1
|
Galli C, Ebranati E, Pellegrinelli L, Airoldi M, Veo C, Della Ventura C, Seiti A, Binda S, Galli M, Zehender G, Pariani E. From Clinical Specimen to Whole Genome Sequencing of A(H3N2) Influenza Viruses: A Fast and Reliable High-Throughput Protocol. Vaccines (Basel) 2022; 10:1359. [PMID: 36016246 PMCID: PMC9412868 DOI: 10.3390/vaccines10081359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Over the last few years, there has been growing interest in the whole genome sequencing (WGS) of rapidly mutating pathogens, such as influenza viruses (IVs), which has led us to carry out in-depth studies on viral evolution in both research and diagnostic settings. We aimed at describing and determining the validity of a WGS protocol that can obtain the complete genome sequence of A(H3N2) IVs directly from clinical specimens. (2) Methods: RNA was extracted from 80 A(H3N2)-positive respiratory specimens. A one-step RT-PCR assay, based on the use of a single set of specific primers, was used to retro-transcribe and amplify the entire IV type A genome in a single reaction, thus avoiding additional enrichment approaches and host genome removal treatments. Purified DNA was quantified; genomic libraries were prepared and sequenced by using Illumina MiSeq platform. The obtained reads were evaluated for sequence quality and read-pair length. (3) Results: All of the study specimens were successfully amplified, and the purified DNA concentration proved to be suitable for NGS (at least 0.2 ng/µL). An acceptable coverage depth for all eight genes of influenza A(H3N2) virus was obtained for 90% (72/80) of the clinical samples with viral loads >105 genome copies/mL. The mean depth of sequencing ranged from 105 to 200 reads per position, with the majority of the mean depth values being above 103 reads per position. The total turnaround time per set of 20 samples was four working days, including sequence analysis. (4) Conclusions: This fast and reliable high-throughput sequencing protocol should be used for influenza surveillance and outbreak investigation.
Collapse
Affiliation(s)
- Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Martina Airoldi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Carla Veo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Carla Della Ventura
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Arlinda Seiti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
2
|
Abstract
The term Gain-of-Function (GoF) describes the gain of new functions by organisms through genetic changes, which can naturally occur or by experimental genetic modifications. Gain-of-Function research on viruses is enhancing transmissibility, virus replication, virulence, host range, immune evasion or drug and vaccine resistance to get insights into the viral mechanisms, to create and analyze animal models, to accelerate drug and vaccine development and to improve pandemic preparedness. A subset is the GoF research of concern (GOFROC) on enhanced potentially pandemic pathogens (ePPPs) that could be harmful for humans. A related issue is the military use of research as dual-use research of concern (DURC). Influenza and coronaviruses are main research targets, because they cause pandemics by airborne infections. Two studies on avian influenza viruses initiated a global debate and a temporary GoF pause in the United States which ended with a new regulatory framework in 2017. In the European Union and China, GoF and DURC are mainly covered by the legislation for laboratory safety and genetically modified organisms. After the coronavirus outbreaks, the GoF research made significant advances, including analyses of modified MERS-like and SARS-like viruses and the creation of synthetic SARS-CoV-2 viruses as a platform to generate mutations. The GoF research on viruses will still play an important role in future, but the need to clarify the differences and overlaps between GoF research, GOFROC and DURC and the need for specialized oversight authorities are still debated.
