase chain reaction analyses for alpha subunit genes of ring-hydroxylating-dioxygenase (RHDα) suggested that Proteobacteria and Actinobacteria at the phylum level, Pseudomonas, Methylobacillus, Nocardioides, Methylophilaceae, Achromobacter, Pseudoxanthomonas, and Caulobacter at the generic level were involved in PAH degradation and might have the ability to carry RHDα genes (nidA and nahAc). The community was selected and collected according to biomass and RHDα gene contents, and added back to the PAH-polluted soil. The 16 EPA priority PAHs decreased from 95.23 to 23.41 mg kg-1 over 35 days. Compared with soil without the introduction of this bacterial community, adding the community with RHDα genes significantly decreased soil PAH contents, particularly HMW PAHs. The metabolic rate of PAHs in soil was positively correlated with nidA and nahAc gene contents. These results indicate that adding an indigenous bacterial consortium containing RHDα genes to contaminated soil may be a feasible and environmentally friendly method to clean up PAHs in agricultural soil.
Collapse
Affiliation(s)
- Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Hong
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
18
|
Haleyur N, Shahsavari E, Jain SS, Koshlaf E, Ravindran VB, Morrison PD, Osborn AM, Ball AS. Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:49-58. [PMID: 30844545 DOI: 10.1016/j.jenvman.2019.02.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/31/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a group of hazardous compounds that are ubiquitous and persistent. The main aim of this study was to investigate the degradation of PAHs in chronically contaminated, aged and weathered soils obtained from a former gas plant of Australia. Biostimulation and bioaugmentation using individual isolates (Rhodococcus sp. (NH2), Achromobacter sp. (NH13), Oerskovia paurometabola (NH11), Pantoea sp. (NH15), Sejongia sp. (NH20), Microbacterium maritypicum (NH30) and Arthrobacter equi (NH21)) and a consortium of these isolates were tested during mesocosm studies. A significant reduction (99%) in PAH concentration was observed in all the treatments. In terms of the abundance of PAH-degrading genes and microbial community structure during PAH degradation, qPCR results revealed that Gram-positive bacteria were dominant over other bacterial communities in all the treatments. 16S sequencing results revealed that the inoculated organisms did not establish themselves during the treatment. However, substantial bacterial community changes during the treatments were observed, suggesting that the natural community exhibited sufficient resilience and diversity to enable an active, but changing degrading community at all stages of the degradation process. Consequently, biostimulation is proposed as the best strategy to remediate PAHs in aged, weathered and chronically contaminated soils.
Collapse
Affiliation(s)
- Nagalakshmi Haleyur
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| | - Esmaeil Shahsavari
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Sohni Singh Jain
- Department of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Bundoora West, VIC, 3083, Australia
| | - Eman Koshlaf
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Vivek B Ravindran
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - A Mark Osborn
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
19
|
Zeng J, Zhu Q, Li Y, Dai Y, Wu Y, Sun Y, Miu L, Chen H, Lin X. Isolation of diverse pyrene-degrading bacteria via introducing readily utilized phenanthrene. CHEMOSPHERE 2019; 222:534-540. [PMID: 30721812 DOI: 10.1016/j.chemosphere.2019.01.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Bacteria able to degrade pyrene play a critical role in the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). However, the traditional isolation procedure only obtains strains related to the genus Mycobacterium. The aim of the present study was to develop a modified method to isolate taxonomically distinct pyrene-degrading strains. The results indicated that replacing pyrene with phenanthrene in the isolation step improved the isolation efficiency. Using the modified method, six PAH degraders belonging to the genera Bosea, Arthrobacter, Paenibacillus, Bacillus, and Rhodococcus were obtained. They were capable of effectively utilizing pyrene (∼100%) as their sole carbon source, and could co-metabolize the degradation of benzo [a]pyrene (26.9-71.5%). In contrast, a small amount of pyrene (5.6%) and benzo [a]pyrene (8.6%) were degraded by a phenanthrene-degrading Sphingobium sp. NS7 under the same conditions. The difference in PAHs degradation between agar plate culture and liquid culture may lead to the low isolation efficiency in the traditional procedure. Hereditary stability analysis showed that PAH degradation capability of the Bosea, Paenibacillus, and Rhodococcus strains were easily lost without PAH pressure, which may partly explain why those strains were difficult to obtain using the traditional method.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yanjie Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yeliang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yuhan Sun
- High School Affiliated To Nanjing Normal University, Chahaer Road, 37, Nanjing, 210003, PR China
| | - Luyi Miu
- High School Affiliated To Nanjing Normal University, Chahaer Road, 37, Nanjing, 210003, PR China
| | - Hong Chen
- Soil and Environment Analysis Center, Institute of Soil Science, Chinese Academy of Science, PR China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China.
