1
|
Letzkus M, Trela C, Mera PE. Three factors ParA, TipN, and DnaA-mediated chromosome replication initiation are contributors of centromere segregation in Caulobacter crescentus. Mol Biol Cell 2024; 35:ar68. [PMID: 38568781 PMCID: PMC11151105 DOI: 10.1091/mbc.e23-12-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The ability of bacteria to maintain chromosomal integrity throughout their life cycle is crucial for survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. Cells with tipN knocked out display subtle segregation defects of the centromere-like region parS. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first confirm that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.
Collapse
Affiliation(s)
- Morgan Letzkus
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Corey Trela
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
2
|
Keller LJ, Nguyen TH, Liu LJ, Hurysz BM, Lakemeyer M, Guerra M, Gelsinger DJ, Chanin R, Ngo N, Lum KM, Faucher F, Ipock P, Niphakis MJ, Bhatt AS, O'Donoghue AJ, Huang KC, Bogyo M. Chemoproteomic identification of a DPP4 homolog in Bacteroides thetaiotaomicron. Nat Chem Biol 2023; 19:1469-1479. [PMID: 37349583 DOI: 10.1038/s41589-023-01357-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.
Collapse
Affiliation(s)
- Laura J Keller
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lawrence J Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Markus Lakemeyer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Matteo Guerra
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemical and Cellular Pharmacology, Genentech, San Francisco, CA, USA
| | - Danielle J Gelsinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rachael Chanin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Divisions of Hematology and Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nhi Ngo
- Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA
| | - Kenneth M Lum
- Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Phillip Ipock
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Divisions of Hematology and Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Quintero-Yanes A, Mayard A, Hallez R. The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus. PLoS Genet 2022; 18:e1010465. [PMID: 36480504 PMCID: PMC9731502 DOI: 10.1371/journal.pgen.1010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 12/13/2022] Open
Abstract
Two-component systems (TCS) are often used by bacteria to rapidly assess and respond to environmental changes. The ChvG/ChvI (ChvGI) TCS conserved in α-proteobacteria is known for regulating expression of genes related to exopolysaccharide production, virulence and growth. The sensor kinase ChvG autophosphorylates upon yet unknown signals and phosphorylates the response regulator ChvI to regulate transcription. Recent studies in Caulobacter crescentus showed that chv mutants are sensitive to vancomycin treatment and fail to grow in synthetic minimal media. In this work, we identified the osmotic imbalance as the main cause of growth impairment in synthetic minimal media. We also determined the ChvI regulon and found that ChvI regulates cell envelope architecture by controlling outer membrane, peptidoglycan assembly/recycling and inner membrane proteins. In addition, we found that ChvI phosphorylation is also activated upon antibiotic treatment with vancomycin. We also challenged chv mutants with other cell envelope related stress and found that treatment with antibiotics targeting transpeptidation of peptidoglycan during cell elongation impairs growth of the mutant. Finally, we observed that the sensor kinase ChvG relocates from a patchy-spotty distribution to distinctive foci after transition from complex to synthetic minimal media. Interestingly, this pattern of (re)location has been described for proteins involved in cell growth control and peptidoglycan synthesis upon osmotic shock. Overall, our data support that the ChvGI TCS is mainly used to monitor and respond to osmotic imbalances and damages in the peptidoglycan layer to maintain cell envelope homeostasis.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
- WELBIO, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
4
|
Williams MA, Bouchier JM, Mason AK, Brown PJB. Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens. PLoS Genet 2022; 18:e1010274. [PMID: 36480495 PMCID: PMC9731437 DOI: 10.1371/journal.pgen.1010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with β-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.
Collapse
Affiliation(s)
- Michelle A. Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Jacob M. Bouchier
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Amara K. Mason
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
5
|
The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus. J Bacteriol 2021; 203:e0019921. [PMID: 34124942 DOI: 10.1128/jb.00199-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-component signaling systems (TCSs) are comprised of a sensory histidine kinase and a response regulator protein. In response to environmental changes, sensor kinases directly phosphorylate their cognate response regulator to affect gene expression. Bacteria typically express multiple TCSs that are insulated from one another and regulate distinct physiological processes. There are examples of cross-regulation between TCSs, but this phenomenon remains relatively unexplored. We have identified regulatory links between the ChvG-ChvI (ChvGI) and NtrY-NtrX (NtrYX) TCSs, which control important and often overlapping processes in alphaproteobacteria, including maintenance of the cell envelope. Deletion of chvG and chvI in Caulobacter crescentus limited growth in defined medium, and a selection for genetic suppressors of this growth phenotype uncovered interactions among chvGI, ntrYX, and ntrZ, which encodes a previously uncharacterized periplasmic protein. Significant overlap in the experimentally defined ChvI and NtrX transcriptional regulons provided support for the observed genetic connections between ntrYX and chvGI. Moreover, we present evidence that the growth defect of strains lacking chvGI is influenced by the phosphorylation state of NtrX and, to some extent, by levels of the TonB-dependent receptor ChvT. Measurements of NtrX phosphorylation in vivo indicated that NtrZ is an upstream regulator of NtrY and that NtrY primarily functions as an NtrX phosphatase. We propose a model in which NtrZ functions in the periplasm to inhibit NtrY phosphatase activity; regulation of phosphorylated NtrX levels by NtrZ and NtrY provides a mechanism to modulate and balance expression of the NtrX and ChvI regulons under different growth conditions. IMPORTANCE TCSs enable bacteria to regulate gene expression in response to physiochemical changes in their environment. The ChvGI and NtrYX TCSs regulate diverse pathways associated with pathogenesis, growth, and cell envelope function in many alphaproteobacteria. We used Caulobacter crescentus as a model to investigate regulatory connections between ChvGI and NtrYX. Our work defined the ChvI transcriptional regulon in C. crescentus and revealed a genetic interaction between ChvGI and NtrYX, whereby modulation of NtrYX signaling affects the survival of cells lacking ChvGI. In addition, we identified NtrZ as a periplasmic inhibitor of NtrY phosphatase activity in vivo. Our work establishes C. crescentus as an excellent model to investigate multilevel regulatory connections between ChvGI and NtrYX in alphaproteobacteria.
Collapse
|
6
|
Fröhlich KS, Velasco Gomariz M. RNA-controlled regulation in Caulobacter crescentus. Curr Opin Microbiol 2021; 60:1-7. [PMID: 33529919 DOI: 10.1016/j.mib.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
In the past decades, Caulobacter crescentus has been extensively studied, mostly regarding its dimorphic, asymmetric life cycle. Its distinct mode of reproduction and the need to optimally adapt to ever-changing environmental conditions require tight coordination of gene regulation. Post-transcriptional regulation through non-coding RNAs and RNA-binding proteins constitutes an important layer of expression control in bacteria, but its principles and mechanisms in Caulobacter have only recently been explored. RNA-binding proteins including the RNA chaperone Hfq and ribonuclease RNase E contribute to the activity of regulatory RNAs. Riboswitches and RNA thermometers govern expression of downstream open reading frames, while the small regulatory RNAs CrfA, ChvR and GsrN instead control targets encoded in trans by direct base-pairing interactions.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Microverse Cluster, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|