Collapse
|
3
|
Jiang X, Tan M, Xia M, Huang P, Kennedy MA. Intra-species sialic acid polymorphism in humans: a common niche for influenza and coronavirus pandemics? Emerg Microbes Infect 2021; 10:1191-1199. [PMID: 34049471 PMCID: PMC8208123 DOI: 10.1080/22221751.2021.1935329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ongoing COVID-19 pandemic has led to more than 159 million confirmed cases with over 3.3 million deaths worldwide, but it remains mystery why most infected individuals (∼98%) were asymptomatic or only experienced mild illness. The same mystery applies to the deadly 1918 H1N1 influenza pandemic, which has puzzled the field for a century. Here we discuss dual potential properties of the 1918 H1N1 pandemic viruses that led to the high fatality rate in the small portion of severe cases, while about 98% infected persons in the United States were self-limited with mild symptoms, or even asymptomatic. These variations now have been postulated to be impacted by polymorphisms of the sialic acid receptors in the general population. Since coronaviruses (CoVs) also recognize sialic acid receptors and cause severe acute respiratory syndrome epidemics and pandemics, similar principles of influenza virus evolution and pandemicity may also apply to CoVs. A potential common principle of pathogen/host co-evolution of influenza and CoVs under selection of host sialic acids in parallel with different epidemic and pandemic influenza and coronaviruses is discussed.
Collapse
Affiliation(s)
- Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| |
Collapse
|
4
|
Sun H, Liu J, Xiao Y, Duan Y, Yang J, Chen Y, Yu Y, Li H, Zhao Y, Pu J, Sun Y, Liu J, Sun H. Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology 2021; 561:28-35. [PMID: 34139638 DOI: 10.1016/j.virol.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Reassortant Eurasian avian-like (EA) H1N1 virus, possessing 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes, namely G4 genotype, has replaced the G1 genotype EA H1N1 virus (all the genes were of EA origin) and become predominant in swine populations in China. Understanding the pathogenicity of G4 viruses in pigs is of great importance for disease control. Here, we conducted comprehensive analyses of replication and pathogenicity of G4 and G1 EA H1N1 viruses in pigs. G4 virus exhibited enhanced replication, increased duration of virus shedding, and caused more severe respiratory lesions in pigs compared with G1 virus. G4 virus, with viral ribonucleoprotein (vRNP) complex genes of pdm/09 origin, exhibited higher levels of nuclear accumulation and higher polymerase activity, which is essential for improved replication of G4 virus. These findings indicate that G4 virus poses a great threat to both swine industry and public health, and control measures should be urgently implemented.
Collapse
Affiliation(s)
- Haoran Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Yuhong Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yu Chen
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yinghui Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
5
|
Neutrophils and Influenza: A Thin Line between Helpful and Harmful. Vaccines (Basel) 2021; 9:vaccines9060597. [PMID: 34199803 PMCID: PMC8228962 DOI: 10.3390/vaccines9060597] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses are one of the most prevalent respiratory pathogens known to humans and pose a significant threat to global public health each year. Annual influenza epidemics are responsible for 3-5 million infections worldwide and approximately 500,000 deaths. Presently, yearly vaccinations represent the most effective means of combating these viruses. In humans, influenza viruses infect respiratory epithelial cells and typically cause localized infections of mild to moderate severity. Neutrophils are the first innate cells to be recruited to the site of the infection and possess a wide range of effector functions to eliminate viruses. Some well-described effector functions include phagocytosis, degranulation, the production of reactive oxygen species (ROS), and the formation of neutrophil extracellular traps (NETs). However, while these mechanisms can promote infection resolution, they can also contribute to the pathology of severe disease. Thus, the role of neutrophils in influenza viral infection is nuanced, and the threshold at which protective functions give way to immunopathology is not well understood. Moreover, notable differences between human and murine neutrophils underscore the need to exercise caution when applying murine findings to human physiology. This review aims to provide an overview of neutrophil characteristics, their classic effector functions, as well as more recently described antibody-mediated effector functions. Finally, we discuss the controversial role these cells play in the context of influenza virus infections and how our knowledge of this cell type can be leveraged in the design of universal influenza virus vaccines.
