1
|
Niault T, Talavera A, Le Cam E, Baconnais S, Skovgaard O, Fournes F, Wagner L, Tamman H, Thompson A, Echemendia-Blanco D, Guzzi N, Garcia-Pino A, Mazel D, Val ME. Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae. Nat Commun 2025; 16:485. [PMID: 39779702 PMCID: PMC11711613 DOI: 10.1038/s41467-024-55598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V. cholerae genome across various cell cycle stages. We find that RctB primarily binds to sites inhibiting replication initiation at the Chr2 origin (ori2). This inhibitory effect is counteracted when crtS is replicated on Chr1, causing a shift in RctB binding to sites that activate replication at ori2. Structural analyzes indicate the formation of diverse oligomeric states of RctB, coupled to the allosteric effect of DNA, which determine ori2 accessibility. We propose a synchronization model where, upon replication, crtS locally destabilizes the RctB inhibition complex, releasing the Chr2 replication origin.
Collapse
Affiliation(s)
- Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Ole Skovgaard
- Department of Science and Environment, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Florian Fournes
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Léa Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Andrew Thompson
- SOLEIL Synchrotron, Saint-Aubin - BP48, Gif sur Yvette, France
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Noa Guzzi
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WEL Research Institute, Wavre, Belgium.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| |
Collapse
|
2
|
Doan A, Chatterjee S, Kothapalli R, Khan Z, Sen S, Kedei N, Jha JK, Chattoraj DK, Ramachandran R. The replication enhancer crtS depends on transcription factor Lrp for modulating binding of initiator RctB to ori2 of Vibrio cholerae. Nucleic Acids Res 2024; 52:708-723. [PMID: 38000366 PMCID: PMC10810183 DOI: 10.1093/nar/gkad1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.
Collapse
Affiliation(s)
- Alexander Doan
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zaki Khan
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaanit Sen
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Revathy Ramachandran
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- College of Medicine, Mohammed Bin Rashid University, Dubai, UAE
| |
Collapse
|
3
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Kothapalli R, Ghirlando R, Khan ZA, Chatterjee S, Kedei N, Chattoraj D. The dimerization interface of initiator RctB governs chaperone and enhancer dependence of Vibrio cholerae chromosome 2 replication. Nucleic Acids Res 2022; 50:4529-4544. [PMID: 35390166 PMCID: PMC9071482 DOI: 10.1093/nar/gkac210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.
Collapse
Affiliation(s)
- Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Zaki Ali Khan
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Fournes F, Niault T, Czarnecki J, Tissier-Visconti A, Mazel D, Val ME. The coordinated replication of Vibrio cholerae's two chromosomes required the acquisition of a unique domain by the RctB initiator. Nucleic Acids Res 2021; 49:11119-11133. [PMID: 34643717 PMCID: PMC8565311 DOI: 10.1093/nar/gkab903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Vibrio cholerae, the pathogenic bacterium that causes cholera, has two chromosomes (Chr1, Chr2) that replicate in a well-orchestrated sequence. Chr2 initiation is triggered only after the replication of the crtS site on Chr1. The initiator of Chr2 replication, RctB, displays activities corresponding with its different binding sites: initiator at the iteron sites, repressor at the 39m sites, and trigger at the crtS site. The mechanism by which RctB relays the signal to initiate Chr2 replication from crtS is not well-understood. In this study, we provide new insights into how Chr2 replication initiation is regulated by crtS via RctB. We show that crtS (on Chr1) acts as an anti-inhibitory site by preventing 39m sites (on Chr2) from repressing initiation. The competition between these two sites for RctB binding is explained by the fact that RctB interacts with crtS and 39m via the same DNA-binding surface. We further show that the extreme C-terminal tail of RctB, essential for RctB self-interaction, is crucial for the control exerted by crtS. This subregion of RctB is conserved in all Vibrio, but absent in other Rep-like initiators. Hence, the coordinated replication of both chromosomes likely results from the acquisition of this unique domain by RctB.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Binding, Competitive
