1
|
Liu L, Wang J, Li R, Wu J, Zhao Y, Yan F, Wang T, Gao Y, Zhao Z, Feng N, Xia X. A Bacterium-like Particle Vaccine Displaying Envelope Proteins of Canine Distemper Virus Can Induce Immune Responses in Mice and Dogs. Viruses 2024; 16:549. [PMID: 38675892 PMCID: PMC11055036 DOI: 10.3390/v16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.
Collapse
Affiliation(s)
- Lina Liu
- College of Veterinary Medicine, Jilin University, Changchun 130000, China;
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Ranran Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Jianzhao Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| |
Collapse
|
2
|
Stelfox AJ, Oguntuyo KY, Rissanen I, Harlos K, Rambo R, Lee B, Bowden TA. Crystal structure and solution state of the C-terminal head region of the narmovirus receptor binding protein. mBio 2023; 14:e0139123. [PMID: 37737607 PMCID: PMC10653815 DOI: 10.1128/mbio.01391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Genetically diverse paramyxoviruses are united in their presentation of a receptor-binding protein (RBP), which works in concert with the fusion protein to facilitate host-cell entry. The C-terminal head region of the paramyxoviral RBP, a primary determinant of host-cell tropism and inter-species transmission potential, forms structurally distinct classes dependent upon protein and glycan receptor specificity. Here, we reveal the architecture of the C-terminal head region of the RBPs from Nariva virus (NarV) and Mossman virus (MosV), two archetypal rodent-borne paramyxoviruses within the recently established genus Narmovirus, family Paramyxoviridae. Our analysis reveals that while narmoviruses retain the general architectural features associated with paramyxoviral RBPs, namely, a six-bladed β-propeller fold, they lack the structural motifs associated with known receptor-mediated host-cell entry pathways. This investigation indicates that the RBPs of narmoviruses exhibit pathobiological features that are distinct from those of other paramyxoviruses.
Collapse
Affiliation(s)
- Alice J. Stelfox
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- European Molecular Biology Laboratory, Grenoble, France
| | | | - Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Rambo
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Oxford, United Kingdom
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Issmail L, Ramsbeck D, Jäger C, Henning T, Kleinschmidt M, Buchholz M, Grunwald T. Identification and evaluation of a novel tribenzamide derivative as an inhibitor targeting the entry of the respiratory syncytial virus. Antiviral Res 2023; 211:105547. [PMID: 36682463 DOI: 10.1016/j.antiviral.2023.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants, the elderly, and the immunocompromised, yet no licensed vaccine and only limited therapeutic options for prevention and treatment are available, which poses a global health challenge and emphasizes the urgent medical need for novel antiviral agents. In the current study, a novel potent small molecule inhibitor of RSV was identified by performing a screening and structure optimization campaign, wherein a naturally occurring dicaffeoylquinic acid (DCQA) compound served as a chemical starting point. The reported benzamide derivative inhibitor, designated as 2f, was selected for its improved stability and potent antiviral activity from a series of investigated structurally related compounds. 2f was well tolerated by cells and able to inhibit RSV infection with a half maximal inhibitory concentration (IC50) of 35 nM and a favorable selectivity index (SI) of 3742. Although the exact molecular target for 2f is not known, in vitro mechanism of action investigations revealed that the compound inhibits the early stage of infection by interacting with RSV virion and interferes primarily with the attachment and potentially with the virus-cell fusion step. Moreover, intranasal administration of 2f to mice simultaneously or prior to intranasal infection with RSV significantly decreased viral load in the lungs, pointing to the in vivo potential of the compound. Our results suggest that 2f is a viable candidate for further preclinical development and evaluation as an antiviral agent against RSV infections.
Collapse
Affiliation(s)
- Leila Issmail
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Christian Jäger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Tanja Henning
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Martin Kleinschmidt
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle, Saale, Germany
| | - Thomas Grunwald
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
| |
Collapse
|
4
|
Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S, Golub K, Cohen F, Bovier F, Pfalmer D, Greninger AL, Porotto M, des Georges A, Moscona A. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. SCIENCE ADVANCES 2023; 9:eade2727. [PMID: 36763666 PMCID: PMC9917000 DOI: 10.1126/sciadv.ade2727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wenjing Cheng
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shari Stenglein
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Frances Cohen
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Francesca Bovier
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Pfalmer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” 81100 Caserta, Italy
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Abstract
Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Matteo Porotto
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Anne Moscona
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
6
|
Greninger AL, Rybkina K, Lin MJ, Drew-Bear J, Marcink TC, Shean RC, Makhsous N, Boeckh M, Harder O, Bovier F, Burstein SR, Niewiesk S, Rima BK, Porotto M, Moscona A. Human parainfluenza virus evolution during lung infection of immunocompromised humans promotes viral persistence. J Clin Invest 2021; 131:150506. [PMID: 34609969 DOI: 10.1172/jci150506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
The capacity of respiratory viruses to undergo evolution within the respiratory tract raises the possibility of evolution under the selective pressure of the host environment or drug treatment. Long-term infections in immunocompromised hosts are potential drivers of viral evolution and development of infectious variants. We show that intra-host evolution in chronic human parainfluenza virus 3 (HPIV3) infection in immunocompromised individuals elicited mutations that favor viral entry and persistence, suggesting that similar processes may operate across enveloped respiratory viruses. We profiled longitudinal HPIV3 infections from two immunocompromised individuals that persisted for 278 and 98 days. Mutations accrued in the HPIV3 attachment protein hemagglutinin-neuraminidase (HN), including the first in vivo mutation in HN's receptor binding site responsible for activating the viral fusion process. Fixation of this mutation was associated with exposure to a drug that cleaves host cell sialic acid moieties. Longitudinal adaptation of HN was associated with features that promote viral entry and persistence in cells, including greater avidity for sialic acid and more active fusion activity in vitro, but not with antibody escape. Long term infection thus led to mutations promoting viral persistence, suggesting that host-directed therapeutics may support the evolution of viruses that alter their biophysical characteristics to persist in the face of these agents in vivo.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Ksenia Rybkina
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Jennifer Drew-Bear
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| | - Tara C Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| | - Ryan C Shean
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Negar Makhsous
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States of America
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, United States of America
| | - Francesca Bovier
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| | - Shana R Burstein
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, United States of America
| | - Bert K Rima
- School of Medicine Dentistry and Biomedical Sceinces, Queen's University of Belfast, Belfast, United Kingdom
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| | - Anne Moscona
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, United States of America
| |
Collapse
|
7
|
Unique Tropism and Entry Mechanism of Mumps Virus. Viruses 2021; 13:v13091746. [PMID: 34578327 PMCID: PMC8471308 DOI: 10.3390/v13091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mumps virus (MuV) is an important human pathogen that causes parotitis, orchitis, oophoritis, meningitis, encephalitis, and sensorineural hearing loss. Although mumps is a vaccine-preventable disease, sporadic outbreaks have occurred worldwide, even in highly vaccinated populations. MuV not only causes systemic infection but also has a unique tropism to glandular tissues and the central nervous system. In general, tropism can be defined by multiple factors in the viral life cycle, including its entry, interaction with host factors, and host-cell immune responses. Although the underlying mechanisms of MuV tropism remain to be fully understood, recent studies on virus-host interactions have provided insights into viral pathogenesis. This review was aimed at summarizing the entry process of MuV by focusing on the glycan receptors, particularly the recently identified receptors with a trisaccharide core motif, and their interactions with the viral attachment proteins. Here, we describe the receptor structures, their distribution in the human body, and the recently identified host factors for MuV and analyze their relationship with MuV tropism.