Collapse
|
6
|
Chatterjee M, van Putten JPM, Strijbis K. Defensive Properties of Mucin Glycoproteins during Respiratory Infections-Relevance for SARS-CoV-2. mBio 2020; 11:e02374-20. [PMID: 33184103 PMCID: PMC7663010 DOI: 10.1128/mbio.02374-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily O-glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins. The gel-forming mucins MUC5AC and MUC5B are the primary structural components of airway mucus, and they enable efficient clearance of pathogens by mucociliary clearance. MUC5B is constitutively expressed in the healthy airway, whereas MUC5AC is upregulated in response to inflammatory challenge. MUC1, MUC4, and MUC16 are the three major transmembrane mucins of the respiratory tracts which prevent microbial invasion, can act as releasable decoy receptors, and activate intracellular signal transduction pathways. Pathogens have evolved virulence factors such as adhesins that facilitate interaction with specific mucins and mucin glycans, for example, terminal sialic acids. Mucin expression and glycosylation are dependent on the inflammatory state of the respiratory tract and are directly regulated by proinflammatory cytokines and microbial ligands. Gender and age also impact mucin glycosylation and expression through the female sex hormone estradiol and age-related downregulation of mucin production. Here, we discuss what is currently known about the role of respiratory mucins and their glycans during bacterial and viral infections of the airways and their relevance for the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the impact of microbe-mucin interaction in the respiratory tract could inspire the development of novel therapies to boost mucosal defense and combat respiratory infections.
Collapse
Affiliation(s)
- Maitrayee Chatterjee
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Moharana AK, Dash RN, Subudhi BB. Thiosemicarbazides: Updates on Antivirals Strategy. Mini Rev Med Chem 2020; 20:2135-2152. [PMID: 32811412 DOI: 10.2174/1389557520666200818212408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
The challenges of viral infection have increased in recent decades due to the emergence of resistance, cross-resistance and drying up of antiviral drug discovery. Many neglected tropical viruses including the chikungunya virus, dengue virus & Japanese encephalitis virus have gradually become global pathogens. This has further increased the burden of viral infection which necessitates the continuous development of antiviral therapy. The antiviral chemistry began with the development of thiosemicarbazide derived thiosemicarbazones as antiviral. Although very few thiosemicarbazides have progressed into clinical application, it still inspires antiviral development. During last 3 decades (1990- 2020), several efforts have been made to develop suitable antiviral by using thiosemicarbazide scaffold. Its hybridization with other pharmacophores has been used as a strategy to enhance safety and efficacy. Cyclization and substitution of thiosemicarbazides have also been used to develop potent antiviral. With the ability to form coordinate bonds, thiosemicarbazides have been used either as metal complex or chelator against viruses. This work is an attempt to systematically review the research on the use of thiosemicarbazides as an antiviral scaffold. It also reviews the structure-activity relationship and translational suitability of thiosemicarbazide derived compounds.
Collapse
Affiliation(s)
- Alok Kumar Moharana
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Rudra Narayan Dash
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| |
Collapse
|
8
|
Li J, Zhang K, Fan W, Zhang S, Li Y, Gu J, Zhou J, Liu W. Transcriptome Profiling Reveals Differential Effect of Interleukin-17A Upon Influenza Virus Infection in Human Cells. Front Microbiol 2019; 10:2344. [PMID: 31681209 PMCID: PMC6798183 DOI: 10.3389/fmicb.2019.02344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus (IAV) has developed elegant strategies to utilize cellular proteins and pathways to promote replication and evade the host antiviral response. Identification of these sabotaged host factors could increase the number of potential antiviral drug targets. Here, IAV A/PR/8/34 (PR8)- and A/California/04/2009-infected A549 and 293T cells displayed differential virus replication. To determine the host cellular responses of A549 and 293T cells to IAV infection, RNA-seq was used to identify differentially expressed genes. Our data revealed that IAV-infected A549 cells activated stronger virus-sensing signals and highly expressed cytokines, which play significant roles in initiating the innate immune and inflammatory responses. In addition, IAV-infected 293T cells displayed weak immune signaling and cytokine production. Remarkably, IL-17A and associated genes were highly enriched in IAV-infected 293T cells. Furthermore, IL-17A can partially facilitate A549 cell infection by the PR8 strain and PR8-infected IL-17A knock-out mice consistently exhibited decreased weight loss and reduced lung immunopathology, as compared to controls. This work uncovered the differential responses of cells infected with two H1N1 IAV strains and the potential roles of IL-17A in modulating virus infection.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinyan Gu
