1
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci ( P/R and HD ), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella , our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus , possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii , demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
|
2
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2024:S1673-8527(24)00284-4. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
3
|
Chalakova ZP, Johnston SA. Zebrafish Larvae as an Experimental Model of Cryptococcal Meningitis. Methods Mol Biol 2023; 2667:47-69. [PMID: 37145275 DOI: 10.1007/978-1-0716-3199-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This chapter provides guidance for introducing Cryptococcus neoformans into the zebrafish larvae model system to establish a CNS infection phenotype that mimics cryptococcal meningitis as seen in humans. The method outlines techniques for visualizing different stages of pathology development, from initial to severe infection profiles. The chapter provides tips for real time visualization of the interactions between the pathogen and different aspects of the CNS anatomy and immune system.
Collapse
Affiliation(s)
- Z P Chalakova
- University of Sheffield, Firth Court, Western Bank, UK
| | - S A Johnston
- University of Sheffield, Firth Court, Western Bank, UK.
| |
Collapse
|
4
|
Gibson JF, Pidwill GR, Carnell OT, Surewaard BGJ, Shamarina D, Sutton JAF, Jeffery C, Derré-Bobillot A, Archambaud C, Siggins MK, Pollitt EJG, Johnston SA, Serror P, Sriskandan S, Renshaw SA, Foster SJ. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog 2021; 17:e1009880. [PMID: 34529737 PMCID: PMC8478205 DOI: 10.1371/journal.ppat.1009880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection. S. aureus is a commensal inhabitant of the human skin and nares. However, it can cause serious diseases if it is able to breach our protective barriers such as the skin, often via wounds or surgery. If infection occurs via a wound, this initial inoculum contains both the pathogen, other members of the microflora and also wider environmental microbes. We have previously described “augmentation”, whereby this other non-pathogenic material can enhance the ability of S. aureus to lead to a serious disease outcome. Here we have determined the breadth of augmenting material and elucidated the cellular and molecular basis for its activity. Augmentation occurs via shielding of S. aureus from the direct bactericidal effects of reactive oxygen species produced by macrophages. This initial protection enables the effective establishment of S. aureus infection. Understanding augmentation not only explains an important facet of the interaction of S. aureus with our innate immune system, but also provides a platform for the development of novel prophylaxis approaches.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Bas G. J. Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Charlotte Jeffery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthew K. Siggins
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eric J. G. Pollitt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Simon A. Johnston
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| |
Collapse
|
5
|
Yadav V, Sun S, Heitman J. Uniparental nuclear inheritance following bisexual mating in fungi. eLife 2021; 10:66234. [PMID: 34338631 PMCID: PMC8412948 DOI: 10.7554/elife.66234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Some remarkable animal species require an opposite-sex partner for their sexual development but discard the partner’s genome before gamete formation, generating hemi-clonal progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed pseudosexual reproduction, in a basidiomycete human fungal pathogen, Cryptococcus neoformans, where exclusive uniparental inheritance of nuclear genetic material was observed during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins revealed instances where only one of the parental nuclei was present in the terminal sporulating basidium. Whole-genome sequencing revealed that the nuclear genome of the progeny was identical with one or the other parental genome. Pseudosexual reproduction was also detected in natural isolate crosses where it resulted in mainly MATα progeny, a bias observed in Cryptococcus ecological distribution as well. The mitochondria in these progeny were inherited from the MATa parent, resulting in nuclear-mitochondrial genome exchange. The meiotic recombinase Dmc1 was found to be critical for pseudosexual reproduction. These findings reveal a novel, and potentially ecologically significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis in animals. Sexual reproduction enables organisms to recombine their genes to generate progeny that have higher levels of evolutionary fitness. This process requires reproductive cells – like the sperm and egg – to fuse together and mix their two genomes, resulting in offspring that are genetically distinct from their parents. In a disease-causing fungus called Cryptococcus neoformans, sexual reproduction occurs when two compatible mating types (MATa and MATα) merge together to form long branched filaments called hyphae. Cells in the hyphae contain two nuclei – one from each parent – which fuse in specialized cells at the end of the branches called basidia. The fused nucleus is then divided into four daughter nuclei, which generate spores that can develop into new organisms. In nature, the