Collapse
|
8
|
Clustered Lysine Residues of the Canine Distemper Virus Matrix Protein Regulate Membrane Association and Budding Activity. J Virol 2020; 95:JVI.01269-20. [PMID: 33028721 DOI: 10.1128/jvi.01269-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity.IMPORTANCE Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.
Collapse
|
9
|
Ikegame S, Beaty SM, Stevens C, Won T, Park A, Sachs D, Hong P, Lee B, Thibault PA. Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. PLoS Pathog 2020; 16:e1008877. [PMID: 33035269 PMCID: PMC7577504 DOI: 10.1371/journal.ppat.1008877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The antigenic and genomic stability of paramyxoviruses remains a mystery. Here, we evaluate the genetic plasticity of Sendai virus (SeV) and mumps virus (MuV), sialic acid-using paramyxoviruses that infect mammals from two Paramyxoviridae subfamilies (Orthoparamyxovirinae and Rubulavirinae). We performed saturating whole-genome transposon insertional mutagenesis, and identified important commonalities: disordered regions in the N and P genes near the 3' genomic end were more tolerant to insertional disruptions; but the envelope glycoproteins were not, highlighting structural constraints that contribute to the restricted antigenic drift in paramyxoviruses. Nonetheless, when we applied our strategy to a fusion-defective Newcastle disease virus (Avulavirinae subfamily), we could select for F-revertants and other insertants in the 5' end of the genome. Our genome-wide interrogation of representative paramyxovirus genomes from all three Paramyxoviridae subfamilies provides a family-wide context in which to explore specific variations within and among paramyxovirus genera and species. RNA viruses are known for their genetic variability. They often exhibit significant genetic diversity even within members of a given viral species. Paramyxoviruses are notable exceptions. They show relatively little genomic or antigenic change over time. This is exemplified by mumps and measles viruses, where vaccine strains have not been changed in 40 years and still remain effective. Here, we sought to understand the determinants of this relative stability by probing three different paramyxoviruses: Sendai, mumps, and Newcastle disease viruses. We used a mutagenesis strategy to create 15-nucleotide insertions that were randomly distributed across the entire genome. The insertions were designed to identify regions of the viral genome that can or cannot tolerate. After rescuing each of these libraries, we passaged each virus in cell culture twice, and deep sequenced viral RNA from each step to monitor the enrichment or depletion of insertions throughout the genome. In this way, we found that paramyxoviruses displayed an increased tolerance for insertions in proteins with disordered regions, and in the un-translated regions of highly expressed genes. Importantly, we also determined that paramyxoviral structural proteins, which are the most antigenic proteins, do not tolerate insertions, which provides an explanation for why paramyxoviruses are antigenically stable in the face of adaptive immune pressure. Thus, we here provide evidence that constraints on paramyxoviral protein functions contribute to the viruses’ genetic stability.
Collapse
Affiliation(s)
- Satoshi Ikegame
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Shannon M. Beaty
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christian Stevens
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Taylor Won
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Arnold Park
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - David Sachs
- Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Patrick Hong
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benhur Lee
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (BL); (PAT)
| | - Patricia A. Thibault
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (BL); (PAT)
| |
Collapse
|
10
|
Marcink TC, Wang T, des Georges A, Porotto M, Moscona A. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces. PLoS Pathog 2020; 16:e1008883. [PMID: 32956394 PMCID: PMC7529294 DOI: 10.1371/journal.ppat.1008883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/01/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Infection by human parainfluenza viruses (HPIVs) causes widespread lower respiratory diseases, including croup, bronchiolitis, and pneumonia, and there are no vaccines or effective treatments for these viruses. HPIV3 is a member of the Respirovirus species of the Paramyxoviridae family. These viruses are pleomorphic, enveloped viruses with genomes composed of single-stranded negative-sense RNA. During viral entry, the first step of infection, the viral fusion complex, comprised of the receptor-binding glycoprotein hemagglutinin-neuraminidase (HN) and the fusion glycoprotein (F), mediates fusion upon receptor binding. The HPIV3 transmembrane protein HN, like the receptor-binding proteins of other related viruses that enter host cells using membrane fusion, binds to a receptor molecule on the host cell plasma membrane, which triggers the F glycoprotein to undergo major conformational rearrangements, promoting viral entry. Subsequent fusion of the viral and host membranes allows delivery of the viral genetic material into the host cell. The intermediate states in viral entry are transient and thermodynamically unstable, making it impossible to understand these transitions using standard methods, yet understanding these transition states is important for expanding our knowledge of the viral entry process. In this study, we use cryo-electron tomography (cryo-ET) to dissect the stepwise process by which the receptor-binding protein triggers F-mediated fusion, when forming a complex with receptor-bearing membranes. Using an on-grid antibody capture method that facilitates examination of fresh, biologically active strains of virus directly from supernatant fluids and a series of biological tools that permit the capture of intermediate states in the fusion process, we visualize the series of events that occur when a pristine, authentic viral particle interacts with target receptors and proceeds from the viral entry steps of receptor engagement to membrane fusion.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
| | - Tong Wang
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, United States of America
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, United States of America
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, United States of America
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Physiology & Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
| |
Collapse
|
11
|
Kalbermatter D, Shrestha N, Gall FM, Wyss M, Riedl R, Plattet P, Fotiadis D. Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ectodomain. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100021. [PMID: 32647825 PMCID: PMC7337061 DOI: 10.1016/j.yjsbx.2020.100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/04/2023]
Abstract
Expression and purification of prefusion CDV solF in presence of a fusion inhibitor. Elucidation of the CDV fusion protein ectodomain by cryo-EM. High structural similarity between MeV and CDV solF suggests common fusion mechanisms.