- MOE Joint International Research Laboratory of Animal Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Taubenberger JK, Kash JC, Morens DM. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci Transl Med 2019; 11:eaau5485. [PMID: 31341062 PMCID: PMC11000447 DOI: 10.1126/scitranslmed.aau5485] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The 2018-2019 period marks the centennial of the "Spanish" influenza pandemic, which caused at least 50 million deaths worldwide. The unprecedented nature of the pandemic's sudden appearance and high fatality rate serve as a stark reminder of the threat influenza poses. Unusual features of the 1918-1919 pandemic, including age-specific mortality and the high frequency of severe pneumonias, are still not fully understood. Sequencing and reconstruction of the 1918 virus has allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. This Review summarizes key findings and still-to-be answered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Cao Y, Zhang K, Liu L, Li W, Zhu B, Zhang S, Xu P, Liu W, Li J. Global transcriptome analysis of H5N1 influenza virus-infected human cells. Hereditas 2019; 156:10. [PMID: 30774581 PMCID: PMC6366111 DOI: 10.1186/s41065-019-0085-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/21/2019] [Indexed: 01/19/2023] Open
Abstract
Background Influenza A virus (IAV) belongs to the Orthomyxoviridae family. IAV causes a highly contagious respiratory disease in humans that exacts severe economic losses globally. The virus uses strategies developed to exploit and subvert cellular proteins and pathways to increase its own replication and to inhibit antiviral immune response. Results A/bar-headed goose/Qinghai/1/2005 (A/QH) was able to infect A549 and 293 T cells, with a high infection rate for A549 cells. To identify host cellular responses of human cells to influenza infection, differentially expressed genes (DEGs) between AIV-infected groups and uninfected controls were identified using RNA-sequencing. The DEGs were annotated by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses, which revealed that the DEGs were mainly linked to cellular function and metabolic processes, while the cellular function that is probably associated with host cellular response of human cells, including defense response to virus and protein modification. All the DEGs and pathways were possibly involved in the response to IAV invasion. Conclusions The global transcriptome analysis results revealed that sensitive genes and pathways of the cells were infected with the influenza virus and provided further evidence to investigate the complicated relationship between IAV and host cells. Electronic supplementary material The online version of this article (10.1186/s41065-019-0085-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Cao
- 1School of Life Sciences, University of Science and Technology of China, Hefei, China.,2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- 3Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Lirong Liu
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,4University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Zhu
- 3Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Shuang Zhang
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- 3Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Wenjun Liu
- 1School of Life Sciences, University of Science and Technology of China, Hefei, China.,2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,4University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,4University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Kanyiri CW, Mark K, Luboobi L. Mathematical Analysis of Influenza A Dynamics in the Emergence of Drug Resistance. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:2434560. [PMID: 30245737 PMCID: PMC6136569 DOI: 10.1155/2018/2434560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Every year, influenza causes high morbidity and mortality especially among the immunocompromised persons worldwide. The emergence of drug resistance has been a major challenge in curbing the spread of influenza. In this paper, a mathematical model is formulated and used to analyze the transmission dynamics of influenza A virus having incorporated the aspect of drug resistance. The qualitative analysis of the model is given in terms of the control reproduction number, Rc. The model equilibria are computed and stability analysis carried out. The model is found to exhibit backward bifurcation prompting the need to lower Rc to a critical value Rc∗ for effective disease control. Sensitivity analysis results reveal that vaccine efficacy is the parameter with the most control over the spread of influenza. Numerical simulations reveal that despite vaccination reducing the reproduction number below unity, influenza still persists in the population. Hence, it is essential, in addition to vaccination, to apply other strategies to curb the spread of influenza.