mating types of C. neoformans exhibit a peculiar distribution where MATα represents 95% or more of the population. However, it is not clear how this fungus successfully reproduces with such an unusually skewed distribution of mating types. To investigate this further, Yadav et al. tracked the reproductive cycle of C. neoformans applying genetic techniques, fluorescence microscopy, and whole-genome sequencing. This revealed that during hyphal branching some cells lose the nucleus of one of the two mating types. As a result, the nuclei of the generated spores only contain genetic information from one parent. Yadav et al. named this process pseudosexual reproduction as it defies the central benefit of sex, which is to produce offspring with a new combination of genetic information. Further experiments showed that this unconventional mode of reproduction can be conducted by fungi isolated from both environmental samples and clinical patient samples. This suggests that pseudosexual reproduction is a widespread and conserved process that may provide significant evolutionary benefits. C. neoformans represents a flexible and adaptable model organism to explore the impact and evolutionary advantages of sex. Further studies of the unique reproductive strategies employed by this fungus may improve the understanding of similar processes in other eukaryotes, including animals and plants. This research may also have important implications for understanding and controlling the growth of other disease-causing microbes.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
6
|
You M, Xu J. What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus. J Fungi (Basel) 2021; 7:jof7040299. [PMID: 33920829 PMCID: PMC8071107 DOI: 10.3390/jof7040299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Hybridization between more divergent organisms is likely to generate progeny with more novel genetic interactions and genetic variations. However, the relationship between parental genetic divergence and progeny phenotypic variation remains largely unknown. Here, using strains of the human pathogenic Cryptococcus, we investigated the patterns of such a relationship. Twenty-two strains with up to 15% sequence divergence were mated. Progeny were genotyped at 16 loci. Parental strains and their progeny were phenotyped for growth ability at two temperatures, melanin production at seven conditions, and susceptibility to the antifungal drug fluconazole. We observed three patterns of relationships between parents and progeny for each phenotypic trait, including (i) similar to one of the parents, (ii) intermediate between the parents, and (iii) outside the parental phenotypic range. We found that as genetic distance increases between parental strains, progeny showed increased fluconazole resistance and growth at 37 °C but decreased melanin production under various oxidative and nitrosative stresses. Our findings demonstrate that, depending on the traits, both evolutionarily more similar strains and more divergent strains may be better parents to generate progeny with hybrid vigor. Together, the results indicate the enormous potential of Cryptococcus hybrids in their evolution and adaptation to diverse conditions.
Collapse
|
7
|
Khaw YM, Aggarwal N, Barclay WE, Kang E, Inoue M, Shinohara ML. Th1-Dependent Cryptococcus-Associated Immune Reconstitution Inflammatory Syndrome Model With Brain Damage. Front Immunol 2020; 11:529219. [PMID: 33133067 PMCID: PMC7550401 DOI: 10.3389/fimmu.2020.529219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
Cryptococcus-associated immune reconstitution inflammatory syndrome (C-IRIS) is identified upon immune reconstitution in immunocompromised patients, who have previously contracted an infection of Cryptococcus neoformans (Cn). C-IRIS can be lethal but how the immune system triggers life-threatening outcomes in patients is still poorly understood. Here, we establish a mouse model for C-IRIS with Cn serotype A strain H99, which is highly virulent and the most intensively studied. C-IRIS in mice is induced by the adoptive transfer of CD4+ T cells in immunocompromised Rag1-deficient mice infected with a low inoculum of Cn. The mice with C-IRIS exhibit symptoms which mimic clinical presentations of C-IRIS. This C-IRIS model is Th1-dependent and shows host mortality. This model is characterized with minimal lung injury, but infiltration of Th1 cells in the brain. C-IRIS mice also exhibited brain swelling with resemblance to edema and upregulation of aquaporin-4, a critical protein that regulates water flux in the brain in a Th1-dependent fashion. Our C-IRIS model may be used to advance our understanding of the paradoxical inflammatory phenomenon of C-IRIS in the context of neuroinflammation.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - William E. Barclay
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Eunjoo Kang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Affiliation(s)
- Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Enrico Garbe
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| |
Collapse
|
9
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
10
|
Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, Yang T, Jones AM, Sun S, Haverkamp MR, Heitman J, Litvintseva AP, Perfect JR, Cuomo CA. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res 2018; 27:1207-1219. [PMID: 28611159 PMCID: PMC5495072 DOI: 10.1101/gr.218727.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.