Measles virus (MeV) and canine distemper virus (CDV), two members of the Morbillivirus genus, are still causing important global diseases of humans and animals, respectively. To enter target cells, morbilliviruses rely on an envelope-anchored machinery, which is composed of two interacting glycoproteins: a tetrameric receptor binding (H) protein and a trimeric fusion (F) protein. To execute membrane fusion, the F protein initially adopts a metastable, prefusion state that refolds into a highly stable postfusion conformation as the result of a finely coordinated activation process mediated by the H protein. Here, we employed cryo-electron microscopy (cryo-EM) and single particle reconstruction to elucidate the structure of the prefusion state of the CDV F protein ectodomain (solF) at 4.3 Å resolution. Stabilization of the prefusion solF trimer was achieved by fusing the GCNt trimerization sequence at the C-terminal protein region, and expressing and purifying the recombinant protein in the presence of a morbilliviral fusion inhibitor class compound. The three-dimensional cryo-EM map of prefusion CDV solF in complex with the inhibitor clearly shows density for the ligand at the protein binding site suggesting common mechanisms of membrane fusion activation and inhibition employed by different morbillivirus members.
Collapse
Affiliation(s)
- David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Neeta Shrestha
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Flavio M Gall
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Marianne Wyss
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Philippe Plattet
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
13
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Azarm KD, Lee B. Differential Features of Fusion Activation within the Paramyxoviridae. Viruses 2020; 12:v12020161. [PMID: 32019182 PMCID: PMC7077268 DOI: 10.3390/v12020161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process.
Collapse
|
15
|
Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. J Virol 2020; 94:JVI.01732-19. [PMID: 31619562 DOI: 10.1128/jvi.01732-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Mumps virus (MuV), an enveloped negative-strand RNA virus belonging to the family Paramyxoviridae, enters the host cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin-neuraminidase (MuV-HN) and a fusion (F) protein. However, how the binding of MuV-HN to glycan receptors triggers membrane fusion is not well understood. The crystal structure of the MuV-HN head domain forms a tetramer (dimer of dimers) like other paramyxovirus attachment proteins. In the structure, a sulfate ion (SO4 2-) was found at the interface between two dimers, which may be replaced by a hydrogen phosphate ion (HPO4 2-) under physiological conditions. The anion is captured by the side chain of a positively charged arginine residue at position 139 of one monomer each from both dimers. Substitution of alanine or lysine for arginine at this position compromised the fusion support activity of MuV-HN without affecting its cell surface expression, glycan-receptor binding, and interaction with the F protein. Furthermore, the substitution appeared to affect the tetramer formation of the head domain as revealed by blue native-PAGE analysis. These results, together with our previous similar findings with the measles virus attachment protein head domain, suggest that the dimer-dimer interaction within the tetramer may play an important role in triggering membrane fusion during paramyxovirus entry.IMPORTANCE Despite the use of effective live vaccines, mumps outbreaks still occur worldwide. Mumps virus (MuV) infection typically causes flu-like symptoms and parotid gland swelling but sometimes leads to orchitis, oophoritis, and neurological complications, such as meningitis, encephalitis, and deafness. MuV enters the host cell through membrane fusion mediated by two viral proteins, a receptor-binding attachment protein, and a fusion protein, but its detailed mechanism is not fully understood. In this study, we show that the tetramer (dimer of dimers) formation of the MuV attachment protein head domain is supported by an anion located at the interface between two dimers and that the dimer-dimer interaction plays an important role in triggering the activation of the fusion protein and causing membrane fusion. These results not only further our understanding of MuV entry but provide useful information about a possible target for antiviral drugs.
Collapse
|
16
|
Pryce R, Azarm K, Rissanen I, Harlos K, Bowden TA, Lee B. A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus. Life Sci Alliance 2020; 3:e201900578. [PMID: 31862858 PMCID: PMC6925387 DOI: 10.26508/lsa.201900578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023] Open
Abstract
The emergent zoonotic henipaviruses, Hendra, and Nipah are responsible for frequent and fatal disease outbreaks in domestic animals and humans. Specificity of henipavirus attachment glycoproteins (G) for highly species-conserved ephrin ligands underpins their broad host range and is associated with systemic and neurological disease pathologies. Here, we demonstrate that Cedar virus (CedV)-a related henipavirus that is ostensibly nonpathogenic-possesses an idiosyncratic entry receptor repertoire that includes the common henipaviral receptor, ephrin-B2, but, distinct from pathogenic henipaviruses, does not include ephrin-B3. Uniquely among known henipaviruses, CedV can use ephrin-B1 for cellular entry. Structural analyses of CedV-G reveal a key region of molecular specificity that directs ephrin-B1 utilization, while preserving a universal mode of ephrin-B2 recognition. The structural and functional insights presented uncover diversity within the known henipavirus receptor repertoire and suggest that only modest structural changes may be required to modulate receptor specificities within this group of lethal human pathogens.
Collapse
Affiliation(s)
- Rhys Pryce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | | | - Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Helsinki Institute for Life Science, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Virus Network Center of Excellence, Center for Virology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Tomar S, Mahajan S, Kumar R. Advances in structure-assisted antiviral discovery for animal viral diseases. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149589 DOI: 10.1016/b978-0-12-816352-8.00019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proc Natl Acad Sci U S A 2019; 116:25057-25067. [PMID: 31767754 PMCID: PMC6911215 DOI: 10.1073/pnas.1912503116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.
Collapse
|
19
|
A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Proc Natl Acad Sci U S A 2019; 116:21514-21520. [PMID: 31591233 PMCID: PMC6815108 DOI: 10.1073/pnas.1906717116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many paramyxoviruses recently identified and classified within the newly established genus Pararubulavirus, family Paramyxoviridae The envelope surface of SosV presents a receptor-binding protein (RBP), SosV-RBP, which facilitates host-cell attachment and entry. Unlike closely related hemagglutinin neuraminidase RBPs from other genera of the Paramyxoviridae, SosV-RBP and other pararubulavirus RBPs lack many of the stringently conserved residues required for sialic acid recognition and hydrolysis. We determined the crystal structure of the globular head region of SosV-RBP, revealing that while the glycoprotein presents a classical paramyxoviral six-bladed β-propeller fold and structurally classifies in close proximity to paramyxoviral RBPs with hemagglutinin-neuraminidase (HN) functionality, it presents a receptor-binding face incongruent with sialic acid recognition. Hemadsorption and neuraminidase activity analysis confirms the limited capacity of SosV-RBP to interact with sialic acid in vitro and indicates that SosV-RBP undergoes a nonclassical route of host-cell entry. The close overall structural conservation of SosV-RBP with other classical HN RBPs supports a model by which pararubulaviruses only recently diverged from sialic acid binding functionality.