Collapse
Affiliation(s)
- Caroline W. Kanyiri
- Department of Mathematics, Pan African University Institute of Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| | - Kimathi Mark
- Department of Mathematics, Machakos University, P.O. Box 139-90100, Machakos, Kenya
| | - Livingstone Luboobi
- Institute of Mathematical Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| |
Collapse
|
12
|
Kesinger E, Liu J, Jensen A, Chia CP, Demers A, Moriyama H. Influenza D virus M2 protein exhibits ion channel activity in Xenopus laevis oocytes. PLoS One 2018; 13:e0199227. [PMID: 29927982 PMCID: PMC6013169 DOI: 10.1371/journal.pone.0199227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A new type of influenza virus, known as type D, has recently been identified in cattle and pigs. Influenza D virus infection in cattle is typically asymptomatic; however, its infection in swine can result in clinical disease. Swine can also be infected with all other types of influenza viruses, namely A, B, and C. Consequently, swine can serve as a "mixing vessel" for highly pathogenic influenza viruses, including those with zoonotic potential. Currently, the only antiviral drug available targets influenza M2 protein ion channel is not completely effective. Thus, it is necessary to develop an M2 ion channel blocker capable of suppressing the induction of resistance to the genetic shift. To provide a basis for developing novel ion channel-blocking compounds, we investigated the properties of influenza D virus M2 protein (DM2) as a drug target. RESULTS To test the ion channel activity of DM2, the DNA corresponding to DM2 with cMyc-tag conjugated to its carboxyl end was cloned into the shuttle vector pNCB1. The mRNA of the DM2-cMyc gene was synthesized and injected into Xenopus oocytes. The translation products of DM2-cMyc mRNA were confirmed by immunofluorescence and mass spectrometry analyses. The DM2-cMyc mRNA-injected oocytes were subjected to the two-electrode voltage-clamp (TEVC) method, and the induced inward current was observed. The midpoint (Vmid) values in Boltzmann modeling for oocytes injected with DM2-cMyc RNA or a buffer were -152 and -200 mV, respectively. Assuming the same expression level in the Xenopus oocytes, DM2 without tag and influenza C virus M2 protein (CM2) were subjected to the TEVC method. DM2 exhibited ion channel activity under the condition that CM2 ion channel activity was reproduced. The gating voltages represented by Vmid for CM2 and DM2 were -141 and -146 mV, respectively. The reversal potentials observed in ND96 for CM2 and DM2 were -21 and -22 mV, respectively. Compared with intact DM2, DM2 variants with mutation in the YxxxK motif, namely Y72A and K76A DM2, showed lower Vmid values while showing no change in reversal potential. CONCLUSION The M2 protein from newly isolated influenza D virus showed ion channel activity similar to that of CM2. The gating voltage was shown to be affected by the YxxxK motif and by the hydrophobicity and bulkiness of the carboxyl end of the molecule.
