1
|
Ruan C, Ramoneda J, Kan A, Rudge TJ, Wang G, Johnson DR. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nat Commun 2024; 15:5397. [PMID: 38926498 PMCID: PMC11208555 DOI: 10.1038/s41467-024-49840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Josep Ramoneda
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Timothy J Rudge
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Siedentop B, Rüegg D, Bonhoeffer S, Chabas H. My host's enemy is my enemy: plasmids carrying CRISPR-Cas as a defence against phages. Proc Biol Sci 2024; 291:20232449. [PMID: 38262608 PMCID: PMC10805597 DOI: 10.1098/rspb.2023.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Bacteria are infected by mobile genetic elements like plasmids and virulent phages, and those infections significantly impact bacterial ecology and evolution. Recent discoveries reveal that some plasmids carry anti-phage immune systems like CRISPR-Cas, suggesting that plasmids may participate in the coevolutionary arms race between virulent phages and bacteria. Intuitively, this seems reasonable as virulent phages kill the plasmid's obligate host. However, the efficiency of CRISPR-Cas systems carried by plasmids can be expected to be lower than those carried by the chromosome due to continuous segregation loss, creating susceptible cells for phage amplification. To evaluate the anti-phage protection efficiency of CRISPR-Cas on plasmids, we develop a stochastic model describing the dynamics of a virulent phage infection against which a conjugative plasmid defends using CRISPR-Cas. We show that CRISPR-Cas on plasmids provides robust protection, except in limited parameter sets. In these cases, high segregation loss favours phage outbreaks by generating a population of defenceless cells on which the phage can evolve and escape CRISPR-Cas immunity. We show that the phage's ability to exploit segregation loss depends strongly on the evolvability of both CRISPR-Cas and the phage itself.
Collapse
Affiliation(s)
- Berit Siedentop
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Dario Rüegg
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Montelongo Hernandez C, Putonti C, Wolfe AJ. Urinary Plasmids Reduce Permissivity to Coliphage Infection. Microbiol Spectr 2023; 11:e0130923. [PMID: 37409956 PMCID: PMC10433841 DOI: 10.1128/spectrum.01309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The microbial community of the urinary tract (urinary microbiota or urobiota) has been associated with human health. Bacteriophages (phages) and plasmids present in the urinary tract, like in other niches, may shape urinary bacterial dynamics. While urinary Escherichia coli strains associated with urinary tract infection (UTI) and their phages have been catalogued for the urobiome, bacterium-plasmid-phage interactions have yet to be explored. In this study, we characterized urinary E. coli plasmids and their ability to decrease permissivity to E. coli phage (coliphage) infection. Putative F plasmids were predicted in 47 of 67 urinary E. coli isolates, and most of these plasmids carried genes that encode toxin-antitoxin (TA) modules, antibiotic resistance, and/or virulence. Urinary E. coli plasmids, from urinary microbiota strains UMB0928 and UMB1284, were conjugated into E. coli K-12 strains. These transconjugants included genes for antibiotic resistance and virulence, and they decreased permissivity to coliphage infection by the laboratory phage P1vir and the urinary phages Greed and Lust. Plasmids in one transconjugant were maintained in E. coli K-12 for up to 10 days in the absence of antibiotic resistance selection; this included the maintenance of the antibiotic resistance phenotype and decreased permissivity to phage. Finally, we discuss how F plasmids present in urinary E. coli strains could play a role in coliphage dynamics and the maintenance of antibiotic resistance in urinary E. coli. IMPORTANCE The urinary tract contains a resident microbial community called the urinary microbiota or urobiota. Evidence exists that it is associated with human health. Bacteriophages (phages) and plasmids present in the urinary tract, like in other niches, may shape urinary bacterial dynamics. Bacterium-plasmid-phage interactions have been studied primarily in laboratory settings and are yet to be thoroughly tested in complex communities. This is especially true of the urinary tract, where the bacterial genetic determinants of phage infection are not well understood. In this study, we characterized urinary E. coli plasmids and their ability to decrease permissivity to E. coli phage (coliphage) infection. Urinary E. coli plasmids, encoding antibiotic resistance and transferred by conjugation into naive laboratory E. coli K-12 strains, decreased permissivity to coliphage infection. We propose a model by which urinary plasmids present in urinary E. coli strains could help to decrease phage infection susceptibility and maintain the antibiotic resistance of urinary E. coli. This has consequences for phage therapy, which could inadvertently select for plasmids that encode antibiotic resistance.