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- DNA Replication
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Replication Origin
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Vibrio cholerae/genetics
- Vibrio cholerae/metabolism
Collapse
Affiliation(s)
- Florian Fournes
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Theophile Niault
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris 75005, France
| | - Jakub Czarnecki
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
- University of Warsaw, Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Warsaw 02-096, Poland
| | - Alvise Tissier-Visconti
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Marie-Eve Val
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| |
Collapse
|
6
|
Mayer MP. The Hsp70-Chaperone Machines in Bacteria. Front Mol Biosci 2021; 8:694012. [PMID: 34164436 PMCID: PMC8215388 DOI: 10.3389/fmolb.2021.694012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
The ATP-dependent Hsp70s are evolutionary conserved molecular chaperones that constitute central hubs of the cellular protein quality surveillance network. None of the other main chaperone families (Tig, GroELS, HtpG, IbpA/B, ClpB) have been assigned with a comparable range of functions. Through a multitude of functions Hsp70s are involved in many cellular control circuits for maintaining protein homeostasis and have been recognized as key factors for cell survival. Three mechanistic properties of Hsp70s are the basis for their high versatility. First, Hsp70s bind to short degenerate sequence motifs within their client proteins. Second, Hsp70 chaperones switch in a nucleotide-controlled manner between a state of low affinity for client proteins and a state of high affinity for clients. Third, Hsp70s are targeted to their clients by a large number of cochaperones of the J-domain protein (JDP) family and the lifetime of the Hsp70-client complex is regulated by nucleotide exchange factors (NEF). In this review I will discuss advances in the understanding of the molecular mechanism of the Hsp70 chaperone machinery focusing mostly on the bacterial Hsp70 DnaK and will compare the two other prokaryotic Hsp70s HscA and HscC with DnaK.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
7
|
Chatterjee S, Jha JK, Ciaccia P, Venkova T, Chattoraj DK. Interactions of replication initiator RctB with single- and double-stranded DNA in origin opening of Vibrio cholerae chromosome 2. Nucleic Acids Res 2020; 48:11016-11029. [PMID: 33035310 DOI: 10.1093/nar/gkaa826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Studies of bacterial chromosomes and plasmids indicate that their replication initiator proteins bind to origins of replication at many double-stranded sites and also at AT-rich regions where single-stranded DNA is exposed during origin opening. Single-strand binding apparently promotes origin opening by stabilizing an open structure, but how the initiator participates in this process and the contributions of the several binding sites remain unclear. Here, we show that the initiator protein of Vibrio cholerae specific to chromosome 2 (Chr2) also has single-strand binding activity in the AT-rich region of its origin. Binding is strand specific, depends on repeats of the sequence 5'ATCA and is greatly stabilized in vitro by specific double-stranded sites of the origin. The stability derives from the formation of ternary complexes of the initiator with the single- and double-stranded sites. An IHF site lies between these two kinds of sites in the Chr2 origin and an IHF-induced looping out of the intervening DNA mediates their interaction. Simultaneous binding to two kinds of sites in the origin appears to be a common mechanism by which bacterial replication initiators stabilize an open origin.