Collapse
|
20
|
Voigt K, Hoffmann M, Drexler JF, Müller MA, Drosten C, Herrler G, Krüger N. Fusogenicity of the Ghana Virus ( Henipavirus: Ghanaian bat henipavirus) Fusion Protein is Controlled by the Cytoplasmic Domain of the Attachment Glycoprotein. Viruses 2019; 11:v11090800. [PMID: 31470664 PMCID: PMC6784138 DOI: 10.3390/v11090800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023] Open
Abstract
The Ghana virus (GhV) is phylogenetically related to the zoonotic henipaviruses Nipah (NiV) and Hendra virus. Although GhV uses the highly conserved receptor ephrin-B2, the fusogenicity is restricted to cell lines of bat origin. Furthermore, the surface expression of the GhV attachment glycoprotein (G) is reduced compared to NiV and most of this protein is retained in the endoplasmic reticulum (ER). Here, we generated truncated as well as chimeric GhV G proteins and investigated the influence of the structural domains (cytoplasmic tail, transmembrane domain, ectodomain) of this protein on the intracellular transport and the fusogenicity following coexpression with the GhV fusion protein (F). We demonstrate that neither the cytoplasmic tail nor the transmembrane domain is responsible for the intracellular retention of GhV G. Furthermore, the cytoplasmic tail of GhV G modulates the fusogenicity of GhV F and therefore controls the species-restricted fusogenicity of the GhV surface glycoproteins.
Collapse
Affiliation(s)
- Kathleen Voigt
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marcel Alexander Müller
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
21
|
Authentic Modeling of Human Respiratory Virus Infection in Human Pluripotent Stem Cell-Derived Lung Organoids. mBio 2019; 10:mBio.00723-19. [PMID: 31064833 PMCID: PMC6509192 DOI: 10.1128/mbio.00723-19] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory viruses are among the first pathogens encountered by young children, and the significant impact of these viral infections on the developing lung is poorly understood. Circulating viruses are suited to the environment of the human lung and are different from those of viruses grown in cultured cells. We modeled respiratory virus infections that occur in children or infect the distal lung using lung organoids that represent the entire developing infant lung. These 3D lung organoids, derived from human pluripotent stem cells, develop into branching airway and alveolar structures and provide a tissue environment that maintains the authentic viral genome. The lung organoids can be genetically engineered prior to differentiation, thereby generating tissues bearing or lacking specific features that may be relevant to viral infection, a feature that may have utility for the study of host-pathogen interaction for a range of lung pathogens. Infectious viruses so precisely fit their hosts that the study of natural viral infection depends on host-specific mechanisms that affect viral infection. For human parainfluenza virus 3, a prevalent cause of lower respiratory tract disease in infants, circulating human viruses are genetically different from viruses grown in standard laboratory conditions; the surface glycoproteins that mediate host cell entry on circulating viruses are suited to the environment of the human lung and differ from those of viruses grown in cultured cells. Polarized human airway epithelium cultures have been used to represent the large, proximal airways of mature adult airways. Here we modeled respiratory virus infections that occur in children or infect the distal lung using lung organoids that represent the entire developing infant lung. These 3D lung organoids derived from human pluripotent stem cells contain mesoderm and pulmonary endoderm and develop into branching airway and alveolar structures. Whole-genome sequencing analysis of parainfluenza viruses replicating in the organoids showed maintenance of nucleotide identity, suggesting that no selective pressure is exerted on the virus in this tissue. Infection with parainfluenza virus led to viral shedding without morphological changes, while respiratory syncytial virus infection induced detachment and shedding of infected cells into the lung organoid lumens, reminiscent of parainfluenza and respiratory syncytial virus in human infant lungs. Measles virus infection, in contrast, induced syncytium formation. These human stem cell-derived lung organoids may serve as an authentic model for respiratory viral pathogenesis in the developing or infant lung, recapitulating respiratory viral infection in the host.
Collapse
|
22
|
Duan Z, Xu H, Ji X, Zhao J, Xu H, Hu Y, Deng S, Hu S, Liu X. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts. Virulence 2018. [PMID: 29532715 PMCID: PMC5955436 DOI: 10.1080/21505594.2018.1449507] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336–433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.
Collapse
Affiliation(s)
- Zhiqiang Duan
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Haixu Xu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xinqin Ji
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Jiafu Zhao
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Houqiang Xu
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Yan Hu
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shanshan Deng
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shunlin Hu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xiufan Liu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| |
Collapse
|
23
|
Behner L, Zimmermann L, Ringel M, Weis M, Maisner A. Formation of high-order oligomers is required for functional bioactivity of an African bat henipavirus surface glycoprotein. Vet Microbiol 2018; 218:90-97. [DOI: 10.1016/j.vetmic.2018.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
24
|
Helenius A. Virus Entry: Looking Back and Moving Forward. J Mol Biol 2018; 430:1853-1862. [PMID: 29709571 PMCID: PMC7094621 DOI: 10.1016/j.jmb.2018.03.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/29/2022]
Abstract
Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail. However, as more viruses are analyzed, and as the focus shifts from tissue culture to in vivo experiments, it is evident that viruses display considerable redundancy and flexibility in receptor usage, endocytic mechanism, location of penetration, and uncoating mechanism. For many viruses, the picture is still elusive because the interactions that they engage in rely on sophisticated adaptation to complex cellular functions and defense mechanisms. Studies using a broad combination of technologies have provided detailed information on the entry and uncoating of many animal viruses. Not only the identity of cell surface receptors but their distribution in plasma membrane and in microdomains defines cell tropism and infection efficiency. The majority of viruses enter by endocytic mechanisms and penetrate into the cytosol intracellularly from a variety of different organelles. The picture is often elusive because many viruses display redundancy in receptor choice and entry strategy.
Collapse
Affiliation(s)
- Ari Helenius
- ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, Zurich 8093, Switzerland.