| |
Collapse
|
20
|
Sun S, Wang H, Chen Y, Lou J, Wu L, Xu J. Salicylate and phthalate pathways contributed differently on phenanthrene and pyrene degradations in Mycobacterium sp. WY10. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:509-518. [PMID: 30388634 DOI: 10.1016/j.jhazmat.2018.10.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Mycobacterium sp. WY10 was a highly effective PAHs-degrading bacterium that can degrade phenanthrene (PHE, 100 mg L-1) completely within 60 h and 83% of pyrene (PYR, 50 mg L-1) in 72 h. In this study, ten and eleven metabolites, respectively, were identified in PHE and PYR degradation cultures, and a detailed PHE and PYR metabolism maps were constructed based on the metabolic results. The strain WY10 degraded PHE and PYR with initial dioxygenation mainly on 3,4- and 4,5-carbon positions, respectively. Thereafter, PYR degradation entered the PHE degradation pathway via the ortho-cleavage. It was observed that the "lower pathway" of PHE and PYR degradations were different. Based on the kinetics of residual metabolites, PHE was degraded in a dominant phthalate pathway and a minor salicylate pathway. However, both phthalate and salicylate pathways played important roles on PYR degradation. The WY10 genome revealed there were fifty-three genes related to PAHs degradations, including a complete gene set for PHE and PYR degradation via the phthalate pathway. The candidate gene/ORF, BOH72_19755, encoding salicylate synthase might contribute in the salicylate pathway.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanzhi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Yuan K, Xie X, Wang X, Lin L, Yang L, Luan T, Chen B. Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:824-832. [PMID: 30243191 DOI: 10.1016/j.envpol.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Cometabolism mechanisms of organic pollutants in environmental microbes have not been fully understood. In this study, a global analysis of Mycobacterium sp. strain A1-PYR transcriptomes on different PAH substrates (single or binary of pyrene (PYR) and phenanthrene (PHE)) was conducted. Comparative results demonstrated that expression levels of 23 PAH degradation enzymes were significantly higher in the binary substrate than in the PYR-only one. These enzymes constituted an integrated enzymatic system to actualize all transformation steps of PYR, and most of their encoded genes formed a novel gene cascade in the genome of strain A1-PYR. The roles of different genotypes of enzymes in PYR cometabolism were also discriminated even though all of their gene sequences were presented in the genome of this strain. NidAB and PdoA2B2 instead of NidA3B3 served the initial oxidization of PAHs, and PcaL replaced PcaCD to catalyze the formation of 3-oxoadipate. Novel genes associated with PYR cometabolism was also predicted by the relationships between their transcription profiles and PYR removal. The results showed that ABC-type transporters probably played important roles in the transport of PAHs and their metabolites through cell membrane, and [4Fe-4S] ferredoxin might be essential for dioxygenases (NidAB and PdoA2B2) to achieve oxidative activities. This study provided molecular insight in that microbial degrader subtly cometabolized recalcitrant PAHs with relatively more degradable ones.
Collapse
Affiliation(s)
- Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China; School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiuqin Xie
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China; School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
22
|
Wang W, Wang L, Shao Z. Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Appl Environ Microbiol 2018; 84:AEM.01261-18. [PMID: 30171002 PMCID: PMC6193391 DOI: 10.1128/aem.01261-18 10.1016/j.biotechadv.2015.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/19/2018] [Indexed: 06/12/2023] Open
Abstract
Bacteria play an important role in the removal of polycyclic aromatic hydrocarbons (PAHs) from polluted environments. In marine environments, Cycloclasticus is one of the most prevalent PAH-degrading bacterial genera. However, little is known regarding the degradation mechanisms for multiple PAHs by CycloclasticusCycloclasticus sp. strain P1 was isolated from deep-sea sediments and is known to degrade naphthalene, phenanthrene, pyrene, and other aromatic hydrocarbons. Here, six ring-hydroxylating dioxygenases (RHDs) were identified in the complete genome of Cycloclasticus sp. P1 and were confirmed to be involved in PAH degradation by enzymatic assays. Further, five gene clusters in its genome were identified to be responsible for PAH degradation. Degradation pathways for naphthalene, phenanthrene, and pyrene were elucidated in Cycloclasticus sp. P1 based on genomic and transcriptomic analysis and characterization of an interconnected metabolic network. The metabolic pathway overlaps in many steps in the degradation of pyrene, phenanthrene, and naphthalene, which were validated by the detection of metabolic intermediates in cultures. This study describes a pyrene degradation pathway for Cycloclasticus. Moreover, the study represents the integration of a PAH metabolic network that comprises pyrene, phenanthrene, and naphthalene degradation pathways. Taken together, these results provide a comprehensive investigation of PAH metabolism in CycloclasticusIMPORTANCE PAHs are ubiquitous in the environment and are carcinogenic compounds and tend to accumulate in food chains due to their low bioavailability and poor biodegradability. Cycloclasticus is an obligate marine PAH degrader and is widespread in marine environments, while the PAH degradation pathways remain unclear. In this report, the degradation pathways for naphthalene, phenanthrene, and pyrene were revealed, and an integrated PAH metabolic network covering pyrene, phenanthrene, and naphthalene was constructed in Cycloclasticus This overlapping network provides streamlined processing of PAHs to intermediates and ultimately to complete mineralization. Furthermore, these results provide an additional context for the prevalence of Cycloclasticus in oil-polluted marine environments and pelagic settings. In conclusion, these analyses provide a useful framework for understanding the cellular processes involved in PAH metabolism in an ecologically important marine bacterium.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, China
- Xiamen Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Lin Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, China
- Xiamen Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, China
- Xiamen Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Kim DW, Lee K, Lee DH, Cha CJ. Comparative genomic analysis of pyrene-degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation. J Microbiol 2018; 56:798-804. [DOI: 10.1007/s12275-018-8372-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