Collapse
Affiliation(s)
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sean M Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy Yang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander M Jones
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Miriam R Haverkamp
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anastasia P Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
11
|
Arras SDM, Ormerod KL, Erpf PE, Espinosa MI, Carpenter AC, Blundell RD, Stowasser SR, Schulz BL, Tanurdzic M, Fraser JA. Convergent microevolution of Cryptococcus neoformans hypervirulence in the laboratory and the clinic. Sci Rep 2017; 7:17918. [PMID: 29263343 PMCID: PMC5738413 DOI: 10.1038/s41598-017-18106-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Reference strains are a key component of laboratory research, providing a common background allowing for comparisons across a community of researchers. However, laboratory passage of these strains has been shown to lead to reduced fitness and the attenuation of virulence in some species. In this study we show the opposite in the fungal pathogen Cryptococcus neoformans, with analysis of a collection of type strain H99 subcultures revealing that the most commonly used laboratory subcultures belong to a mutant lineage of the type strain that is hypervirulent. The pleiotropic mutant phenotypes in this H99L (for “Laboratory”) lineage are the result of a deletion in the gene encoding the SAGA Associated Factor Sgf29, a mutation that is also present in the widely-used H99L-derived KN99a/α congenic pair. At a molecular level, loss of this gene results in a reduction in histone H3K9 acetylation. Remarkably, analysis of clinical isolates identified loss of function SGF29 mutations in C. neoformans strains infecting two of fourteen patients, demonstrating not only the first example of hypervirulence in clinical C. neoformans samples, but also parallels between in vitro and in vivo microevolution for hypervirulence in this important pathogen.
Collapse
Affiliation(s)
- Samantha D M Arras
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate L Ormerod
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paige E Erpf
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Monica I Espinosa
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alex C Carpenter
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ross D Blundell
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Samantha R Stowasser
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia. .,School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
12
|
CRYPTOCOCCUS NEOFORMANSVAR.GRUBII–ASSOCIATED RENAL AMYLOIDOSIS CAUSING PROTEIN-LOSING NEPHROPATHY IN A RED KANGAROO (MACROPUS RUFUS). J Zoo Wildl Med 2017; 48:929-932. [DOI: 10.1638/2016-0271.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Day JN, Qihui S, Thanh LT, Trieu PH, Van AD, Thu NH, Chau TTH, Lan NPH, Chau NVV, Ashton PM, Thwaites GE, Boni MF, Wolbers M, Nagarajan N, Tan PBO, Baker S. Comparative genomics of Cryptococcus neoformans var. grubii associated with meningitis in HIV infected and uninfected patients in Vietnam. PLoS Negl Trop Dis 2017; 11:e0005628. [PMID: 28614360 PMCID: PMC5484541 DOI: 10.1371/journal.pntd.0005628] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/26/2017] [Accepted: 05/07/2017] [Indexed: 12/14/2022] Open
Abstract
The vast burden of cryptococcal meningitis occurs in immunosuppressed patients, driven by HIV, and is caused by Cryptococcus neoformansvar. grubii. We previously reported cryptococcal meningitis in Vietnam arising atypically in HIV uninfected, apparently immunocompetent patients, caused by a single amplified fragment length polymorphism (AFLP) cluster of C. neoformansvar. grubii (VNIγ). This variant was less common in HIV infected individuals; it remains unclear why this lineage is associated with apparently immunocompetent patients. To study this host tropism we aimed to further our understanding of clinical phenotype and genomic variation within Vietnamese C. neoformansvar. grubii. After performing MLST on C. neoformans clinical isolates we identified 14 sequence types (STs); ST5 correlated with the VNIγ cluster. We next compared clinical phenotype by lineage and found HIV infected patients with cryptococcal meningitis caused by ST5 organisms were significantly more likely to have lymphadenopathy (11% vs. 4%, p = 0.05 Fisher’s exact test) and higher blood lymphocyte count (median 0.76 versus 0.55 X109 cells/L, p = 0.001, Kruskal-Wallis test). Furthermore, survivors of ST5 infections had evidence of worse disability outcomes at 70 days (72.7% (40/55) in ST5 infections versus 57.1% (52/91) non-ST5 infections (OR 2.11, 95%CI 1.01 to 4.41), p = 0.046). To further investigate the relationship between strain and disease phenotype we performed genome sequencing on eight Vietnamese C. neoformansvar. grubii. Eight genome assemblies exhibited >99% nucleotide sequence identity and we identified 165 kbp of lineage specific to Vietnamese isolates. ST5 genomes harbored several strain specific regions, incorporating 19 annotated coding sequences and eight hypothetical proteins. These regions included a phenolic acid decarboxylase, a DEAD-box ATP-dependent RNA helicase 26, oxoprolinases, a taurine catabolism dioxygenase, a zinc finger protein, membrane transport proteins and various drug transporters. Our work outlines the complexity of genomic pathogenicity in cryptococcal infections and identifies a number of gene candidates that may aid the disaggregation of the pathways associated with the pathogenesis