1
|
Guo Y, Gu D, Huang T, Li A, Zhou Y, Kang X, Meng C, Xiong D, Song L, Jiao X, Pan Z. Salmonella Enteritidis T1SS protein SiiD inhibits NLRP3 inflammasome activation via repressing the mtROS-ASC dependent pathway. PLoS Pathog 2023; 19:e1011381. [PMID: 37155697 DOI: 10.1371/journal.ppat.1011381] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/18/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasome activation is an essential innate immune defense mechanism against Salmonella infections. Salmonella has developed multiple strategies to avoid or delay inflammasome activation, which may be required for long-term bacterial persistence. However, the mechanisms by which Salmonella evades host immune defenses are still not well understood. In this study, Salmonella Enteritidis (SE) random insertion transposon library was screened to identify the key factors that affect the inflammasome activation. The type I secretion system (T1SS) protein SiiD was demonstrated to repress the NLRP3 inflammasome activation during SE infection and was the first to reveal the antagonistic role of T1SS in the inflammasome pathway. SiiD was translocated into host cells and localized in the membrane fraction in a T1SS-dependent and partially T3SS-1-dependent way during SE infection. Subsequently, SiiD was demonstrated to significantly suppress the generation of mitochondrial reactive oxygen species (mtROS), thus repressing ASC oligomerization to form pyroptosomes, and impairing the NLRP3 dependent Caspase-1 activation and IL-1β secretion. Importantly, SiiD-deficient SE induced stronger gut inflammation in mice and displayed NLRP3-dependent attenuation of the virulence. SiiD-mediated inhibition of NLRP3 inflammasome activation significantly contributed to SE colonization in the infected mice. This study links bacterial T1SS regulation of mtROS-ASC signaling to NLRP3 inflammasome activation and reveals the essential role of T1SS in evading host immune responses.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Tingting Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Ang Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| |
Collapse
|
2
|
Greene AR, Owen KA, Casanova JE. Salmonella Typhimurium manipulates macrophage cholesterol homeostasis through the SseJ-mediated suppression of the host cholesterol transport protein ABCA1. Cell Microbiol 2021; 23:e13329. [PMID: 33742761 DOI: 10.1111/cmi.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
Upon infection of host cells, Salmonella enterica serovar Typhimurium resides in a modified-endosomal compartment referred to as the Salmonella-containing vacuole (SCV). SCV biogenesis is driven by multiple effector proteins translocated through two type III secretion systems (T3SS-1 and T3SS-2). While many host proteins targeted by these effector proteins have been characterised, the role of host lipids in SCV dynamics remains poorly understood. Previous studies have shown that S. Typhimurium infection in macrophages leads to accumulation of intracellular cholesterol, some of which concentrates in and around SCVs; however, the underlying mechanisms remain unknown. Here, we show that S. Typhimurium utilises the T3SS-2 effector SseJ to downregulate expression of the host cholesterol transporter ABCA1 in macrophages, leading to a ~45% increase in cellular cholesterol. Mechanistically, SseJ activates a signalling cascade involving the host kinases FAK and Akt to suppress Abca1 expression. Mutational inactivation of SseJ acyltransferase activity, silencing FAK, or inhibiting Akt prevents Abca1 downregulation and the corresponding accumulation of cholesterol during infection. Importantly, RNAi-mediated silencing of ABCA1 rescued bacterial survival in FAK-deficient macrophages, suggesting that Abca1 downregulation and cholesterol accumulation are important for intracellular survival.
Collapse
Affiliation(s)
- Adam R Greene
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Katherine A Owen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA.,Ampel Biosolutions, Charlottesville, Virginia, USA
| | - James E Casanova
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System Needle Complex. Curr Top Microbiol Immunol 2020; 427:67-90. [PMID: 31667599 DOI: 10.1007/82_2019_178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.