| |
Collapse
|
25
|
Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity. J Virol 2017; 91:JVI.00521-17. [PMID: 28592541 DOI: 10.1128/jvi.00521-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses rely on the matrix (M) protein to orchestrate viral assembly and budding at the plasma membrane. Although the mechanistic details remain largely unknown, structural data suggested that M dimers and/or higher-order oligomers may facilitate membrane budding. To gain functional insights, we employed a structure-guided mutagenesis approach to investigate the role of canine distemper virus (CDV) M protein self-assembly in membrane-budding activity. Three six-alanine-block (6A-block) mutants with mutations located at strategic oligomeric positions were initially designed. While the first one includes residues potentially residing at the protomer-protomer interface, the other two display amino acids located within two distal surface-exposed α-helices proposed to be involved in dimer-dimer contacts. We further focused on the core of the dimeric interface by mutating asparagine 138 (N138) to several nonconservative amino acids. Cellular localization combined with dimerization and coimmunopurification assays, performed under various denaturing conditions, revealed that all 6A-block mutants were impaired in self-assembly and cell periphery accumulation. These phenotypes correlated with deficiencies in relocating CDV nucleocapsid proteins to the cell periphery and in virus-like particle (VLP) production. Conversely, all M-N138 mutants remained capable of self-assembly, though to various extents, which correlated with proper accumulation and redistribution of nucleocapsid proteins at the plasma membrane. However, membrane deformation and VLP assays indicated that the M-N138 variants exhibiting the most reduced dimerization propensity were also defective in triggering membrane remodeling and budding, despite proper plasma membrane accumulation. Overall, our data provide mechanistic evidence that the efficiency of CDV M dimerization/oligomerization governs both cell periphery localization and membrane-budding activity.IMPORTANCE Despite the availability of effective vaccines, both measles virus (MeV) and canine distemper virus (CDV) still lead to significant human and animal mortality worldwide. It is assumed that postexposure prophylaxis with specific antiviral compounds may synergize with vaccination campaigns to better control ongoing epidemics. Targeting the matrix (M) protein of MeV/CDV is attractive, because M coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, the lack of basic molecular knowledge of how M orchestrates these functions precludes the rational design of antivirals. Here we combined structure-guided mutagenesis with cellular, biochemical, and functional assays to investigate a potential correlation between CDV M self-assembly and virus-like particle (VLP) formation. Altogether, our findings provide evidence that stable M dimers at the cell periphery are required to productively trigger VLPs. Such stabilized M dimeric units may facilitate further assembly into robust higher-order oligomers necessary to promote plasma membrane-budding activity.
Collapse
|
26
|
Yu R, Zhu R, Gao W, Zhang M, Dong S, Chen B, Yu L, Xie C, Jiang F, Li Z. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus hemagglutinin protein. Vet Microbiol 2017; 208:110-117. [PMID: 28888625 PMCID: PMC7126934 DOI: 10.1016/j.vetmic.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
Hemagglutinin protein (H), one of the two glycoproteins of peste des petits ruminants virus (PPRV), binds to its receptor on the host cell and acts as a major antigen that induces and confers highly protective immunity in the host. In order to delineate the epitopes on H protein, fine epitope mapping and conservation analysis of linear B-cell epitopes (BCEs) on PPRV H has been undertaken using biosynthetic peptides and rabbit anti-PPRV H sera. Thirteen linear BCEs were identified and their corresponding minimal motifs were located on the H protein of PPRV China/Tibet/Geg/07-30. Conservation analysis indicated that two of the 13 minimal motifs were conserved among 52 PPRV strains. Nine of the 13 peptides containing the minimal motifs were recognized using anti-PPRV serum from a goat immunized with PPRV vaccine strain Nigeria 75/1. Identified epitopes and their motifs improve our understanding of the antigenic characteristics of PPRV H and provide a basis for the development of epitope-based diagnostic assays and multiple epitopes vaccine.
Collapse
Affiliation(s)
- Ruisong Yu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Rui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weixiang Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Bingqing Chen
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Li Yu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Chunfang Xie
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Fengying Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China.
| |
Collapse
|
27
|
Dutta P, Siddiqui A, Botlani M, Varma S. Stimulation of Nipah Fusion: Small Intradomain Changes Trigger Extensive Interdomain Rearrangements. Biophys J 2017; 111:1621-1630. [PMID: 27760350 DOI: 10.1016/j.bpj.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Nipah is an emerging paramyxovirus that is of serious concern to human health. It invades host cells using two of its membrane proteins-G and F. G binds to host ephrins and this stimulates G to activate F. Upon activation, F mediates virus-host membrane fusion. Here we focus on mechanisms that underlie the stimulation of G by ephrins. Experiments show that G interacts with ephrin and F through separate sites located on two different domains, the receptor binding domain (RBD) and the F activation domain (FAD). No models explain this allosteric coupling. In fact, the analogous mechanisms in other paramyxoviruses also remain undetermined. The structural organization of G is such that allosteric coupling must involve at least one of the two interfaces-the RBD-FAD interface and/or the RBD-RBD interface. Here we examine using molecular dynamics the effect of ephrin binding on the RBD-RBD interface. We find that despite inducing small changes in individual RBDs, ephrin reorients the RBD-RBD interface extensively, and in a manner that will enhance solvent exposure of the FAD. While this finding supports a proposed model of G stimulation, we also find from additional simulations that ephrin induces a similar RBD-RBD reorientation in a stimulation-deficient G mutant, V209 VG → AAA. Together, our simulations suggest that while inter-RBD reorientation may be important, it is not, by itself, a sufficient condition for G stimulation. Additionally, we find that the mutation affects the conformational ensemble of RBD globally, including the RBD-FAD interface, suggesting the latter's role in G stimulation. Because ephrin induces small changes in individual RBDs, a proper analysis of conformational ensembles required that they are compared directly-we employ a method we developed recently, which we now release at SimTK, and show that it also performs excellently for non-Gaussian distributions.
Collapse
Affiliation(s)
- Priyanka Dutta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida
| | - Ahnaf Siddiqui
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida
| | - Mohsen Botlani
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida.
| |
Collapse
|
28
|
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J Virol 2017; 91:JVI.02255-16. [PMID: 28100610 PMCID: PMC5355598 DOI: 10.1128/jvi.02255-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Collapse
|
29
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
30
|
Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3. J Virol 2016; 90:11145-11156. [PMID: 27707917 DOI: 10.1128/jvi.01551-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. IMPORTANCE The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3.
Collapse
|
31
|
Lin LT, Richardson CD. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016; 8:v8090250. [PMID: 27657109 PMCID: PMC5035964 DOI: 10.3390/v8090250] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles “blind” to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
32
|
Shirogane Y, Watanabe S, Yanagi Y. Cooperative Interaction Within RNA Virus Mutant Spectra. Curr Top Microbiol Immunol 2016; 392:219-29. [PMID: 26162566 DOI: 10.1007/82_2015_461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA viruses usually consist of mutant spectra because of high error rates of viral RNA polymerases. Growth competition occurs among different viral variants, and the fittest clones predominate under given conditions. Individual variants, however, may not be entirely independent of each other, and internal interactions within mutant spectra can occur. Examples of cooperative and interfering interactions that exert enhancing and suppressing effects on replication of the wild-type virus, respectively, have been described, but their underlying mechanisms have not been well defined. It was recently found that the cooperation between wild-type and variant measles virus genomes produces a new phenotype through the heterooligomer formation of a viral protein. This observation provides a molecular mechanism underlying cooperative interactions within mutant spectra. Careful attention to individual sequences, in addition to consensus sequences, may disclose further examples of internal interactions within mutant spectra.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shumpei Watanabe
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
33
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
34
|
Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM. J Virol 2015; 90:1622-37. [PMID: 26608324 DOI: 10.1128/jvi.02405-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces ("front" and "back"). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. IMPORTANCE A complete understanding of the measles virus and canine distemper virus (CDV) cell entry molecular framework is still lacking, thus impeding the rational design of antivirals. Both viruses share many biological features that partially rely on the use of analogous Ig-like host cell receptors, namely, SLAM and nectin 4, for entering immune and epithelial cells, respectively. Here, we provide evidence that the mode of binding between the membrane-distal V domain of SLAM and the attachment protein (H) of morbilliviruses is very likely conserved. Moreover, although structural information revealed two discrete conformational states of H, one of the structures displayed two H-SLAM binding interfaces ("front" and "back"). Our data not only spotlight the front H-binding site of SLAM as the main determinant of membrane fusion promotion but suggest that the triggering efficiency of the viral entry machinery may rely on a local conformational change within the front H-SLAM interactive site rather than the binding affinity.