of Cryptococcus neoformansvar. grubii. Cryptococcal meningitis is a brain infection caused by a yeast, Cryptococcus neoformans, and results in an estimated 600 000 deaths each year. Disease usually only occurs in patients who have some problem with their immune systems—most commonly Human Immunodeficiency Virus (HIV) infection. However, it is increasingly recognized that disease can occur, particularly in southeast and east Asia, in patients with apparently normal immune systems (‘immunocompetent’). We previously showed that almost all infections in immunocompetent patients in Vietnam are due to just one small ‘family’ (or lineage) of Cryptococcus neoformans var. grubii, which we called VNIγ. This is in contrast to disease in HIV infected patients, which can be caused by a number of different families. This suggests that VNIγ strains have an increased ability to cause disease. Here, we define the pattern of disease caused by VNIγ infections compared with other strains in HIV infected patients, and use whole genome sequencing—comparing the entire genetic codes from different strains—to try and understand which genes give the VNIγ family this special ability to cause disease in immunocompetent patients.
Collapse
Affiliation(s)
- Jeremy N Day
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Seet Qihui
- Genome Institute of Singapore, Singapore
| | - Lam Tuan Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Phan Hai Trieu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Anh Duong Van
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Nha Hoang Thu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Nguyen P H Lan
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | - Philip M Ashton
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marcel Wolbers
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Stephen Baker
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Arras SDM, Chitty JL, Wizrah MSI, Erpf PE, Schulz BL, Tanurdzic M, Fraser JA. Sirtuins in the phylum Basidiomycota: A role in virulence in Cryptococcus neoformans. Sci Rep 2017; 7:46567. [PMID: 28429797 PMCID: PMC5399365 DOI: 10.1038/srep46567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Virulence of Cryptococcus neoformans is regulated by a range of transcription factors, and is also influenced by the acquisition of adaptive mutations during infection. Beyond the temporal regulation of virulence factor production by transcription factors and these permanent microevolutionary changes, heritable epigenetic modifications such as histone deacetylation may also play a role during infection. Here we describe the first comprehensive analysis of the sirtuin class of NAD+ dependent histone deacetylases in the phylum Basidiomycota, identifying five sirtuins encoded in the C. neoformans genome. Each sirtuin gene was deleted and a wide range of phenotypic tests performed to gain insight into the potential roles they play. Given the pleiotropic nature of sirtuins in other species, it was surprising that only two of the five deletion strains revealed mutant phenotypes in vitro. However, cryptic consequences of the loss of each sirtuin were identified through whole cell proteomics, and mouse infections revealed a role in virulence for SIR2, HST3 and HST4. The most intriguing phenotype was the repeated inability to complement mutant phenotypes through the reintroduction of the wild-type gene. These data support the model that regulation of sirtuin activity may be employed to enable a drastic alteration of the epigenetic landscape and virulence of C. neoformans.
Collapse
Affiliation(s)
- Samantha D M Arras
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jessica L Chitty
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maha S I Wizrah
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paige E Erpf
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Forsythe A, Vogan A, Xu J. Genetic and environmental influences on the germination of basidiospores in the Cryptococcus neoformans species complex. Sci Rep 2016; 6:33828. [PMID: 27644692 PMCID: PMC5028750 DOI: 10.1038/srep33828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
In basidiomycetous fungi, the viability of basidiospores is an important component of sexual fitness. However, relatively little is known about the genetic and environmental factors influencing basidiospore germination. In this study, we used human opportunistic yeast pathogens, Cryptococcus neoformans and Cryptococcus deneoformans, as models to investigate the potential effects of selected genetic and environmental factors on basidiospore germination. A total of five strains with known genome structure were used to construct six crosses, three of which were between strains within the same species, while the remaining three were hybrid crosses between C. neoformans and C. deneoformans. Offspring from these crosses were incubated on two media (a nutrient-limiting and a nutrient-rich) and three temperatures (23 °C, 30 °C, and 37 °C). In general, spores from intra-specific crosses had greater germination rates than those from inter-specific crosses. Of the two environmental factors, temperature showed a greater influence than nutrient medium, with the 37 °C environment yielding lower germination rates than at 23 °C and 30 °C environments in most crosses. Furthermore, there were notable interaction effects between environmental factors and parental strains or strain pairs on basidiospore germination. We discuss the implications of these results on pathogenesis and speciation in this human fungal pathogen.