Collapse
Affiliation(s)
- Sean Miletic
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany
| | | | - Thomas C Marlovits
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany.
| |
Collapse
|
4
|
Cryo-EM structure of the Shigella type III needle complex. PLoS Pathog 2020; 16:e1008263. [PMID: 32092125 PMCID: PMC7058355 DOI: 10.1371/journal.ppat.1008263] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/05/2020] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
The Type III Secretion Systems (T3SS) needle complex is a conserved syringe-shaped protein translocation nanomachine with a mass of about 3.5 MDa essential for the survival and virulence of many Gram-negative bacterial pathogens. This system is composed of a membrane-embedded basal body and an extracellular needle that deliver effector proteins into host cells. High-resolution structures of the T3SS from different organisms and infection stages are needed to understand the underlying molecular mechanisms of effector translocation. Here, we present the cryo-electron microscopy structure of the isolated Shigella T3SS needle complex. The inner membrane (IM) region of the basal body adopts 24-fold rotational symmetry and forms a channel system that connects the bacterial periplasm with the export apparatus cage. The secretin oligomer adopts a heterogeneous architecture with 16- and 15-fold cyclic symmetry in the periplasmic N-terminal connector and C-terminal outer membrane ring, respectively. Two out of three IM subunits bind the secretin connector via a β-sheet augmentation. The cryo-EM map also reveals the helical architecture of the export apparatus core, the inner rod, the needle and their intervening interfaces. Diarrheal diseases evoke about 2.2. million dead people annually and are the second leading cause of postneonatal child mortality worldwide. Shigella causing dysentery utilizes the type 3-secretion system (T3SS) to inject virulence factors into the gut cells. The T3SS needle complex is a syringe-shaped nanomachine consisting of two membrane-embedded ring systems that sheath a central export apparatus and a hollow needle-like structure through which the virulence factors are transported. We present here the structure of the Shigella T3SS needle complex obtained by high-end electron microscopy. The outer membrane (OM) ring system adopts a mixed 15- and 16-fold cyclic symmetry and the near-atomic structure shows the connection of the inner membrane (IM) and OM rings. Conserved channels in the IM ring connect the bacterial periplasm with the central export apparatus. Similar to the Salmonella flagellar system, the export apparatus and its connected needle-like structure assemble in a helical manner. This study advances our understanding of the role of essential structural elements in the T3SS assembly and function.
Collapse
|
5
|
T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly. Nat Microbiol 2019; 4:2010-2019. [DOI: 10.1038/s41564-019-0545-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
|
6
|
Bergeron JRC, Brockerman JA, Vuckovic M, Deng W, Okon M, Finlay BB, McIntosh LP, Strynadka NCJ. Characterization of the two conformations adopted by the T3SS inner-membrane protein PrgK. Protein Sci 2018; 27:1680-1691. [PMID: 30095200 DOI: 10.1002/pro.3447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/07/2022]
Abstract
The pathogenic bacterium Salmonella enterica serovar Typhimurium utilizes two type III secretion systems (T3SS) to inject effector proteins into target cells upon infection. The T3SS secretion apparatus (the injectisome) is a large macromolecular assembly composed of over twenty proteins, many in highly oligomeric states. A sub-structure of the injectisome, termed the basal body, spans both membranes and the periplasmic space of the bacterium. It is primarily composed of three integral membranes proteins, InvG, PrgH, and PrgK, that form ring structures through which components are secreted. In particular, PrgK possesses a periplasmic region consisting of two globular domains joined by a linker polypeptide. We showed previously that in isolation, this region adopts two distinct conformations, of with only one is observed in the assembled basal body complex. Here, using NMR spectroscopy, we further characterize these two conformations. In particular, we demonstrate that the interaction of the linker region with the first globular domain, as found in the intact basal body, is dependent upon the cis conformation of the Leu77-Pro78 peptide. Furthermore, this interaction is pH-dependent due to coupling with hydrogen bond formation between Tyr75 and His42 in its neutral Nδ1 H tautomeric form. This pH-dependent interaction may play a role in the regulation of the secretion apparatus disassembly in the context of bacterial infection.