Collapse
Affiliation(s)
- Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Peter Ciaccia
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Tatiana Venkova
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| |
Collapse
|
8
|
Barriot R, Latour J, Castanié-Cornet MP, Fichant G, Genevaux P. J-Domain Proteins in Bacteria and Their Viruses. J Mol Biol 2020; 432:3771-3789. [DOI: 10.1016/j.jmb.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
|
9
|
de Lemos Martins F, Fournes F, Mazzuoli MV, Mazel D, Val ME. Vibrio cholerae chromosome 2 copy number is controlled by the methylation-independent binding of its monomeric initiator to the chromosome 1 crtS site. Nucleic Acids Res 2018; 46:10145-10156. [PMID: 30184118 PMCID: PMC6212839 DOI: 10.1093/nar/gky790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria contain a primary chromosome and, frequently, either essential secondary chromosomes or dispensable megaplasmids of plasmid origin. Incoming plasmids are often poorly adapted to their hosts and their stabilization requires integration with the host's cellular mechanisms in a process termed domestication. All Vibrio, including pathogenic species, carry a domesticated secondary chromosome (Chr2) where replication is coordinated with that of the primary chromosome (Chr1). Chr2 replication is triggered by the replication of an intergenic sequence (crtS) located on Chr1. Yet, the molecular mechanisms by which crtS replication controls the initiation of Chr2 replication are still largely unknown. In this study, we show that crtS not only regulates the timing of Chr2 initiation but also controls Chr2 copy number. We observed and characterized the direct binding of the Chr2 initiator (RctB) on crtS. RctB binding to crtS is independent of its methylation state. RctB molecules, which naturally form dimers, preferentially bind to crtS as monomers, with DnaK/J protein chaperones shown to stimulate binding of additional RctB monomers on crtS. In this study, we addressed various hypothesis of how replication of crtS could trigger Chr2 replication and provide new insights into its mode of action.
Collapse
Affiliation(s)
- Francisco de Lemos Martins
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Florian Fournes
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Maria-Vittoria Mazzuoli
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Didier Mazel
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| |
Collapse
|
10
|
Ciaccia PN, Ramachandran R, Chattoraj DK. A Requirement for Global Transcription Factor Lrp in Licensing Replication of Vibrio cholerae Chromosome 2. Front Microbiol 2018; 9:2103. [PMID: 30250457 PMCID: PMC6139311 DOI: 10.3389/fmicb.2018.02103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
The human pathogen, Vibrio cholerae, belongs to the 10% of bacteria in which the genome is divided. Each of its two chromosomes, like bacterial chromosomes in general, replicates from a unique origin at fixed times in the cell cycle. Chr1 initiates first, and upon duplication of a site in Chr1, crtS, Chr2 replication initiates. Recent in vivo experiments demonstrate that crtS binds the Chr2-specific initiator RctB and promotes its initiator activity by remodeling it. Compared to the well-defined RctB binding sites in the Chr2 origin, crtS is an order of magnitude longer, suggesting that other factors can bind to it. We developed an in vivo screen to identify additional crtS-binding proteins and identified the global transcription factor, Lrp, as one such protein. Studies in vivo and in vitro indicate that Lrp binds to crtS and facilitates RctB binding to crtS. Chr2 replication is severely defective in the absence of Lrp, indicative of a critical role of the transcription factor in licensing Chr2 replication. Since Lrp responds to stresses such as nutrient limitation, its interaction with RctB presumably sensitizes Chr2 replication to the physiological state of the cell.
Collapse
Affiliation(s)
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
11
|
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate Once Per Cell Cycle: Replication Control of Secondary Chromosomes. Front Microbiol 2018; 9:1833. [PMID: 30131796 PMCID: PMC6090056 DOI: 10.3389/fmicb.2018.01833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.
Collapse
Affiliation(s)
- Florian Fournes
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
12
|
Ramachandran R, Ciaccia PN, Filsuf TA, Jha JK, Chattoraj DK. Chromosome 1 licenses chromosome 2 replication in Vibrio cholerae by doubling the crtS gene dosage. PLoS Genet 2018; 14:e1007426. [PMID: 29795553 PMCID: PMC5991422 DOI: 10.1371/journal.pgen.1007426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Initiation of chromosome replication in bacteria is precisely timed in the cell cycle. Bacteria that harbor multiple chromosomes face the additional challenge of orchestrating replication initiation of different chromosomes. In Vibrio cholerae, the smaller of its two chromosomes, Chr2, initiates replication after Chr1 such that both chromosomes terminate replication synchronously. The delay is due to the dependence of Chr2 initiation on the replication of a site, crtS, on Chr1. The mechanism by which replication of crtS allows Chr2 replication remains unclear. Here, we show that blocking Chr1 replication indeed blocks Chr2 replication, but providing an extra crtS copy in replication-blocked Chr1 permitted Chr2 replication. This demonstrates that unreplicated crtS copies have significant activity, and suggests that a role of replication is to double the copy number of the site that sufficiently increases its activity for licensing Chr2 replication. We further show that crtS activity promotes the Chr2-specific initiator function and that this activity is required in every cell cycle, as would be expected of a cell-cycle regulator. This study reveals how increase of gene dosage through replication can be utilized in a critical regulatory switch.