Collapse
Affiliation(s)
- Adrian Forsythe
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4K1, Canada
| | - Aaron Vogan
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
16
|
Blundell RD, Williams SJ, Arras SDM, Chitty JL, Blake KL, Ericsson DJ, Tibrewal N, Rohr J, Koh YQAE, Kappler U, Robertson AAB, Butler MS, Cooper MA, Kobe B, Fraser JA. Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in Cryptococcus neoformans. ACS Infect Dis 2016; 2:651-663. [PMID: 27759389 DOI: 10.1021/acsinfecdis.6b00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.
Collapse
Affiliation(s)
- Ross D. Blundell
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Samantha D. M. Arras
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica L. Chitty
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L. Blake
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel J. Ericsson
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- MX Beamlines, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nidhi Tibrewal
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Jurgen Rohr
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Y. Q. Andre E. Koh
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Metals in Biology, School of
Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Avril A. B. Robertson
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
De Vos L, Steenkamp ET, Martin SH, Santana QC, Fourie G, van der Merwe NA, Wingfield MJ, Wingfield BD. Genome-wide macrosynteny among Fusarium species in the Gibberella fujikuroi complex revealed by amplified fragment length polymorphisms. PLoS One 2014; 9:e114682. [PMID: 25486277 PMCID: PMC4259476 DOI: 10.1371/journal.pone.0114682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 11/12/2014] [Indexed: 01/28/2023] Open
Abstract
The Gibberella fujikuroi complex includes many Fusarium species that cause significant losses in yield and quality of agricultural and forestry crops. Due to their economic importance, whole-genome sequence information has rapidly become available for species including Fusarium circinatum, Fusarium fujikuroi and Fusarium verticillioides, each of which represent one of the three main clades known in this complex. However, no previous studies have explored the genomic commonalities and differences among these fungi. In this study, a previously completed genetic linkage map for an interspecific cross between Fusarium temperatum and F. circinatum, together with genomic sequence data, was utilized to consider the level of synteny between the three Fusarium genomes. Regions that are homologous amongst the Fusarium genomes examined were identified using in silico and pyrosequenced amplified fragment length polymorphism (AFLP) fragment analyses. Homology was determined using BLAST analysis of the sequences, with 777 homologous regions aligned to F. fujikuroi and F. verticillioides. This also made it possible to assign the linkage groups from the interspecific cross to their corresponding chromosomes in F. verticillioides and F. fujikuroi, as well as to assign two previously unmapped supercontigs of F. verticillioides to probable chromosomal locations. We further found evidence of a reciprocal translocation between the distal ends of chromosome 8 and 11, which apparently originated before the divergence of F. circinatum and F. temperatum. Overall, a remarkable level of macrosynteny was observed among the three Fusarium genomes, when comparing AFLP fragments. This study not only demonstrates how in silico AFLPs can aid in the integration of a genetic linkage map to the physical genome, but it also highlights the benefits of using this tool to study genomic synteny and architecture.