Collapse
Affiliation(s)
- Julien R C Bergeron
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacob A Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - B Brett Finlay
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
The Third Transmembrane Domain of EscR Is Critical for Function of the Enteropathogenic Escherichia coli Type III Secretion System. mSphere 2018; 3:3/4/e00162-18. [PMID: 30045964 PMCID: PMC6060343 DOI: 10.1128/msphere.00162-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs. Many Gram-negative bacterial pathogens utilize a specialized protein delivery system, called the type III secretion system (T3SS), to translocate effector proteins into the host cells. The translocated effectors are crucial for bacterial infection and survival. The base of the T3SS transverses both bacterial membranes and contains an export apparatus that comprises five membrane proteins. Here, we study the export apparatus of enteropathogenic Escherichia coli (EPEC) and characterize its central component, called the EscR protein. We found that the third transmembrane domain (TMD) of EscR mediates strong self-oligomerization in an isolated genetic reporter system. Replacing this TMD sequence with an alternative hydrophobic sequence within the full-length protein resulted in a complete loss of function of the T3SS, further suggesting that the EscR TMD3 sequence has another functional role in addition to its role as a membrane anchor. Moreover, we found that an aspartic acid residue, located at the core of EscR TMD3, is important for the oligomerization propensity of TMD3 and that a point mutation of this residue within the full-length protein abolishes the T3SS activity and the ability of the bacteria to translocate effectors into host cells. IMPORTANCE Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs.
Collapse
|
8
|
Chu F, Thornton DT, Nguyen HT. Chemical cross-linking in the structural analysis of protein assemblies. Methods 2018; 144:53-63. [PMID: 29857191 DOI: 10.1016/j.ymeth.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
For decades, chemical cross-linking of proteins has been an established method to study protein interaction partners. The chemical cross-linking approach has recently been revived by mass spectrometric analysis of the cross-linking reaction products. Chemical cross-linking and mass spectrometric analysis (CXMS) enables the identification of residues that are close in three-dimensional (3D) space but not necessarily close in primary sequence. Therefore, this approach provides medium resolution information to guide de novo structure prediction, protein interface mapping and protein complex model building. The robustness and compatibility of the CXMS approach with multiple biochemical methods have made it especially appealing for challenging systems with multiple biochemical compositions and conformation states. This review provides an overview of the CXMS approach, describing general procedures in sample processing, data acquisition and analysis. Selection of proper chemical cross-linking reagents, strategies for cross-linked peptide identification, and successful application of CXMS in structural characterization of proteins and protein complexes are discussed.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, United States.
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
9
|
Fischer L, Rappsilber J. False discovery rate estimation and heterobifunctional cross-linkers. PLoS One 2018; 13:e0196672. [PMID: 29746514 PMCID: PMC5944926 DOI: 10.1371/journal.pone.0196672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
False discovery rate (FDR) estimation is a cornerstone of proteomics that has recently been adapted to cross-linking/mass spectrometry. Here we demonstrate that heterobifunctional cross-linkers, while theoretically different from homobifunctional cross-linkers, need not be considered separately in practice. We develop and then evaluate the impact of applying a correct FDR formula for use of heterobifunctional cross-linkers and conclude that there are minimal practical advantages. Hence a single formula can be applied to data generated from the many different non-cleavable cross-linkers.
Collapse
Affiliation(s)
- Lutz Fischer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
10
|
The role of EscD in supporting EscC polymerization in the type III secretion system of enteropathogenic Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:384-395. [PMID: 28988128 DOI: 10.1016/j.bbamem.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
The type III secretion system (T3SS) is a multi-protein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. In enteropathogenic Escherichia coli, a prevalent cause of diarrheal diseases, the needle complex base of the T3SS is formed by multi-rings: two concentric inner-membrane rings made by the two oligomerizing proteins (EscD and EscJ), and an outer ring made of a single oligomerizing protein (EscC). Although the oligomerization activity of these proteins is critical for their function and can, therefore, affect the virulence of the pathogen, the mechanisms underlying the oligomerization of these proteins have yet to be identified. In this study, we report that the proteins forming the inner-membrane T3SS rings, EscJ and EscD proteins, are crucial for the oligomerization of EscC. Moreover, we elucidate the oligomerization process of EscD and determine the contribution of individual regions of the protein to its self-oligomerization activity. We show that the oligomerization motif of EscD is located at its N-terminal portion and that its transmembrane domain can self-oligomerize, thus contributing to the self-oligomerization of the full-length EscD.