Collapse
Affiliation(s)
- Evan Kesinger
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jianing Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Aaron Jensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Catherine P. Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Andrew Demers
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang K, Xu WW, Zhang Z, Liu J, Li J, Sun L, Sun W, Jiao P, Sang X, Ren Z, Yu Z, Li Y, Feng N, Wang T, Wang H, Yang S, Zhao Y, Zhang X, Wilker PR, Liu W, Liao M, Chen H, Gao Y, Xia X. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection. Oncotarget 2018; 8:30422-30437. [PMID: 28418930 PMCID: PMC5444753 DOI: 10.18632/oncotarget.16503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China.,Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Wei Wei Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Zhaowei Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Jing Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lijuan Sun
- Department of Influenza Vaccine, Changchun Institute of Biological Product, Changchun, 130062, PR China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaoyu Sang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Zhiguang Ren
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Zhijun Yu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Xuemei Zhang
- Department of Influenza Vaccine, Changchun Institute of Biological Product, Changchun, 130062, PR China
| | - Peter R Wilker
- Department of Microbiology, University of Wisconsin La Crosse, La Crosse, Wisconsin, 54601, USA
| | - WenJun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, PR China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, The Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, 130122, PR China
| |
Collapse
|
14
|
Durães-Carvalho R, Salemi M. In-depth phylodynamics, evolutionary analysis and in silico predictions of universal epitopes of Influenza A subtypes and Influenza B viruses. Mol Phylogenet Evol 2018; 121:174-182. [PMID: 29355604 DOI: 10.1016/j.ympev.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
Abstract
This study applied High-Performance Computing to explore the high-resolution phylodynamics and the evolutionary dynamics of Influenza viruses (IVs) A and B and their subtypes in-depth to identify peptide-based candidates for broad-spectrum vaccine targets. For this purpose, we collected all the available Hemagglutinin (HA) and Neuraminidase (NA) nucleotide and amino acid sequences (more than 100,000) of IVs isolated from all the reservoirs and intermediate hosts species, from all geographic ranges and from different isolation sources, covering a period of almost one century of sampling years. We highlight that despite the constant changes in Influenza evolutionary dynamics over time, which are responsible for the generation of novel strains, our study identified the presence of highly conserved peptides distributed in all the HA and NA found in H1-H18 and N1-N11 IAV subtypes and IBVs. Additionally, predictions through computational methods showed that these peptides could have a strong affinity to bind to HLA-A∗02:01/HLA-DRB1∗01:01 major histocompatibility complex (MHC) class I and II molecules, therefore acting as a double ligand. Moreover, epitope prediction in antigens from pathogens responsible for secondary bacterial infection was also studied. These findings show that the regions mapped here may potentially be explored as universal epitope-based candidates to develop therapies leading to a broader response against the infection induced by all circulating IAVs, IBVs and Influenza-associated bacterial infections.
Collapse
Affiliation(s)
- Ricardo Durães-Carvalho
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Marco Salemi
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
15
|
Yeung SY, Mucha A, Deshmukh R, Boutrus M, Arnebrant T, Sellergren B. Reversible Self-Assembled Monolayers (rSAMs): Adaptable Surfaces for Enhanced Multivalent Interactions and Ultrasensitive Virus Detection. ACS CENTRAL SCIENCE 2017; 3:1198-1207. [PMID: 29202022 PMCID: PMC5704293 DOI: 10.1021/acscentsci.7b00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 05/06/2023]
Abstract
We report on the design of pH-switchable monolayers allowing a reversible and ordered introduction of affinity reagents on sensor surfaces. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with affinity ligands. These spontaneously self-assemble on top of carboxylic acid terminated SAMs to form reversible homo or mixed monolayers (rSAMs) that are tunable with respect to the nature of the head group, layer order and stability while featuring pH responsiveness and the dynamic nature of noncovalent build assemblies. We show that this results in a range of unique biosensor features. As a first example a sialic acid rSAM featuring strong lectin affinity is here used to sense hemagglutinin and influenza virus (H5N1) at the pM and fM level by in situ ellipsometry in a fully reversible fashion. We believe that the rSAM concept will find widespread use in surface chemistry and overall for boosting sensitivity in affinity biosensors.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Annabell Mucha
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| | - Ravindra Deshmukh
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| | - Malak Boutrus
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| | - Thomas Arnebrant
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Börje Sellergren
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| |
Collapse
|
16
|
Inhibition of highly pathogenic avian influenza (HPAI) virus by a peptide derived from vFLIP through its direct destabilization of viruses. Sci Rep 2017; 7:4875. [PMID: 28687749 PMCID: PMC5501782 DOI: 10.1038/s41598-017-04777-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/22/2017] [Indexed: 01/12/2023] Open
Abstract
The antiviral activities of synthesized Kα2-helix peptide, which was derived from the viral FLICE-like inhibitor protein (vFLIP) of Kaposi's sarcoma-associated herpesvirus (KSHV), against influenza A virus (IAV) were investigated in vitro and in vivo, and mechanisms of action were suggested. In addition to the robust autophagy activity of the Kα2-helix peptide, the present study showed that treatment with the Kα2 peptide fused with the TAT peptide significantly inhibited IAV replication and transmission. Moreover, TAT-Kα2 peptide protected the mice, that were challenged with lethal doses of highly pathogenic influenza A H5N1 or H1N1 viruses. Mechanistically, we found that TAT-Kα2 peptide destabilized the viral membranes, depending on their lipid composition of the viral envelop. In addition to IAV, the Kα2 peptide inhibited infections with enveloped viruses, such as Vesicular Stomatitis Virus (VSV) and Respiratory Syncytial Virus (RSV), without cytotoxicity. These results suggest that TAT-Kα2 peptide is a potential antiviral agent for controlling emerging or re-emerging enveloped viruses, particularly diverse subtypes of IAVs.