Collapse
Affiliation(s)
- Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter N. Ciaccia
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tara A. Filsuf
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jyoti K. Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Myka KK, McGlynn P, Ferguson GP. Insights into the initiation of chromosome II replication of the pressure-loving deep-sea bacterium Photobacterium profundum SS9. MICROBIOLOGY-SGM 2018; 164:920-933. [PMID: 29757128 DOI: 10.1099/mic.0.000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How DNA metabolism is adapted to survival of organisms such as the bacterium Photobacterium profundum SS9 at high pressure is unknown. Previously, a high pressure-sensitive P. profundum SS9 transposon mutant (FL31) was identified, with an insertion in a putative rctB gene. The Vibrio cholerae RctB protein is essential for replication initiation at the origin of chromosome II, oriCII. Using a plasmid-based system in E. coli we have identified the replication origin of chromosome II from P. profundum SS9 and have shown that the putative rctB gene, disrupted in FL31, is essential for oriCII function. Moreover, we found that a region corresponding to the V. cholerae oriCII incompatibility region (incII) exerts an inhibitory effect on P. profundum oriCII. The truncated rctB gene in FL31 confers insensitivity to incII inhibition, indicating that the C-terminus of RctB is important for the negative regulation of replication. The RctB proteins of V. cholerae and P. profundum are partially interchangeable, but full functionality is achieved only with the cognate origin. Our findings provide the first characterization of the replication origin of chromosome II in a deep-sea bacterium.
Collapse
Affiliation(s)
- Kamila K Myka
- Present address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter McGlynn
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gail P Ferguson
- School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
14
|
Kemter FS, Messerschmidt SJ, Schallopp N, Sobetzko P, Lang E, Bunk B, Spröer C, Teschler JK, Yildiz FH, Overmann J, Waldminghaus T. Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae. PLoS Genet 2018; 14:e1007251. [PMID: 29505558 PMCID: PMC5854411 DOI: 10.1371/journal.pgen.1007251] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation.
Collapse
Affiliation(s)
- Franziska S. Kemter
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sonja J. Messerschmidt
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Elke Lang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Establishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli. Antibiotics (Basel) 2017; 7:antibiotics7010003. [PMID: 29295515 PMCID: PMC5872114 DOI: 10.3390/antibiotics7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022] Open
Abstract
Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bacterium in this context is the human pathogen Vibrio cholerae, with a primary chromosome (Chr1) of 3 M bps, and a secondary one (Chr2) of about 1 M bps. Replication of Chr2 is under control of a unique mechanism, presenting a potential target in the development of V. cholerae-specific antibiotics. A common challenge in such endeavors is whether the effects of candidate chemicals can be focused on specific mechanisms, such as DNA replication. To test the specificity of antimicrobial substances independent of other features of the V. cholerae cell for the replication mechanism of the V. cholerae secondary chromosome, we establish the replication machinery in the heterologous E. coli system. We characterize an E. coli strain in which chromosomal replication is driven by the replication origin of V. cholerae Chr2. Surprisingly, the E. coli ori2 strain was not inhibited by vibrepin, previously found to inhibit ori2-based replication.
Collapse
|