24
|
Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Appl Environ Microbiol 2018; 84:AEM.01261-18. [PMID: 30171002 DOI: 10.1128/aem.01261-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria play an important role in the removal of polycyclic aromatic hydrocarbons (PAHs) from polluted environments. In marine environments, Cycloclasticus is one of the most prevalent PAH-degrading bacterial genera. However, little is known regarding the degradation mechanisms for multiple PAHs by Cycloclasticus Cycloclasticus sp. strain P1 was isolated from deep-sea sediments and is known to degrade naphthalene, phenanthrene, pyrene, and other aromatic hydrocarbons. Here, six ring-hydroxylating dioxygenases (RHDs) were identified in the complete genome of Cycloclasticus sp. P1 and were confirmed to be involved in PAH degradation by enzymatic assays. Further, five gene clusters in its genome were identified to be responsible for PAH degradation. Degradation pathways for naphthalene, phenanthrene, and pyrene were elucidated in Cycloclasticus sp. P1 based on genomic and transcriptomic analysis and characterization of an interconnected metabolic network. The metabolic pathway overlaps in many steps in the degradation of pyrene, phenanthrene, and naphthalene, which were validated by the detection of metabolic intermediates in cultures. This study describes a pyrene degradation pathway for Cycloclasticus. Moreover, the study represents the integration of a PAH metabolic network that comprises pyrene, phenanthrene, and naphthalene degradation pathways. Taken together, these results provide a comprehensive investigation of PAH metabolism in Cycloclasticus IMPORTANCE PAHs are ubiquitous in the environment and are carcinogenic compounds and tend to accumulate in food chains due to their low bioavailability and poor biodegradability. Cycloclasticus is an obligate marine PAH degrader and is widespread in marine environments, while the PAH degradation pathways remain unclear. In this report, the degradation pathways for naphthalene, phenanthrene, and pyrene were revealed, and an integrated PAH metabolic network covering pyrene, phenanthrene, and naphthalene was constructed in Cycloclasticus This overlapping network provides streamlined processing of PAHs to intermediates and ultimately to complete mineralization. Furthermore, these results provide an additional context for the prevalence of Cycloclasticus in oil-polluted marine environments and pelagic settings. In conclusion, these analyses provide a useful framework for understanding the cellular processes involved in PAH metabolism in an ecologically important marine bacterium.
Collapse
|
25
|
Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018; 29:359-407. [PMID: 29948519 DOI: 10.1007/s10532-018-9837-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
26
|
Khara P, Roy M, Chakraborty J, Dutta A, Dutta TK. Characterization of a topologically unique oxygenase from Sphingobium sp. PNB capable of catalyzing a broad spectrum of aromatics. Enzyme Microb Technol 2018; 111:74-80. [DOI: 10.1016/j.enzmictec.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/25/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022]
|
27
|
Fu B, Xu T, Cui Z, Ng HL, Wang K, Li J, Li QX. Mutation of Phenylalanine-223 to Leucine Enhances Transformation of Benzo[a]pyrene by Ring-Hydroxylating Dioxygenase of Sphingobium sp. FB3 by increasing Accessibility of the Catalytic Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1206-1213. [PMID: 29336152 DOI: 10.1021/acs.jafc.7b05018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Burning of agricultural biomass generates polycyclic aromatic hydrocarbons (PAHs) including the carcinogen benzo[a]pyrene, of which the catabolism is primarily initiated by a ring-hydroxylating dioxygenase (RHD). This study explores catalytic site accessibility and its role in preferential catabolism of some PAHs over others. The genes flnA1f, flnA2f, flnA3, and flnA4, encoding the oxygenase α and β subunits, ferredoxin, and ferredoxin reductase, respectively, of the RHD enzyme complex (FlnA) were cloned from Sphingobium sp. FB3 and coexpressed in E. coli BL21. The FlnA effectively transformed fluoranthene but not benzo[a]pyrene. Substitution of the bulky phenylalanine-223 by leucine reduces the steric constraint in the substrate entrance to make the catalytic site of FlnA more accessible to large substrates, as visualized by 3D modeling, and allows the FlnA mutant to efficiently transform benzo[a]pyrene. Accessibility of the catalytic site to PAHs is a mechanism of RHD substrate specificity. The results shed light on why some PAHs are more recalcitrant than others.
Collapse
Affiliation(s)
- Bo Fu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhongli Cui
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University , Nanjing, Jiangsu 201195, China
| | - Ho Leung Ng
- Department of Biochemistry & Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Kai Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| |
Collapse
|
28
|
Wanapaisan P, Laothamteep N, Vejarano F, Chakraborty J, Shintani M, Muangchinda C, Morita T, Suzuki-Minakuchi C, Inoue K, Nojiri H, Pinyakong O. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:561-570. [PMID: 28886568 DOI: 10.1016/j.jhazmat.2017.08.062] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 05/22/2023]
Abstract
A pyrene-degrading microbial consortium was obtained after enrichment with mangrove sediment collected from Thailand. Five cultivable bacteria (Mycobacterium spp. PO1 and PO2, Novosphingobium pentaromativorans PY1, Ochrobactrum sp. PW1, and Bacillus sp. FW1) were successfully isolated from the consortium. Draft genomes of them showed that two different morphotypes of Mycobacterium (PO1 and PO2), possessed a complete gene set for pyrene degradation. PY1 contained genes for phthalate assimilation via protocatechuate, a central intermediate, by meta-cleavage pathway, and PW1 possessed genes for protocatechuate degradation via ortho-cleavage pathway. The occurrence of biosurfactant-producing genes in FW1 suggests the involvement in enhancing the pyrene bioavailability. Biotransformation experiments revealed that Mycobacterium completely degraded 100mgL-1 pyrene within six days, whereas no significant degradation was observed with the others. Notably, PY1 and PW1 exhibited higher activity for protocatechuate degradation than the others. The artificially reconstructed consortia containing Mycobacterium with the other three strains (PY1, PW1 and FW1) showed three-fold higher degradation rate for pyrene than the individual Mycobacterium. The enhanced pyrene biodegradation achieved in the consortium was due to the cooperative interaction of bacterial mixture. Our findings showing that synergistic degradation of pyrene in the consortium will facilitate the application of the defined bacterial consortium in bioremediation.