Collapse
|
11
|
Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JRC, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NCJ. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature 2016; 540:597-601. [DOI: 10.1038/nature20576] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
|
12
|
Abstract
Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts--the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe "injectisomes," which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.
Collapse
|
13
|
MacKenzie KD, Wang Y, Shivak DJ, Wong CS, Hoffman LJL, Lam S, Kröger C, Cameron ADS, Townsend HGG, Köster W, White AP. Bistable expression of CsgD in Salmonella enterica serovar Typhimurium connects virulence to persistence. Infect Immun 2015; 83:2312-26. [PMID: 25824832 PMCID: PMC4432751 DOI: 10.1128/iai.00137-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/20/2015] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria often need to survive in the host and the environment, and it is not well understood how cells transition between these equally challenging situations. For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is correlated with persistence outside a host, but the connection to virulence is unknown. In this study, we analyzed multicellular-aggregate and planktonic-cell subpopulations that coexist when S. Typhimurium is grown under biofilm-inducing conditions. These cell types arise due to bistable expression of CsgD, the central biofilm regulator. Despite being exposed to the same stresses, the two cell subpopulations had 1,856 genes that were differentially expressed, as determined by transcriptome sequencing (RNA-seq). Aggregated cells displayed the characteristic gene expression of biofilms, whereas planktonic cells had enhanced expression of numerous virulence genes. Increased type three secretion synthesis in planktonic cells correlated with enhanced invasion of a human intestinal cell line and significantly increased virulence in mice compared to the aggregates. However, when the same groups of cells were exposed to desiccation, the aggregates survived better, and the competitive advantage of planktonic cells was lost. We hypothesize that CsgD-based differentiation is a form of bet hedging, with single cells primed for host cell invasion and aggregated cells adapted for persistence in the environment. This allows S. Typhimurium to spread the risks of transmission and ensures a smooth transition between the host and the environment.
Collapse
Affiliation(s)
- Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yejun Wang
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Dylan J Shivak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia S Wong
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Leia J L Hoffman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Hugh G G Townsend
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Merkley ED, Rysavy S, Kahraman A, Hafen RP, Daggett V, Adkins JN. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances. Protein Sci 2014; 23:747-59. [PMID: 24639379 DOI: 10.1002/pro.2458] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/24/2022]
Abstract
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS(3) ) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine-lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS(3), a distance constraint of 26-30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods.
Collapse
Affiliation(s)
- Eric D Merkley
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, 99352-1793
| | | | | | | | | | | |
Collapse
|
15
|
Diepold A, Wagner S. Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 2014; 38:802-22. [PMID: 24484471 DOI: 10.1111/1574-6976.12061] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022] Open
Abstract
Many bacteria that live in contact with eukaryotic hosts, whether as symbionts or as pathogens, have evolved mechanisms that manipulate host cell behaviour to their benefit. One such mechanism, the type III secretion system, is employed by Gram-negative bacterial species to inject effector proteins into host cells. This function is reflected by the overall shape of the machinery, which resembles a molecular syringe. Despite the simplicity of the concept, the type III secretion system is one of the most complex known bacterial nanomachines, incorporating one to more than hundred copies of up to twenty different proteins into a multi-MDa transmembrane complex. The structural core of the system is the so-called needle complex that spans the bacterial cell envelope as a tripartite ring system and culminates in a needle protruding from the bacterial cell surface. Substrate targeting and translocation are accomplished by an export machinery consisting of various inner membrane embedded and cytoplasmic components. The formation of such a multimembrane-spanning machinery is an intricate task that requires precise orchestration. This review gives an overview of recent findings on the assembly of type III secretion machines, discusses quality control and recycling of the system and proposes an integrated assembly model.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
16
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
17
|
Kowal J, Chami M, Ringler P, Müller S, Kudryashev M, Castaño-Díez D, Amstutz M, Cornelis G, Stahlberg H, Engel A. Structure of the Dodecameric Yersinia enterocolitica Secretin YscC and Its Trypsin-Resistant Core. Structure 2013; 21:2152-61. [DOI: 10.1016/j.str.2013.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
18
|
A Pseudo-Atomic Model for the Capsid Shell of Bacteriophage Lambda Using Chemical Cross-Linking/Mass Spectrometry and Molecular Modeling. J Mol Biol 2013; 425:3378-88. [DOI: 10.1016/j.jmb.2013.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
|
19
|
Kudryashev M, Stenta M, Schmelz S, Amstutz M, Wiesand U, Castaño-Díez D, Degiacomi MT, Münnich S, Bleck CK, Kowal J, Diepold A, Heinz DW, Dal Peraro M, Cornelis GR, Stahlberg H. In situ structural analysis of the Yersinia enterocolitica injectisome. eLife 2013; 2:e00792. [PMID: 23908767 PMCID: PMC3728920 DOI: 10.7554/elife.00792] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022] Open
Abstract
Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to
inject effector proteins into eukaryotic host cells, a process called type III
secretion. Here we present the first three-dimensional structure of Yersinia
enterocolitica and Shigella flexneri injectisomes in
situ and the first structural analysis of the Yersinia injectisome.
Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length
variations of 20%. The in situ structures of the Y. enterocolitica
and S. flexneri injectisomes had similar dimensions and were
significantly longer than the isolated structures of related injectisomes. The
crystal structure of the inner membrane injectisome component YscD appeared elongated
compared to a homologous protein, and molecular dynamics simulations documented its
elongation elasticity. The ring-shaped secretin YscC at the outer membrane was
stretched by 30–40% in situ, compared to its isolated liposome-embedded
conformation. We suggest that elasticity is critical for some two-membrane spanning
protein complexes to cope with variations in the intermembrane distance. DOI:http://dx.doi.org/10.7554/eLife.00792.001 Humans and other animals can use the five senses—touch, taste, sight, smell,
and hearing—to interpret the world around them. Single-celled organisms,
however, must rely on molecular cues to understand their immediate surroundings. In
particular, bacteria gather information about external conditions, including
potential hosts nearby, by secreting protein sensors that can relay messages back to
the cell. Bacteria export these sensors via secretion systems that enable the organism both to
receive information about the environment and to invade a host cell. A total of seven
separate secretion systems, known as types I–VII, have been identified. These
different secretion systems handle distinct cargoes, allowing the bacterial cell to
respond to a range of feedback from the external milieu. The type III secretion system, also known as the ‘injectisome’, is
found in bacterial species that are enclosed by two membranes separated by a
periplasmic space. The injectisome comprises different components that combine to
form the basal body, which spans the inner and outer membranes, and a projection from
the basal body, called the hollow needle, that mediates the export of cargo from a
bacterium to its host or the local environment. The distance between the inner and outer membranes may vary across species or
according to environmental conditions, so the basal body must be able to accommodate
these changes. However, no mechanism has yet been established that might introduce
such elasticity into the injectisome. Now, Kudryashev et al. have generated
three-dimensional structures for the injectisomes of two species of bacteria,
Shigella flexneri and Yersinia enterocolitica,
and shown that the size of the basal body can fluctuate by up to 20%. Kudryashev et al. imaged whole injectisomes in these two species and found that the
height of the basal body was proportional to the distance between the inner and outer
membranes. To probe how this could occur, the properties of two proteins that are
important components of the basal body were studied in greater detail. YscD, a
protein that extends across the periplasmic space, was crystallized and its structure
was then determined and used to develop a computer model to assess its
compressibility: this model indicated that YscD could stretch or contract by up to
50% of its total length. The outer membrane component YscC also appeared elastic:
when the protein was isolated and introduced into synthetic membranes, its length was
reduced 30–40% relative to that observed in intact bacterial membranes. A further experiment confirmed the adaptability of the basal body: when the
separation of the membranes was deliberately increased by placing bacteria in a
high-salt medium, the basal body extended approximately 10% in length. Cumulatively,
therefore, these experiments suggest that the in-built flexibility of the basal body
of the injectisome allows bacteria to adjust to environmental changes while
maintaining their sensory abilities and host-invasion potential. DOI:http://dx.doi.org/10.7554/eLife.00792.002
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Center for Cellular Imaging and NanoAnalytics (C-CINA) , Biozentrum, University of Basel , Basel , Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bergeron JRC, Worrall LJ, Sgourakis NG, DiMaio F, Pfuetzner RA, Felise HB, Vuckovic M, Yu AC, Miller SI, Baker D, Strynadka NCJ. A refined model of the prototypical Salmonella SPI-1 T3SS basal body reveals the molecular basis for its assembly. PLoS Pathog 2013; 9:e1003307. [PMID: 23633951 PMCID: PMC3635987 DOI: 10.1371/journal.ppat.1003307] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/02/2013] [Indexed: 12/22/2022] Open
Abstract