Collapse
|
35
|
Respiratory Syncytial Virus Attachment Glycoprotein Contribution to Infection Depends on the Specific Fusion Protein. J Virol 2015; 90:245-53. [PMID: 26468535 DOI: 10.1128/jvi.02140-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/04/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is an important pathogen causing acute lower respiratory tract disease in children. The RSV attachment glycoprotein (G) is not required for infection, as G-null RSV replicates efficiently in several cell lines. Our laboratory previously reported that the viral fusion (F) protein is a determinant of strain-dependent pathogenesis. Here, we hypothesized that virus dependence on G is determined by the strain specificity of F. We generated recombinant viruses expressing G and F, or null for G, from the laboratory A2 strain (Katushka RSV-A2GA2F [kRSV-A2GA2F] and kRSV-GstopA2F) or the clinical isolate A2001/2-20 (kRSV-2-20G2-20F and kRSV-Gstop2-20F). We quantified the virus cell binding, entry kinetics, infectivity, and growth kinetics of these four recombinant viruses in vitro. RSV expressing the 2-20 G protein exhibited the greatest binding activity. Compared to the parental viruses expressing G and F, removal of 2-20 G had more deleterious effects on binding, entry, infectivity, and growth than removal of A2 G. Overall, RSV expressing 2-20 F had a high dependence on G for binding, entry, and infection. IMPORTANCE RSV is the leading cause of childhood acute respiratory disease requiring hospitalization. As with other paramyxoviruses, two major RSV surface viral glycoproteins, the G attachment protein and the F fusion protein, mediate virus binding and subsequent membrane fusion, respectively. Previous work on the RSV A2 prototypical strain demonstrated that the G protein is functionally dispensable for in vitro replication. This is in contrast to other paramyxoviruses that require attachment protein function as a prerequisite for fusion. We reevaluated this requirement for RSV using G and F proteins from clinical isolate 2-20. Compared to the laboratory A2 strain, the G protein from 2-20 had greater contributions to virus binding, entry, infectivity, and in vitro growth kinetics. Thus, the clinical isolate 2-20 F protein function depended more on its G protein, suggesting that RSV has a higher dependence on G than previously thought.
Collapse
|
36
|
Stobart CC, Moore ML. Development of next-generation respiratory virus vaccines through targeted modifications to viral immunomodulatory genes. Expert Rev Vaccines 2015; 14:1563-72. [PMID: 26434947 DOI: 10.1586/14760584.2015.1095096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus.
Collapse
Affiliation(s)
- Christopher C Stobart
- a 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,b 2 Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Martin L Moore
- a 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,b 2 Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Widjaja I, Rigter A, Jacobino S, van Kuppeveld FJM, Leenhouts K, Palomo C, Melero JA, Leusen JHW, Haijema BJ, Rottier PJM, de Haan CAM. Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-Like Characteristics. PLoS One 2015; 10:e0130829. [PMID: 26107504 PMCID: PMC4481108 DOI: 10.1371/journal.pone.0130829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/25/2015] [Indexed: 11/30/2022] Open
Abstract
The respiratory syncytial virus (RSV) fusion protein F is considered an attractive vaccine candidate especially in its prefusion conformation. We studied whether recombinant soluble RSV F proteins could be stabilized in a prefusion-like conformation by mutation of heptad repeat B (HRB). The results show that soluble, trimeric, non-cleaved RSV F protein, produced by expression of the furin cleavage site-mutated F ectodomain extended with a GCN4 trimerization sequence, is efficiently recognized by pre- as well as postfusion-specific antibodies. In contrast, a similar F protein completely lacking HRB displayed high reactivity with prefusion-specific antibodies recognizing antigenic site Ø, but did not expose postfusion-specific antigenic site I, in agreement with this protein maintaining a prefusion-like conformation. These features were dependent on the presence of the GCN4 trimerization domain. Absence of cleavage also contributed to binding of prefusion-specific antibodies. Similar antibody reactivity profiles were observed when the prefusion form of F was stabilized by the introduction of cysteine pairs in HRB. To study whether the inability to form the 6HB was responsible for the prefusion-like antibody reactivity profile, alanine mutations were introduced in HRB. Although introduction of alanine residues in HRB inhibited the formation of the 6HB, the exposure of postfusion-specific antigenic site I was not prevented. In conclusion, proteins that are not able to form the 6HB, due to mutation of HRB, may still display postfusion-specific antigenic site I. Replacement of HRB by the GCN4 trimerization domain in a non-cleaved soluble F protein resulted, however, in a protein with prefusion-like characteristics, suggesting that this HRB-lacking protein may represent a potential prefusion F protein subunit vaccine candidate.
Collapse
Affiliation(s)
- Ivy Widjaja
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3894 CL, Utrecht, The Netherlands
- Mucosis B.V., Meditech Center, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Alan Rigter
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3894 CL, Utrecht, The Netherlands
- Mucosis B.V., Meditech Center, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Shamir Jacobino
- Department of Immunology, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3894 CL, Utrecht, The Netherlands
| | - Kees Leenhouts
- Mucosis B.V., Meditech Center, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Concepción Palomo
- Centro Nacional de Microbiología and CIBERES, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Jose A. Melero
- Centro Nacional de Microbiología and CIBERES, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Jeanette H. W. Leusen
- Department of Immunology, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Bert Jan Haijema
- Mucosis B.V., Meditech Center, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Peter J. M. Rottier
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3894 CL, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3894 CL, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Ader-Ebert N, Khosravi M, Herren M, Avila M, Alves L, Bringolf F, Örvell C, Langedijk JP, Zurbriggen A, Plemper RK, Plattet P. Sequential conformational changes in the morbillivirus attachment protein initiate the membrane fusion process. PLoS Pathog 2015; 11:e1004880. [PMID: 25946112 PMCID: PMC4422687 DOI: 10.1371/journal.ppat.1004880] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 "spacer" section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced "head-stalk" rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal "spacer" domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This "head-to-spacer" interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk's bioactivity that may prematurely activate F. Receptor-contact disrupts the "head-to-spacer" interaction, which subsequently "unlocks" the stalk, allowing it to rearrange and trigger F. Overall, our study reveals essential mechanistic requirements governing the activation of the morbillivirus membrane fusion cascade and spotlights the H-stalk "spacer" microdomain as a possible drug target for antiviral therapy.