Collapse
Affiliation(s)
- Lieschen De Vos
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Simon H Martin
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Quentin C Santana
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Gerda Fourie
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Nicolaas A van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, South Africa
| |
Collapse
|
18
|
Abstract
Large-scale rearrangements may be important in evolution because they can alter chromosome organization and gene expression in ways not possible through point mutations. In a long-term evolution experiment, twelve Escherichia coli populations have been propagated in a glucose-limited environment for over 25 years. We used whole-genome mapping (optical mapping) combined with genome sequencing and PCR analysis to identify the large-scale chromosomal rearrangements in clones from each population after 40,000 generations. A total of 110 rearrangement events were detected, including 82 deletions, 19 inversions, and 9 duplications, with lineages having between 5 and 20 events. In three populations, successive rearrangements impacted particular regions. In five populations, rearrangements affected over a third of the chromosome. Most rearrangements involved recombination between insertion sequence (IS) elements, illustrating their importance in mediating genome plasticity. Two lines of evidence suggest that at least some of these rearrangements conferred higher fitness. First, parallel changes were observed across the independent populations, with ~65% of the rearrangements affecting the same loci in at least two populations. For example, the ribose-utilization operon and the manB-cpsG region were deleted in 12 and 10 populations, respectively, suggesting positive selection, and this inference was previously confirmed for the former case. Second, optical maps from clones sampled over time from one population showed that most rearrangements occurred early in the experiment, when fitness was increasing most rapidly. However, some rearrangements likely occur at high frequency and may have simply hitchhiked to fixation. In any case, large-scale rearrangements clearly influenced genomic evolution in these populations. Bacterial chromosomes are dynamic structures shaped by long histories of evolution. Among genomic changes, large-scale DNA rearrangements can have important effects on the presence, order, and expression of genes. Whole-genome sequencing that relies on short DNA reads cannot identify all large-scale rearrangements. Therefore, deciphering changes in the overall organization of genomes requires alternative methods, such as optical mapping. We analyzed the longest-running microbial evolution experiment (more than 25 years of evolution in the laboratory) by optical mapping, genome sequencing, and PCR analyses. We found multiple large genome rearrangements in all 12 independently evolving populations. In most cases, it is unclear whether these changes were beneficial themselves or, alternatively, hitchhiked to fixation with other beneficial mutations. In any case, many genome rearrangements accumulated over decades of evolution, providing these populations with genetic plasticity reminiscent of that observed in some pathogenic bacteria.
Collapse
|
19
|
Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 2014; 4:a019760. [PMID: 24985132 PMCID: PMC4066639 DOI: 10.1101/cshperspect.a019760] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually.
Collapse
Affiliation(s)
- Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhou Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guilhem Janbon
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, 75015 Paris, France
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
20
|
Literature-based gene curation and proposed genetic nomenclature for cryptococcus. EUKARYOTIC CELL 2014; 13:878-83. [PMID: 24813190 DOI: 10.1128/ec.00083-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen.
Collapse
|
21
|
Ormerod KL, Fraser JA. Balancing stability and flexibility within the genome of the pathogen Cryptococcus neoformans. PLoS Pathog 2013; 9:e1003764. [PMID: 24348244 PMCID: PMC3861523 DOI: 10.1371/journal.ppat.1003764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kate L. Ormerod
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
22
|
Impact of surfactant protein D, interleukin-5, and eosinophilia on Cryptococcosis. Infect Immun 2013; 82:683-93. [PMID: 24478083 DOI: 10.1128/iai.00855-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that initiates infection following inhalation. As a result, the pulmonary immune response provides a first line of defense against C. neoformans. Surfactant protein D (SP-D) is an important regulator of pulmonary immune responses and is typically host protective against bacterial and viral respiratory infections. However, SP-D is not protective against C. neoformans. This is evidenced by previous work from our laboratory demonstrating that SP-D-deficient mice infected with C. neoformans have a lower fungal burden and live longer than wild-type (WT) control animals. We hypothesized that SP-D alters susceptibility to C. neoformans by dysregulating the innate pulmonary immune response following infection. Thus, inflammatory cells and cytokines were compared in the bronchoalveolar lavage fluid from WT and SP-D(-/-) mice after C. neoformans infection. Postinfection, mice lacking SP-D have reduced eosinophil infiltration and interleukin-5 (IL-5) in lung lavage fluid. To further explore the interplay of SP-D, eosinophils, and IL-5, mice expressing altered levels of eosinophils and/or IL-5 were infected with C. neoformans to assess the role of these innate immune mediators. IL-5-overexpressing mice have increased pulmonary eosinophilia and are more susceptible to C. neoformans infection than WT mice. Furthermore, susceptibility of SP-D(-/-) mice to C. neoformans infection could be restored to the level of WT mice by increasing IL-5 and eosinophils by crossing the IL-5-overexpressing mice with SP-D(-/-) mice. Together, these studies support the conclusion that SP-D increases susceptibility to C. neoformans infection by promoting C. neoformans-driven pulmonary IL-5 and eosinophil infiltration.