Collapse
Affiliation(s)
- Pagakrong Wanapaisan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Natthariga Laothamteep
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Felipe Vejarano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Joydeep Chakraborty
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaki Shintani
- Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Chanokporn Muangchinda
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tomomi Morita
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-8570, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kengo Inoue
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Yuan K, Chen B, Qing Q, Zou S, Wang X, Luan T. Polycyclic aromatic hydrocarbons (PAHs) enrich their degrading genera and genes in human-impacted aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:936-944. [PMID: 28743092 DOI: 10.1016/j.envpol.2017.07.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Bacterial degradation is an important clearance pathway for organic contaminants from highly human-impacted environments. However, it is not fully understood how organic contaminants are selected for degradation by bacteria and genes in aquatic environments. In this study, PAH degrading bacterial genera and PAH-degradation-related genes (PAHDGs) in sediments collected from the Pearl River (PR), the Pearl River Estuary (PRE) and the South China Sea (SCS), among which there were distinct differences in anthropogenic impact, were analyzed using metagenomic approaches. The diversity and abundance of PAH degrading genera and PAHDGs in the PR were substantially higher than those in the PRE and the SCS and were significantly correlated with the total PAH concentration. PAHDGs involved with the three key processes of PAH degradation (ring cleavage, side chain and central aromatic processes) were significantly correlated with each other in the sediments. In particular, plasmid-related PAHDGs were abundant in the PR sediments, indicating plasmid-mediated horizontal transfer of these genes between bacteria or the overgrowth of the bacteria containing these plasmids under the stresses of PAHs. Our results suggest that PAH degrading bacteria and genes were rich in PAH-polluted aquatic environments, which could facilitate the removal of PAHs by bacteria.
Collapse
Affiliation(s)
- Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Qing
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shichun Zou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
30
|
Zeng J, Zhu Q, Wu Y, Chen H, Lin X. Characterization of a polycyclic aromatic ring-hydroxylation dioxygenase from Mycobacterium sp. NJS-P. CHEMOSPHERE 2017; 185:67-74. [PMID: 28686888 DOI: 10.1016/j.chemosphere.2017.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/01/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Ring-hydroxylating dioxygenases (RHDs) play a critical role in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). In this study, genes pdoAB encoding a dioxygenase capable of oxidizing various PAHs with up to five-ring benzo[a]pyrene were cloned from Mycobacterium sp. NJS-P. The α-subunit of the PdoAB showed 99% and 93% identity to that from Mycobacterium sp. S65 and Mycobacterium sp. py136, respectively. An Escherichia coli expression experiment revealed that the enzyme is able to oxidize anthracene, phenanthrene, pyrene and benzo[a]pyrene, but not to fluoranthene and benzo[a]anthracene. Furthermore, the results of in silico analysis showed that PdoAB has a large substrate-binding pocket satisfying for accommodation of HMW PAHs, and suggested that the binding energy of intermolecular interaction may predict the substrate conversion of RHDs towards HMW PAHs, especially those may have steric constraints on the substrate-binding pocket, such as benzo[a]pyrene and benzo[a]anthracene.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Hong Chen
- Soil and Environment Analysis Center, Institute of Soil Science, Chinese Academy of Science, PR China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
31
|
Schrlau JE, Kramer AL, Chlebowski A, Truong L, Tanguay RL, Simonich SLM, Semprini L. Formation of Developmentally Toxic Phenanthrene Metabolite Mixtures by Mycobacterium sp. ELW1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8569-8578. [PMID: 28727453 PMCID: PMC5996983 DOI: 10.1021/acs.est.7b01377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mycobacterium sp. ELW1 co-metabolically degraded up to 1.8 μmol of phenanthrene (PHE) in ∼48 h, and hydroxyphenanthrene (OHPHE) metabolites, including 1-hydroxyphenanthrene (1-OHPHE), 3-hydroxyphenanthrene (3-OHPHE), 4-hydroxyphenanthrene (4-OHPHE), 9-hydroxyphenanthrene (9-OHPHE), 9,10-dihydroxyphenanthrene (1,9-OHPHE), and trans-9,10-dihydroxy-9,10-dihydrophenanthrene (trans-9,10-OHPHE), were identified and quantified over time. The monooxygenase responsible for co-metabolic transformation of PHE was inhibited by 1-octyne. First-order PHE transformation rates, kPHE, and half-lives, t1/2, for PHE-exposed cells were 0.16-0.51 h-1 and 1.4-4.3 h, respectively, and the 1-octyne controls ranged from 0.015-0.10 h-1 to 7.0-47 h, respectively. While single compound standards of PHE and trans-9,10-OHPHE, the major OHPHE metabolite formed by ELW1, were not toxic to embryonic zebrafish (Danio rerio), single compound standards of minor OHPHE metabolites, 1-OHPHE, 3-OHPHE, 4-OHPHE, 9-OHPHE, and 1,9-OHPHE, were toxic, with effective concentrations (EC50's) ranging from 0.5 to 5.5 μM. The metabolite mixtures formed by ELW1, and the reconstructed standard mixtures of the identified OHPHE metabolites, elicited a toxic response in zebrafish for the same three time points. EC50s for the metabolite mixtures formed by ELW1 were lower (more toxic) than those for the reconstructed standard mixtures of the identified OHPHE metabolites. Ten unidentified hydroxy PHE metabolites were measured in the derivatized mixtures formed by ELW1 and may explain the increased toxicity of the ELW1 metabolites mixture relative to the reconstructed standard mixtures of the identified OHPHE metabolites.