The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism. Gram-negative bacteria such as E. coli, Salmonella, Shigella, Pseudomonas aeruginosa, and Yersinia pestis are responsible for a wide range of diseases, from pneumonia to lethal diarrhea and plague. A common trait shared by these bacteria is their capacity to inject toxins directly inside the cells of infected individuals, thanks to a syringe-shaped “nano-machine” called the Type III Secretion System injectisome. These toxins lead to modifications of the host cell, allowing the bacteria to replicate efficiently and/or to evade the immune system, and are necessary to establish an infection. As a consequence, the injectisome is an important potential target for the development of novel therapeutics against bacterial infection. In this study, we focus on the basal body, an essential region of the injectisome that forms the continuous hollow channel across both membranes of the bacteria. We have used an array of biophysical methods to obtain an atomic model of the basal body. This model provides new insights as to how the basal body assembles at the surface of bacteria, and could be used for the design of novel antibiotics.
Collapse
Affiliation(s)
- Julien R. C. Bergeron
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J. Worrall
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikolaos G. Sgourakis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Richard A. Pfuetzner
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Heather B. Felise
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angel C. Yu
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail: (DB); (NCJS)
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (DB); (NCJS)
| |
Collapse
|
21
|
Walzthoeni T, Leitner A, Stengel F, Aebersold R. Mass spectrometry supported determination of protein complex structure. Curr Opin Struct Biol 2013; 23:252-60. [PMID: 23522702 DOI: 10.1016/j.sbi.2013.02.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
Virtually all the biological processes are controlled and catalyzed by proteins which are, in many cases, in complexes with other proteins. Therefore, understanding the architecture and structure of protein complexes is critical to understanding their biological role and function. Traditionally, high-resolution data for structural analysis of proteins or protein complexes have been generated by the powerful methods of X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. More recently, mass spectrometry (MS)-based methods have been developed that provide low-resolution structural information, which contributes to the determination of the native structure of protein complexes that have remained refractory to the high-resolution methods. Native MS and affinity purification coupled with MS (AP-MS) have been used to characterize the composition, stoichiometry and connectivity of protein complexes. Chemical cross-linking MS (CX-MS) provides protein-protein interaction data supplemented with distance information that indicates residues that are in close spatial proximity in the native protein structure. Hydrogen-deuterium exchange combined with MS has been used to map protein-protein binding sites. Here, we focus on recent developments in CX-MS and native MS and their application to challenging problems in structural biology.
Collapse
Affiliation(s)
- Thomas Walzthoeni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
22
|
Abrusci P, Vergara–Irigaray M, Johnson S, Beeby MD, Hendrixson D, Roversi P, Friede ME, Deane JE, Jensen GJ, Tang CM, Lea SM. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 2013; 20:99-104. [PMID: 23222644 PMCID: PMC3537844 DOI: 10.1038/nsmb.2452] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines designed to export specifically targeted proteins from the bacterial cytoplasm. Secretion through T3SS is governed by a subset of inner membrane proteins termed the 'export apparatus'. We show that a key member of the Shigella flexneri export apparatus, MxiA, assembles into a ring essential for secretion in vivo. The ring-forming interfaces are well-conserved in both nonflagellar and flagellar homologs, implying that the ring is an evolutionarily conserved feature in these systems. Electron cryo-tomography revealed a T3SS-associated cytoplasmic torus of size and shape corresponding to those of the MxiA ring aligned to the secretion channel located between the secretion pore and the ATPase complex. This defines the molecular architecture of the dominant component of the export apparatus and allows us to propose a model for the molecular mechanisms controlling secretion.