Collapse
Affiliation(s)
- Nadine Ader-Ebert
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mojtaba Khosravi
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Herren
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mislay Avila
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lisa Alves
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Fanny Bringolf
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claes Örvell
- Division of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Andreas Zurbriggen
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Philippe Plattet
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
39
|
SLAM- and nectin-4-independent noncytolytic spread of canine distemper virus in astrocytes. J Virol 2015; 89:5724-33. [PMID: 25787275 DOI: 10.1128/jvi.00004-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. IMPORTANCE While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions.
Collapse
|
40
|
Electron tomography imaging of surface glycoproteins on human parainfluenza virus 3: association of receptor binding and fusion proteins before receptor engagement. mBio 2015; 6:e02393-14. [PMID: 25691596 PMCID: PMC4337575 DOI: 10.1128/mbio.02393-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a “heads-down” configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended “heads-up” form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN’s globular head does HN transmit its activating signal to F. Human parainfluenza virus 3 (HPIV3) is an enveloped, ssRNA virus that can cause serious respiratory illness, especially in children. HPIV3, like most other paramyxoviruses, uses two specialized proteins to mediate cell entry: the fusion protein (F) and the receptor binding protein, hemagglutinin-neuraminidase (HN). F becomes activated to mediate fusion during entry when it is triggered by a signal from HN. Here we used electron tomography to reconstruct the 3-dimensional ultrastructure of HPIV3. From these structures, we could discern the distribution and, in some cases, conformation of HN and F proteins, which provided an understanding of their interrelationship on virions. HN is found in arrays alone in one conformation and interspersed with prefusion F trimers in another. The data support a model of paramyxovirus membrane fusion in which HN associates with F before receptor engagement, and receptor engagement by the globular head of HN switches the HN-F interaction into one of fusion activation.
Collapse
|
41
|
Abstract
UNLABELLED Paramyxoviruses, including the human pathogen measles virus (MV), enter host cells by fusing their viral envelope with the target cell membrane. This fusion process is driven by the concerted actions of the two viral envelope glycoproteins, the receptor binding protein (hemagglutinin [H]) and the fusion (F) protein. H attaches to specific proteinaceous receptors on host cells; once the receptor engages, H activates F to directly mediate lipid bilayer fusion during entry. In a recent MV outbreak in South Africa, several HIV-positive people died of MV central nervous system (CNS) infection. We analyzed the virus sequences from these patients and found that specific intrahost evolution of the F protein had occurred and resulted in viruses that are "CNS adapted." A mutation in F of the CNS-adapted virus (a leucine-to-tryptophan change present at position 454) allows it to promote fusion with less dependence on engagement of H by the two known wild-type (wt) MV cellular receptors. This F protein is activated independently of H or the receptor and has reduced thermal stability and increased fusion activity compared to those of the corresponding wt F. These functional effects are the result of the single L454W mutation in F. We hypothesize that in the absence of effective cellular immunity, such as HIV infection, MV variants bearing altered fusion machinery that enabled efficient spread in the CNS underwent positive selection. IMPORTANCE Measles virus has become a concern in the United States and Europe due to recent outbreaks and continues to be a significant global problem. While live immunization is available, there are no effective therapies or prophylactics to combat measles infection in unprotected people. Additionally, vaccination does not adequately protect immunocompromised people, who are vulnerable to the more severe CNS manifestations of disease. We found that strains isolated from patients with measles virus infection of the CNS have fusion properties different from those of strains previously isolated from patients without CNS involvement. Specifically, the viral entry machinery is more active and the virus can spread, even in the absence of H. Our findings are consistent with an intrahost evolution of the fusion machinery that leads to neuropathogenic MV variants.
Collapse
|
42
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
43
|
Mateo M, Navaratnarajah CK, Willenbring RC, Maroun JW, Iankov I, Lopez M, Sinn PL, Cattaneo R. Different roles of the three loops forming the adhesive interface of nectin-4 in measles virus binding and cell entry, nectin-4 homodimerization, and heterodimerization with nectin-1. J Virol 2014; 88:14161-71. [PMID: 25275122 PMCID: PMC4249131 DOI: 10.1128/jvi.02379-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Many viruses utilize cell adhesion molecules of the immunoglobulin superfamily as receptors. In particular, viruses of different classes exploit nectins. The large DNA viruses, herpes simplex and pseudorabies viruses, use ubiquitous nectins 1 and 2. The negative-strand RNA virus measles virus (MeV) uses tissue-specific nectin-4, and the positive-strand RNA virus poliovirus uses nectin-like 5 (necl-5), also known as poliovirus receptor. These viruses contact the BC, C'C", and FG loops on the upper tip of their receptor's most membrane-distal domain. This location corresponds to the newly defined canonical adhesive interface of nectins, but how viruses utilize this interface has remained unclear. Here we show that the same key residues in the BC and FG loops of nectin-4 govern binding to the MeV attachment protein hemagglutinin (H) and cell entry, nectin-4 homodimerization, and heterodimerization with nectin-1. On the other hand, residues in the C'C" loop necessary for homo- and heterotypic interactions are dispensable for MeV-induced fusion and cell entry. Remarkably, the C'C" loop governs dissociation of the nectin-4 and H ectodomains. We provide formal proof that H can interfere with the formation of stable nectin-1/nectin-4 heterodimers. Finally, while developing an alternative model to study MeV spread, we observed that polarized primary pig airway epithelial sheets cannot be infected. We show that a single amino acid variant in the BC loop of pig nectin-4 fully accounts for restricted MeV entry. Thus, the three loops forming the adhesive interface of nectin-4 have different roles in supporting MeV H association and dissociation and MeV-induced fusion. IMPORTANCE Different viruses utilize nectins as receptors. Nectins are immunoglobulin superfamily glycoproteins that mediate cell-cell adhesion in vertebrate tissues. They interact through an adhesive interface located at the top of their membrane-distal domain. How viruses utilize the three loops forming this interface has remained unclear. We demonstrate that while nectin-nectin interactions require residues in all three loops, the association of nectin-4 with the measles virus hemagglutinin requires only the BC and FG loops. However, we discovered that residues in the C'C" loop modulate the dissociation of nectin-4 from the viral hemagglutinin. Analogous mechanisms may support cell entry of other viruses that utilize nectins or other cell adhesion molecules of the immunoglobulin superfamily as receptors.