Collapse
Affiliation(s)
- Jill E. Schrlau
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| | - Amber L. Kramer
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Anna Chlebowski
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Robert L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Lewis Semprini
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| |
Collapse
|
32
|
Solyanikova IP, Borzova OV, Emelyanova EV, Shumkova ES, Prisyazhnaya NV, Plotnikova EG, Golovleva LA. Dioxygenases of Chlorobiphenyl-Degrading Species Rhodococcus wratislaviensis G10 and Chlorophenol-Degrading Species Rhodococcus opacus 1CP Induced in Benzoate-Grown Cells and Genes Potentially Involved in These Processes. BIOCHEMISTRY (MOSCOW) 2016; 81:986-98. [PMID: 27682171 DOI: 10.1134/s000629791609008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding α- and β-subunits of protocatechuate 3,4-dioxygenase and to two genes of the R. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.
Collapse
Affiliation(s)
- I P Solyanikova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 2016; 7:1369. [PMID: 27630626 PMCID: PMC5006600 DOI: 10.3389/fmicb.2016.01369] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.
Collapse
Affiliation(s)
- Debajyoti Ghosal
- Environmental Engineering Laboratory, Department of Civil Engineering, Yeungnam UniversityGyeongsan, South Korea
| | - Shreya Ghosh
- Disasters Prevention Research Institute, Yeungnam UniversityGyeongsan, South Korea
| | - Tapan K. Dutta
- Department of Microbiology, Bose InstituteKolkata, India
| | - Youngho Ahn
- Environmental Engineering Laboratory, Department of Civil Engineering, Yeungnam UniversityGyeongsan, South Korea
- Disasters Prevention Research Institute, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
34
|
Effects of Polycyclic Aromatic Hydrocarbon Mixtures on Degradation, Gene Expression, and Metabolite Production in Four Mycobacterium Species. Appl Environ Microbiol 2016; 82:3357-3369. [PMID: 27037123 DOI: 10.1128/aem.00100-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that are hazardous to human health. It has been demonstrated that members of the Mycobacterium genus are among the most effective degraders of PAHs, but few studies have focused on the degradation of PAH mixtures. In this study, single and mixed PAH metabolism was investigated in four phylogenetically distinct Mycobacterium species with respect to (i) parent compound degradation, (ii) bacterial growth, (iii) catabolic gene expression, and (iv) metabolite production. Synergistic and antagonistic effects on four model PAH compounds (benzo[a]pyrene, pyrene, fluoranthene, and phenanthrene) characterized degradation of mixtures in a strain- and mixture-dependent manner. The mixture of pyrene and phenanthrene, in particular, resulted in antagonized degradation by three out of four bacterial species, and further studies were narrowed to investigate the degradation of this mixture. Antagonistic effects persisted over time and were correlated with reduced bacterial growth. Antagonized degradation of PAH was not caused by preferential degradation of secondary PAHs, nor were mixture compounds or concentrations toxic to cells growing on sugars. Reverse transcription-PCR (RT-PCR) studies of the characterized catabolic pathway of phenanthrene showed that in one organism, antagonism of mixture degradation was associated with downregulated gene expression. Metabolite profiling revealed that antagonism in mixture degradation was associated with the shunting of substrate through alternative pathways not used during the degradation of single PAHs. The results of this study demonstrate metabolic differences between single and mixed PAH degradation with consequences for risk assessment and bioremediation of PAH-contaminated sites. IMPORTANCE Mycobacterium species are promising organisms for environmental bioremediation because of their ubiquitous presence in soils and their ability to catabolize aromatic compounds. PAHs can be degraded effectively as single compounds, but mixed substrates often are subject to degradative inhibition, which may explain the persistence of these pollutants in soils. Single and mixed PAH degradation by diverse Mycobacterium species was compared, with associated bacterial growth, gene expression, and metabolite production. The results demonstrate that antagonism characterized degradation in a strain- and mixture-dependent manner. One strain that was versatile in its pathway use of single chemicals also efficiently degraded the mixture, whereas antagonism in other the strains was associated with altered metabolic profiles, indicating unusual pathway use. The impacts of this work on risk assessment and bioremediation modeling studies indicate the need to account for mixture-generated intermediates and to recognize mixture degradation as a property distinct from that of PAH substrate range.