Collapse
Affiliation(s)
- Patrizia Abrusci
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Marta Vergara–Irigaray
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Morgan D Beeby
- Department of Biology, California Institute of Technology, Pasadena, California, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - David Hendrixson
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Pietro Roversi
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Miriam E Friede
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Janet E Deane
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Grant J Jensen
- Department of Biology, California Institute of Technology, Pasadena, California, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
23
|
Karadzic I, Maupin-Furlow J, Humbard M, Prunetti L, Singh P, Goodlett DR. Chemical cross-linking, mass spectrometry, and in silico modeling of proteasomal 20S core particles of the haloarchaeon Haloferax volcanii. Proteomics 2012; 12:1806-14. [PMID: 22623373 DOI: 10.1002/pmic.201100260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A fast and accurate method is reported to generate distance constraints between juxtaposited amino acids and to validate molecular models of halophilic protein complexes. Proteasomal 20S core particles (CPs) from the haloarchaeon Haloferax volcanii were used to investigate the quaternary structure of halophilic proteins based on their symmetrical, yet distinct subunit composition. Proteasomal CPs are cylindrical barrel-like structures of four-stacked homoheptameric rings of α- and β-type subunits organized in α(7)β(7) β(7)α(7) stoichiometry. The CPs of H. volcanii are formed from a single type of β subunit associated with α1 and/or α2 subunits. Tandem affinity chromatography and new genetic constructs were used to separately isolate α1(7)β(7)β(7)α1(7) and α2(7)β(7)β(7)α2(7) CPs from H. volcanii. Chemically cross-linked peptides of the H. volcanii CPs were analyzed by high-performance mass spectrometry and an open modification search strategy to first generate and then to interpret the resulting tandem mass spectrometric data. Distance constraints obtained by chemical cross-linking mass spectrometry, together with the available structural data of nonhalophilic CPs, facilitated the selection of accurate models of H. volcanii proteasomal CPs composed of α1-, α2-, and β-homoheptameric rings from several different possible structures from Protein Data Bank.
Collapse
Affiliation(s)
- Ivanka Karadzic
- Department of Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
24
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
25
|
Abby SS, Rocha EPC. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 2012; 8:e1002983. [PMID: 23028376 PMCID: PMC3459982 DOI: 10.1371/journal.pgen.1002983] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.
Collapse
Affiliation(s)
- Sophie S Abby
- Département Génomes et Génétique, Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.
| | | |
Collapse
|
26
|
Kosarewicz A, Königsmaier L, Marlovits TC. The blueprint of the type-3 injectisome. Philos Trans R Soc Lond B Biol Sci 2012; 367:1140-54. [PMID: 22411984 DOI: 10.1098/rstb.2011.0205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type-3 secretion systems are sophisticated syringe-like nanomachines present in many animal and plant Gram-negative pathogens. They are capable of translocating an arsenal of specific bacterial toxins (effector proteins) from the prokaryotic cytoplasm across the three biological membranes directly into the eukaryotic cytosol, some of which modulate host cell mechanisms for the benefit of the pathogen. They populate a particular biological niche, which is maintained by specific, pathogen-dependent effectors. In contrast, the needle complex, which is the central component of this specialized protein delivery machine, is structurally well-conserved. It is a large supramolecular cylindrical structure composed of multiple copies of a relatively small subset of proteins, is embedded in the bacterial membranes and protrudes from the pathogen's surface with a needle filament. A central channel traverses the entire needle complex, and serves as a hollow conduit for proteins destined to travel this secretion pathway. In the past few years, there has been a tremendous increase in an understanding on both the structural and the mechanistic level. This review will thus focus on new insights of this remarkable molecular machine.