Collapse
|
17
|
Jain A, Dangi T, Jain B, Singh AK, Singh JV, Kumar R. Genetic changes in influenza A(H3N2) viruses circulating during 2011 to 2013 in northern India (Lucknow). J Med Virol 2015; 87:1268-75. [PMID: 25914198 DOI: 10.1002/jmv.24096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 11/07/2022]
Abstract
Genetic variability in the hemagglutinin (HA1) and the neuraminidase (NA) genes of influenza viruses results in the emergence of new strains which differ in pathogenicity and severity. The present study was undertaken for genotypic characterization of the HA1 and NA genes of the influenza A(H3N2) strains, detected during the 2011-2013. A total of fifty five influenza A(H3N2) positive samples [2011 (n = 20), 2012 (n = 4) and 2013 (n = 31)] were studied. The 824 bp segment of HA1 gene and 931 bp segment of NA gene were amplified and sequenced by Big-Dye terminator kit on ABI3130, Genetic analyzer. Molecular and phylogenetic analysis was done by MEGA 5.05 software and PhyML program (v3.0). Mutations were determined by comparing the deduced amino acid sequences of study strains with that of 2009-2013 vaccine strains. The studied influenza A(H3N2) strains showed 98.1-99.6% similarity in HA1 and NA amino acid sequences with the influenza A/Victoria/361/2011 vaccine strain. Four mutations in the HA1 amino acid sequences (T128A, R142G, L157S and N278K) and three unique mutations in the NA amino acid sequences [D251V, S315G and V313A] were found. These mutations were observed only in strains from the year 2013 (cluster II). None of the strains showed the presence of mutations, N294S and R292K, markers of oseltamivir resistance. In conclusion, Lucknow strains have accumulated the significant number of mutations in the antigenic sites of the HA and the NA coding sequences and continue to be evolving from the 2013 vaccine strain [A/Victoria/361/2011], however, mutations specific for oseltamivir resistance were not detected.
Collapse
Affiliation(s)
- Amita Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Tanushree Dangi
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Bhawana Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Ajay Kumar Singh
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - J V Singh
- Department of Community, Medicine King George's Medical University, Lucknow, India
| | - Rashmi Kumar
- Department of Paediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
18
|
"But nature started it": examining Taubenberger and Morens' view on influenza A virus and dual-use research of concern. mBio 2013; 4:mBio.00547-13. [PMID: 23963181 PMCID: PMC3747591 DOI: 10.1128/mbio.00547-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Reply to "'BUt nature started it': examining Taubenberger and Morens' view on influenza a virus and dual-use research of concern". mBio 2013; 4:mBio.00579-13. [PMID: 23963184 PMCID: PMC3747593 DOI: 10.1128/mbio.00579-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Affiliation(s)
- Chirag V. Vasa
- Department of Infectious Diseases, Mount Sinai Hospital of Queens, Astoria, New York, USA
| |
Collapse
|