Collapse
|
35
|
Chen B, Huang J, Yuan K, Lin L, Wang X, Yang L, Luan T. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. MARINE POLLUTION BULLETIN 2016; 105:73-80. [PMID: 26952991 DOI: 10.1016/j.marpolbul.2016.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Pyrene degradation by Mycobacterium sp. strain A1-PYR was investigated in the presence of nutrient broth, phenanthrene and fluoranthene, respectively. Fast bacterial growth in the nutrient broth considerably enhanced pyrene degradation rate, whereas degradation efficiency per cell was substantially decreased. The addition of nutrient broth could not alter the transcription levels of all dioxygenase genotypes. In the PAH-only substrates, bacterial growth completely relied on biological conversion of PAHs into the effective carbon sources, which led to a higher degradation efficiency of pyrene per cell than the case of nutrient broth. Significant correlations were only observed between nidA-related dioxygenase expression and pyrene degradation or bacterial growth. The highest pyrene degradation rate in the presence of phenanthrene was consistent with the highest transcription level of nidA and 4,5-pyrenediol as the sole initial metabolite. This study reveals that bacterial growth requirement can invigorate degradation of PAHs by regulating metabolic pathway and genotypic enzyme expression.
Collapse
Affiliation(s)
- Baowei Chen
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jinyin Huang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Ke Yuan
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaowei Wang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Lihua Yang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
36
|
Tauler M, Vila J, Nieto JM, Grifoll M. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Appl Microbiol Biotechnol 2015; 100:3321-36. [DOI: 10.1007/s00253-015-7195-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022]
|
37
|
Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil. Appl Environ Microbiol 2015; 82:897-909. [PMID: 26590287 DOI: 10.1128/aem.03306-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022] Open
Abstract
Metagenomics allows the study of genes related to xenobiotic degradation in a culture-independent manner, but many of these studies are limited by the lack of genomic context for metagenomic sequences. This study combined a phenotypic screen known as substrate-induced gene expression (SIGEX) with whole-metagenome shotgun sequencing. SIGEX is a high-throughput promoter-trap method that relies on transcriptional activation of a green fluorescent protein (GFP) reporter gene in response to an inducing compound and subsequent fluorescence-activated cell sorting to isolate individual inducible clones from a metagenomic DNA library. We describe a SIGEX procedure with improved library construction from fragmented metagenomic DNA and improved flow cytometry sorting procedures. We used SIGEX to interrogate an aromatic hydrocarbon (AH)-contaminated soil metagenome. The recovered clones contained sequences with various degrees of similarity to genes (or partial genes) involved in aromatic metabolism, for example, nahG (salicylate oxygenase) family genes and their respective upstream nahR regulators. To obtain a broader context for the recovered fragments, clones were mapped to contigs derived from de novo assembly of shotgun-sequenced metagenomic DNA which, in most cases, contained complete operons involved in aromatic metabolism, providing greater insight into the origin of the metagenomic fragments. A comparable set of contigs was generated using a significantly less computationally intensive procedure in which assembly of shotgun-sequenced metagenomic DNA was directed by the SIGEX-recovered sequences. This methodology may have broad applicability in identifying biologically relevant subsets of metagenomes (including both novel and known sequences) that can be targeted computationally by in silico assembly and prediction tools.
Collapse
|
38
|
Dihydroxylation of four- and five-ring aromatic hydrocarbons by the naphthalene dioxygenase from Sphingomonas CHY-1. Appl Microbiol Biotechnol 2015; 100:1253-1263. [DOI: 10.1007/s00253-015-7050-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/20/2015] [Accepted: 09/29/2015] [Indexed: 12/23/2022]
|
39
|
Fuentes S, Ding GC, Cárdenas F, Smalla K, Seeger M. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile. FEMS Microbiol Ecol 2015; 91:fiv110. [PMID: 26362923 DOI: 10.1093/femsec/fiv110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2015] [Indexed: 11/14/2022] Open
Abstract
Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Guo-Chun Ding
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Franco Cárdenas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
40
|
Loviso CL, Lozada M, Guibert LM, Musumeci MA, Sarango Cardenas S, Kuin RV, Marcos MS, Dionisi HM. Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments. J Appl Microbiol 2015; 119:411-24. [PMID: 25968322 DOI: 10.1111/jam.12843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023]
Abstract
AIMS To investigate the potential to degrade polycyclic aromatic hydrocarbons (PAHs) of yet-to-be-cultured bacterial populations from chronically polluted intertidal sediments. METHODS AND RESULTS A gene variant encoding the alpha subunit of the catalytic component of an aromatic-ring-hydroxylating oxygenase (RHO) was abundant in intertidal sediments from chronically polluted subantarctic and temperate coastal environments, and its abundance increased after PAH amendment. Conversely, this marker gene was not detected in sediments from a nonimpacted site, even after a short-term PAH exposure. A metagenomic fragment carrying this gene variant was identified in a fosmid library of subantarctic sediments. This fragment contained five pairs of alpha and beta subunit genes and a lone alpha subunit gene of oxygenases, classified as belonging to three different RHO functional classes. In silico structural analysis suggested that two of these oxygenases contain large substrate-binding pockets, capable of accepting high molecular weight PAHs. CONCLUSIONS The identified uncultured micro-organism presents the potential to degrade aromatic hydrocarbons with various chemical structures, and could represent an important member of the PAH-degrading community in these polluted coastal environments. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides valuable information for the design of environmental molecular diagnostic tools and for the biotechnological application of RHO enzymes.