Collapse
Affiliation(s)
- Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robin C Willenbring
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Virology and Gene Therapy track, Mayo Graduate School, Rochester, Minnesota, USA
| | - Justin W Maroun
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Virology and Gene Therapy track, Mayo Graduate School, Rochester, Minnesota, USA
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marc Lopez
- INSERM, UMR1068/CRCM, Institut Paoli-Calmettes and University of Aix-Marseille, Marseille, France
| | - Patrick L Sinn
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Virology and Gene Therapy track, Mayo Graduate School, Rochester, Minnesota, USA
| |
Collapse
|
44
|
Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J Virol 2014; 89:1838-50. [PMID: 25428863 DOI: 10.1128/jvi.02277-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Membrane fusion is essential for paramyxovirus entry into target cells and for the cell-cell fusion (syncytia) that results from many paramyxoviral infections. The concerted efforts of two membrane-integral viral proteins, the attachment (HN, H, or G) and fusion (F) glycoproteins, mediate membrane fusion. The emergent Nipah virus (NiV) is a highly pathogenic and deadly zoonotic paramyxovirus. We recently reported that upon cell receptor ephrinB2 or ephrinB3 binding, at least two conformational changes occur in the NiV-G head, followed by one in the NiV-G stalk, that subsequently result in F triggering and F execution of membrane fusion. However, the domains and residues in NiV-G that trigger F and the specific events that link receptor binding to F triggering are unknown. In the present study, we identified a NiV-G stalk C-terminal region (amino acids 159 to 163) that is important for multiple G functions, including G tetramerization, conformational integrity, G-F interactions, receptor-induced conformational changes in G, and F triggering. On the basis of these results, we propose that this NiV-G region serves as an important structural and functional linker between the NiV-G head and the rest of the stalk and is critical in propagating the F-triggering signal via specific conformational changes that open a concealed F-triggering domain(s) in the G stalk. These findings broaden our understanding of the mechanism(s) of receptor-induced paramyxovirus F triggering during viral entry and cell-cell fusion. IMPORTANCE The emergent deadly viruses Nipah virus (NiV) and Hendra virus belong to the Henipavirus genus in the Paramyxoviridae family. NiV infections target endothelial cells and neurons and, in humans, result in 40 to 75% mortality rates. The broad tropism of the henipaviruses and the unavailability of therapeutics threaten the health of humans and livestock. Viral entry into host cells is the first step of henipavirus infections, which ultimately cause syncytium formation. After attaching to the host cell receptor, henipaviruses enter the target cell via direct viral-cell membrane fusion mediated by two membrane glycoproteins: the attachment protein (G) and the fusion protein (F). In this study, we identified and characterized a region in the NiV-G stalk C-terminal domain that links receptor binding to fusion triggering via several important glycoprotein functions. These findings advance our understanding of the membrane fusion-triggering mechanism(s) of the henipaviruses and the paramyxoviruses.
Collapse
|
45
|
Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head. J Virol 2014; 89:1445-51. [PMID: 25355896 DOI: 10.1128/jvi.01828-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways.
Collapse
|
46
|
Takahashi T, Takano M, Agarikuchi T, Kurebayashi Y, Minami A, Otsubo T, Ikeda K, Suzuki T. A novel method for detection of Newcastle disease virus with a fluorescent sialidase substrate. J Virol Methods 2014; 209:136-42. [PMID: 25241143 DOI: 10.1016/j.jviromet.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022]
Abstract
Newcastle disease virus (NDV), belonging to the family Paramixoviridae, causes respiratory and neuronal symptoms in almost all birds. NDV has haemagglutinin-neuraminidase (HN) glycoprotein possessing sialidase activity. HN glycoprotein is highly expressed on the surface of NDV-infected cells, resulting in much higher sialidase activity in NDV-infected cells than in non-infected cells. It was reported that mouse and human cancer cells up-regulating sialidase expression were histochemically stained with a fluorescent sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac), which deposits water-insoluble fluorescent compound BTP3 on locations of sialidase activity. By using the BTP3-Neu5Ac assay, we showed that NDV-infected cells and HN gene-expressing cells could be simply detected at room temperature after only 5min. Infection of the cells with the virus resulted in apparent green fluorescence, which disappeared with addition of a sialidase inhibitor. Cells that were stained in the BTP3-Neu5Ac assay were immunostained with an anti-NDV antibody. Moreover, BTP3-Neu5Ac staining was applied to a virus overlay binding assay with NDV particles. NDV-bound protein bands on guinea pig red blood cells were easily and rapidly detected by the BTP3-Neu5Ac assay after Western blotting. BTP3-Neu5Ac offers an easy and rapid protocol for fluorescent staining of NDV and virus-infected cells without antibodies.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Maiko Takano
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Takashi Agarikuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 7370112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 7370112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan.
| |
Collapse
|
47
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
48
|
Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses 2014; 6:3019-54. [PMID: 25105277 PMCID: PMC4147685 DOI: 10.3390/v6083019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.
Collapse
|
49
|
Takano M, Takahashi T, Agarikuchi T, Kurebayashi Y, Minami A, Otsubo T, Ikeda K, Kanazawa H, Suzuki T. Histochemical fluorescent staining of Sendai virus-infected cells with a novel sialidase substrate. Virology 2014; 464-465:206-212. [PMID: 25090482 DOI: 10.1016/j.virol.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/22/2014] [Accepted: 04/03/2014] [Indexed: 12/18/2022]
Abstract
Sialidases, enzymes that remove terminal sialic acid residues, are pivotal in various biological processes such as malignancy and infection with pathogens. For histochemical staining of sialidase activity, we have developed a new synthetic sialidase substrate, sialic acid-conjugated fluorescent benzothiazolylphenol derivative (BTP3-Neu5Ac), for rapid, sensitive, and specific fluorescent staining of sialidase activity. Here, we showed the usefulness of BTP3-Neu5Ac for histochemical fluorescent staining of cells infected with Sendai virus (SV), which possesses sialidase activity. BTP3-Neu5Ac also visualised SV-infected regions of lung sections from SV-infected mice. We succeeded in histochemical fluorescent staining of SV both in vitro and in vivo. SV has been utilised in many virological and biotechnological studies such as developments of an oncolytic virus, a gene therapy vector, and a vaccine candidate. BTP3-Neu5Ac should contribute to rapid progress of such studies and researches on viral sialidase.
Collapse
Affiliation(s)
- Maiko Takano
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Takashi Agarikuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 7370112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 7370112, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 4228526, Japan.
| |
Collapse
|
50
|
Abstract
Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellular region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these findings for the modulation of immune responses by G.
Collapse
|