Collapse
|
23
|
Ballou ER, Selvig K, Narloch JL, Nichols CB, Alspaugh JA. Two Rac paralogs regulate polarized growth in the human fungal pathogen Cryptococcus neoformans. Fungal Genet Biol 2013; 57:58-75. [PMID: 23748012 PMCID: PMC3742549 DOI: 10.1016/j.fgb.2013.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/11/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022]
Abstract
A genome wide analysis of the human fungal pathogen Cryptococcus neoformans var. grubii has revealed a number of duplications of highly conserved genes involved in morphogenesis. Previously, we reported that duplicate Cdc42 paralogs provide C. neoformans with niche-specific responses to environmental stresses: Cdc42 is required for thermotolerance, while Cdc420 supports the formation of titan cells. The related Rho-GTPase Rac1 has been shown in C. neoformans var. neoformans to play a major role in filamentation and to share Cdc42/Cdc420 binding partners. Here we report the characterization of a second Rac paralog in C. neoformans, Rac2, and describe its overlapping function with the previously described CnRac, Rac1. Further, we demonstrate that the Rac paralogs play a primary role in polarized growth via the organization of reactive oxygen species and play only a minor role in the organization of actin. Finally, we provide preliminary evidence that pharmacological inhibitors of Rac activity and actin stability have synergistic activity.
Collapse
Affiliation(s)
- Elizabeth Ripley Ballou
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyla Selvig
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L. Narloch
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
Comparative Genomics of Serial Isolates of Cryptococcus neoformans Reveals Gene Associated With Carbon Utilization and Virulence. G3-GENES GENOMES GENETICS 2013; 3:675-686. [PMID: 23550133 PMCID: PMC3618354 DOI: 10.1534/g3.113.005660] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans is a leading cause of mortality among the human immunodeficiency virus/acquired immunodeficiency syndrome population and is known for frequently causing life-threatening relapses. To investigate the potential contribution of in-host microevolution to persistence and relapse, we have analyzed two serial isolates obtained from a patient with acquired immunodeficiency syndrome who suffered an initial and relapse episode of cryptococcal meningoencephalitis. Despite being identical by multilocus sequence typing, the isolates differ phenotypically, exhibiting changes in key virulence factors, nutrient acquisition, metabolic profiles, and the ability to disseminate in an animal model. Whole-genome sequencing uncovered a clonal relationship, with only a few unique differences. Of these, two key changes are expected to explain the phenotypic differences observed in the relapse isolate: loss of a predicted AT-rich interaction domain protein and changes in copy number of the left and right arms of chromosome 12. Gene deletion of the predicted transcriptional regulator produced changes in melanin, capsule, carbon source use, and dissemination in the host, consistent with the phenotype of the relapse isolate. In addition, the deletion mutant displayed altered virulence in the murine model. The observed differences suggest the relapse isolate evolved subsequent to penetration of the central nervous system and may have gained dominance following the administration of antifungal therapy. These data reveal the first molecular insights into how the Cryptococcus neoformans genome changes during infection of humans and the manner in which microevolution progresses in this deadly fungal pathogen.
Collapse
|
25
|
Morrow CA, Valkov E, Stamp A, Chow EWL, Lee IR, Wronski A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002957. [PMID: 23071437 PMCID: PMC3469657 DOI: 10.1371/journal.ppat.1002957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/26/2012] [Indexed: 01/01/2023] Open
Abstract
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
Collapse
Affiliation(s)
- Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eve W. L. Chow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Justine M. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
26
|
Abstract
Cryptococcosis is the leading invasive fungal infection in the world today. Over the past century, the causative agents, Cryptococcus neoformans and Cryptococcus gattii, have risen from the status of medical curiosities to common but life-threatening central nervous system pathogens. In an elegant experimental pathobiology study of these two organisms carried out by Ngamskulrungroj et al., there are three matters that merit further discussion. First is the question of whether there is a variable specific pathobiology for each yeast strain. Does it make biological and clinical sense to designate C. neoformans and C. gattii as two separate species? Second is the matter of how the organisms differ pathologically at the site of infection. Finally, there is the possibility that the human immune system responds differently to each species. Although no single study can provide definitive mechanistic answers to the important questions, this experimental pathology study and its discussion clearly frame the issues to be dissected.
Collapse
|