Collapse
Affiliation(s)
- C L Loviso
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - M Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - L M Guibert
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - M A Musumeci
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - S Sarango Cardenas
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - R V Kuin
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - M S Marcos
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| | - H M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
41
|
Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 2015; 33:95-102. [DOI: 10.1016/j.copbio.2015.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
|
42
|
Dynamic Response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon Crude Oil. Appl Environ Microbiol 2015; 81:4263-76. [PMID: 25888169 DOI: 10.1128/aem.00730-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
We investigated the response of the hydrocarbon-degrading Mycobacterium vanbaalenii PYR-1 to crude oil from the BP Deepwater Horizon (DWH) spill, using substrate depletion, genomic, and proteome analyses. M. vanbaalenii PYR-1 cultures were incubated with BP DWH crude oil, and proteomes and degradation of alkanes and polycyclic aromatic hydrocarbons (PAHs) were analyzed at four time points over 30 days. Gas chromatography-mass spectrometry (GC-MS) analysis showed a chain length-dependent pattern of alkane degradation, with C12 and C13 being degraded at the highest rate, although alkanes up to C28 were degraded. Whereas phenanthrene and pyrene were completely degraded, a significantly smaller amount of fluoranthene was degraded. Proteome analysis identified 3,948 proteins, with 876 and 1,859 proteins up- and downregulated, respectively. We observed dynamic changes in protein expression during BP crude oil incubation, including transcriptional factors and transporters potentially involved in adaptation to crude oil. The proteome also provided a molecular basis for the metabolism of the aliphatic and aromatic hydrocarbon components in the BP DWH crude oil, which included upregulation of AlkB alkane hydroxylase and an expression pattern of PAH-metabolizing enzymes different from those in previous proteome expression studies of strain PYR-1 incubated with pure or mixed PAHs, particularly the ring-hydroxylating oxygenase (RHO) responsible for the initial oxidation of aromatic hydrocarbons. Based on these results, a comprehensive cellular response of M. vanbaalenii PYR-1 to BP crude oil was proposed. This study increases our fundamental understanding of the impact of crude oil on the cellular response of bacteria and provides data needed for development of practical bioremediation applications.
Collapse
|
43
|
Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4725-4735. [PMID: 25335763 DOI: 10.1007/s11356-014-3721-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Hydrocarbon catabolic genes were investigated in soils and sediments in nine different locations around Syowa Station, Antarctica, using conventional PCR, real-time PCR, cloning, and sequencing analysis. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD)-coding genes from both Gram-positive and Gram-negative bacteria were observed. Clone libraries of Gram-positive RHD genes were related to (i) nidA3 of Mycobacterium sp. py146, (ii) pdoA of Terrabacter sp. HH4, (iii) nidA of Diaphorobacter sp. KOTLB, and (iv) pdoA2 of Mycobacterium sp. CH-2, with 95-99% similarity. Clone libraries of Gram-negative RHD genes were related to the following: (i) naphthalene dioxygenase of Burkholderia glathei, (ii) phnAc of Burkholderia sartisoli, and (iii) RHD alpha subunit of uncultured bacterium, with 41-46% similarity. Interestingly, the diversity of the Gram-positive RHD genes found around this area was higher than those of the Gram-negative RHD genes. Real-time PCR showed different abundance of dioxygenase genes between locations. Moreover, the PCR-denaturing gradient gel electrophoresis (DGGE) profile demonstrated diverse bacterial populations, according to their location. Forty dominant fragments in the DGGE profiles were excised and sequenced. All of the sequences belonged to ten bacterial phyla: Proteobacteria, Actinobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Cyanobacteria, Chlorobium, and Acidobacteria. In addition, the bacterial genus Sphingomonas, which has been suggested to be one of the major PAH degraders in the environment, was observed in some locations. The results demonstrated that indigenous bacteria have the potential ability to degrade PAHs and provided information to support the conclusion that bioremediation processes can occur in the Antarctic soils and sediments studied here.
Collapse
Affiliation(s)
- C Muangchinda
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
44
|
Kweon O, Kim SJ, Blom J, Kim SK, Kim BS, Baek DH, Park SI, Sutherland JB, Cerniglia CE. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol Biol 2015; 15:21. [PMID: 25880171 PMCID: PMC4342237 DOI: 10.1186/s12862-015-0302-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Results Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Conclusions Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0302-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Jochen Blom
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany.
| | - Sung-Kwan Kim
- Department of Management, University of Arkansas at Little Rock, Little Rock, Arkansas, USA.
| | - Bong-Soo Kim
- Department of Life Science, Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan, Republic of Korea.
| | - Su Inn Park
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA.
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| |
Collapse
|
45
|
Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 2014; 80:6591-600. [PMID: 25128340 DOI: 10.1128/aem.01883-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ring-hydroxylating dioxygenases (RHDs) play a crucial role in the biodegradation of a range of aromatic hydrocarbons found on polluted sites, including polycyclic aromatic hydrocarbons (PAHs). Current knowledge on RHDs comes essentially from studies on culturable bacterial strains, while compelling evidence indicates that pollutant removal is mostly achieved by uncultured species. In this study, a combination of DNA-SIP labeling and metagenomic sequence analysis was implemented to investigate the metabolic potential of main PAH degraders on a polluted site. Following in situ labeling using [(13)C]phenanthrene, the labeled metagenomic DNA was isolated from soil and subjected to shotgun sequencing. Most annotated sequences were predicted to belong to Betaproteobacteria, especially Rhodocyclaceae and Burkholderiales, which is consistent with previous findings showing that main PAH degraders on this site were affiliated to these taxa. Based on metagenomic data, four RHD gene sets were amplified and cloned from soil DNA. For each set, PCR yielded multiple amplicons with sequences differing by up to 321 nucleotides (17%), reflecting the great genetic diversity prevailing in soil. RHDs were successfully overexpressed in Escherichia coli, but full activity required the coexpression of two electron carrier genes, also cloned from soil DNA. Remarkably, two RHDs exhibited much higher activity when associated with electron carriers from a sphingomonad. The four RHDs showed markedly different preferences for two- and three-ring PAHs but were poorly active on four-ring PAHs. Three RHDs preferentially hydroxylated phenanthrene on the C-1 and C-2 positions rather than on the C-3 and C-4 positions, suggesting that degradation occurred through an alternate pathway.