Collapse
Affiliation(s)
- Agata Kosarewicz
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
27
|
Diepold A, Wiesand U, Cornelis GR. The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 2011; 82:502-14. [DOI: 10.1111/j.1365-2958.2011.07830.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
McDowell MA, Johnson S, Deane JE, Cheung M, Roehrich AD, Blocker AJ, McDonnell JM, Lea SM. Structural and functional studies on the N-terminal domain of the Shigella type III secretion protein MxiG. J Biol Chem 2011; 286:30606-30614. [PMID: 21733840 PMCID: PMC3162421 DOI: 10.1074/jbc.m111.243865] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022] Open
Abstract
MxiG is a single-pass membrane protein that oligomerizes within the inner membrane ring of the Shigella flexneri type III secretion system (T3SS). The MxiG N-terminal domain (MxiG-N) is the predominant cytoplasmic structure; however, its role in T3SS assembly and secretion is largely uncharacterized. We have determined the solution structure of MxiG-N residues 6-112 (MxiG-N(6-112)), representing the first published structure of this T3SS domain. The structure shows strong structural homology to forkhead-associated (FHA) domains. Canonically, these cell-signaling modules bind phosphothreonine (Thr(P)) via highly conserved residues. However, the putative phosphate-binding pocket of MxiG-N(6-112) does not align with other FHA domain structures or interact with Thr(P). Furthermore, mutagenesis of potential phosphate-binding residues has no effect on S. flexneri T3SS assembly and function. Therefore, MxiG-N has a novel function for an FHA domain. Positioning of MxiG-N(6-112) within the EM density of the S. flexneri needle complex gives insight into the ambiguous stoichiometry of the T3SS, supporting models with 24 MxiG subunits in the inner membrane ring.
Collapse
Affiliation(s)
- Melanie A McDowell
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Janet E Deane
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Martin Cheung
- Schools of Cellular and Molecular Medicine and Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - A Dorothea Roehrich
- Schools of Cellular and Molecular Medicine and Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ariel J Blocker
- Schools of Cellular and Molecular Medicine and Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - James M McDonnell
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
29
|
Korotkov KV, Gonen T, Hol WGJ. Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 2011; 36:433-43. [PMID: 21565514 DOI: 10.1016/j.tibs.2011.04.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/16/2022]
Abstract
Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.
Collapse
|
30
|
Schraidt O, Marlovits TC. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 2011; 331:1192-5. [PMID: 21385715 DOI: 10.1126/science.1199358] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type III secretion systems (T3SSs) are essential virulence factors used by many Gram-negative bacteria to inject proteins that make eukaryotic host cells accessible to invasion. The T3SS core structure, the needle complex (NC), is a ~3.5 megadalton-sized, oligomeric, membrane-embedded complex. Analyzing cryo-electron microscopy images of top views of NCs or NC substructures from Salmonella typhimurium revealed a 24-fold symmetry for the inner rings and a 15-fold symmetry for the outer rings, giving an overall C3 symmetry. Local refinement and averaging showed the organization of the central core and allowed us to reconstruct a subnanometer composite structure of the NC, which together with confident docking of atomic structures reveal insights into its overall organization and structural requirements during assembly.
Collapse
Affiliation(s)
- Oliver Schraidt
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
31
|
A C-terminal region of Yersinia pestis YscD binds the outer membrane secretin YscC. J Bacteriol 2011; 193:2276-89. [PMID: 21357482 DOI: 10.1128/jb.01137-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.
Collapse
|
32
|
Worrall LJ, Lameignere E, Strynadka NCJ. Structural overview of the bacterial injectisome. Curr Opin Microbiol 2010; 14:3-8. [PMID: 21112241 DOI: 10.1016/j.mib.2010.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 12/30/2022]
Abstract
The bacterial injectisome is a specialized protein-export system utilized by many pathogenic Gram-negative bacteria for the delivery of virulence proteins into the hosts they infect. This needle-like molecular nanomachine comprises >20 proteins creating a continuous passage from bacterial to host cytoplasm. The last few years have witnessed significant progress in our understanding of the structure of the injectisome with important contributions from X-ray crystallography, NMR and EM. This review will present the current state of the structure of the injectisome with particular focus on the molecular structures of individual components and how these assemble together in a functioning T3SS.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall Vancouver, British Columbia, Canada
| | | | | |
Collapse
|