Collapse
|
46
|
Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. J Bacteriol 2014; 196:3503-15. [PMID: 25070740 DOI: 10.1128/jb.01945-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzo[a]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN.
Collapse
|
47
|
Baboshin M, Ivashina T, Chernykh A, Golovleva L. Comparison of the substrate specificity of two ring-hydroxylating dioxygenases from Sphingomonas sp. VKM B-2434 to polycyclic aromatic hydrocarbons. Biodegradation 2014; 25:693-703. [PMID: 24874927 DOI: 10.1007/s10532-014-9692-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/09/2014] [Indexed: 11/25/2022]
Abstract
The genes of two ring-hydroxylating dioxygenases (RHDs) of Sphingomonas sp. VKM B-2434 were cloned and expressed in Escherichia coli. The relative values of the RHD specificity constants were estimated for six polycyclic aromatic hydrocarbons (PAHs) based on the kinetics of PAH mixture conversion by the recombinant strains. The substrate specificity profiles of the enzymes were found to be very different. Dioxygenase ArhA was the most specific to acenaphthylene and showed a low specificity to fluoranthene. Dioxygenase PhnA was the most specific to anthracene and phenanthrene and showed a considerable specificity to fluoranthene. Knockout derivatives of Sphingomonas sp. VKM B-2434 lacking ArhA, PhnA, and both dioxygenases were constructed. PAH degradation by the single-knockout mutants was in agreement with the substrate specificity of the RHD remaining intact. Double-knockout mutant lacking both enzymes was unable to oxidize PAHs. A mutant form of dioxygenase ArhA with altered substrate specificity was described.
Collapse
Affiliation(s)
- Mikhail Baboshin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Prospekt Nauki 5, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
48
|
Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China. Appl Microbiol Biotechnol 2014; 98:7253-69. [DOI: 10.1007/s00253-014-5817-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
49
|
Fuentes S, Méndez V, Aguila P, Seeger M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 2014; 98:4781-94. [PMID: 24691868 DOI: 10.1007/s00253-014-5684-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/22/2023]
Abstract
Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología & Center of Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | |
Collapse
|
50
|
Mueller-Spitz SR, Crawford KD. Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135. Lett Appl Microbiol 2013; 58:330-7. [PMID: 24286199 DOI: 10.1111/lam.12205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/30/2013] [Accepted: 11/07/2013] [Indexed: 02/03/2023]
Abstract
UNLABELLED Polycyclic aromatic hydrocarbons (PAH) are a common environmental contaminant originating from both anthropogenic and natural sources. Mycobacterium species are highly adapted to utilizing a variety of PAH. Silver nanoparticles (AgNP) are an emerging contaminant that possess bactericidal properties, interferes with the bacterial membrane and alters function. Mycobacterium sp. strain RJGII-135 provided a model bacterium to assess changes in carbon metabolism by focusing on PAH degradation, which is dependent upon passive uptake of hydrophobic molecules into the cell membrane. A mixture of 18 PAH served as a complex mixture of carbon sources for assessing carbon metabolism. At environmentally relevant PAH concentrations, RJGII-135 degraded two-, three-, and four-ring PAH within 72 h, but preferentially attacked phenanthrene and fluorene. Total cell growth and PAH degradation were successively reduced when exposed to 0·05-0·5 mg 1(-1) AgNP. However, 0·05 mg l(-1) AgNP inhibited degradation of naphthalene, acenaphthylene and acenaphthalene. RJGII-135 retained the ability to degrade the methylated naphthalenes regardless of AgNP concentration suggesting that proteins involved in dihydrodiol formation were inhibited. The reduced PAH metabolism of RJGII-135 when exposed to sublethal concentrations of AgNP provides evidence that nanoparticle pollution could alter carbon cycling in soils, sediment and aquatic environments. SIGNIFICANCE AND IMPACT OF THE STUDY Silver nanoparticle (AgNP) pollution threatens bacterial-mediated processes due to their antibacterial properties. With the widespread commercial use of AgNP, continued environmental release is inevitable and we are just beginning to understand the potential environmental ramifications of nanoparticle pollution. This study examined AgNP inhibition of carbon metabolism through the polycyclic aromatic hydrocarbon degradation by Mycobacterium species RJGII-135. Sublethal doses altered PAH metabolism, which is dependent upon cell membrane properties and intracellular proteins. The changed carbon metabolism when exposed to sublethal doses of AgNP suggests broad impacts of this pollution on bacterial carbon cycling in diverse environments.
Collapse
Affiliation(s)
- S R Mueller-Spitz
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | | |
Collapse
|