Collapse
Affiliation(s)
- Cesar Montelongo Hernandez
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
4
|
Verweij W, Griswold CK. Spatial structure and benefits to hosts allow plasmids with and without post-segregational killing systems to coexist. Biol Lett 2023; 19:20220376. [PMID: 36855853 PMCID: PMC9975649 DOI: 10.1098/rsbl.2022.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
To persist, a plasmid relies on being passed on to a daughter cell, but this does not always occur. Plasmids with post-segregational killing (PSK) systems kill a daughter cell if the plasmid has not been passed on. By killing the host, it also kills competing plasmids in the same host, something competing plasmids without a similar system cannot do. Accordingly, plasmids with PSK systems can displace other plasmids. In nature, plasmids with and without PSK systems coexist and prior theory has suggested this is expected to be very rare or unstable, such that one or the other type of plasmid eventually takes over. Here, we show that if there is spatial structure and plasmids confer benefits to hosts, coexistence of plasmids occurs broadly. Often plasmids confer benefits (even ones with a PSK system) and bacteria are often spatially structured. So, our results may be generally applicable.
Collapse
Affiliation(s)
- Wilco Verweij
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Cortland K. Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
5
|
Pilosof S. Conceptualizing microbe-plasmid communities as complex adaptive systems. Trends Microbiol 2023:S0966-842X(23)00025-2. [PMID: 36822952 DOI: 10.1016/j.tim.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Plasmids shape microbial communities' diversity, structure, and function. Nevertheless, we lack a mechanistic understanding of how community structure and dynamics emerge from local microbe-plasmid interactions and coevolution. Addressing this gap is challenging because multiple processes operate simultaneously at multiple levels of organization. For example, immunity operates between a plasmid and a cell, but incompatibility mechanisms regulate coexistence between plasmids. Conceptualizing microbe-plasmid communities as complex adaptive systems is a promising approach to overcoming these challenges. I illustrate how agent-based evolutionary modeling, extended by network analysis, can be used to quantify the relative importance of local processes governing community dynamics. These theoretical developments can advance our understanding of plasmid ecology and evolution, especially when combined with empirical data.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
6
|
Bottery MJ. Ecological dynamics of plasmid transfer and persistence in microbial communities. Curr Opin Microbiol 2022; 68:102152. [PMID: 35504055 PMCID: PMC9586876 DOI: 10.1016/j.mib.2022.102152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are a major driver of horizontal gene transfer in prokaryotes, allowing the sharing of ecologically important accessory traits between distantly related bacterial taxa. Within microbial communities, interspecies transfer of conjugative plasmids can rapidly drive the generation genomic innovation and diversification. Recent studies are starting to shed light on how the microbial community context, that is, the bacterial diversity together with interspecies interactions that occur within a community, can alter the dynamics of conjugative plasmid transfer and persistence. Here, I summarise the latest research exploring how community ecology can both facilitate and impose barriers to the spread of conjugative plasmids within complex microbial communities. Ultimately, the fate of plasmids within communities is unlikely to be determined by any one individual host, rather it will depend on the interacting factors imposed by the community in which it is embedded.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
7
|
Abstract
Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus. Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>105 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus. We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems.
Collapse
|
8
|
Inter-species interactions alter antibiotic efficacy in bacterial communities. THE ISME JOURNAL 2022; 16:812-821. [PMID: 34628478 PMCID: PMC8857223 DOI: 10.1038/s41396-021-01130-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
The efficacy of antibiotic treatments targeting polymicrobial communities is not well predicted by conventional in vitro susceptibility testing based on determining minimum inhibitory concentration (MIC) in monocultures. One reason for this is that inter-species interactions can alter the community members' susceptibility to antibiotics. Here we quantify, and identify mechanisms for, community-modulated changes of efficacy for clinically relevant antibiotics against the pathogen Pseudomonas aeruginosa in model cystic fibrosis (CF) lung communities derived from clinical samples. We demonstrate that multi-drug resistant Stenotrophomonas maltophilia can provide high levels of antibiotic protection to otherwise sensitive P. aeruginosa. Exposure protection to imipenem was provided by chromosomally encoded metallo-β-lactamase that detoxified the environment; protection was dependent upon S. maltophilia cell density and was provided by S. maltophilia strains isolated from CF sputum, increasing the MIC of P. aeruginosa by up to 16-fold. In contrast, the presence of S. maltophilia provided no protection against meropenem, another routinely used carbapenem. Mathematical ordinary differential equation modelling shows that the level of exposure protection provided against different carbapenems can be explained by differences in antibiotic efficacy and inactivation rate. Together, these findings reveal that exploitation of pre-occurring antimicrobial resistance, and inter-specific competition, can have large impacts on pathogen antibiotic susceptibility, highlighting the importance of microbial ecology for designing successful antibiotic treatments for multispecies communities.
Collapse
|
9
|
Igler C, Schwyter L, Gehrig D, Wendling CC. Conjugative plasmid transfer is limited by prophages but can be overcome by high conjugation rates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200470. [PMID: 34839704 PMCID: PMC8628080 DOI: 10.1098/rstb.2020.0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling. Using Escherichia coli, prophage λ and the multidrug-resistant plasmid RP4 we find that prophages can substantially limit the spread of conjugative plasmids. This inhibitory effect was strongly dependent on environmental conditions and bacterial genetic background. Our empirically parameterized model reproduced experimental dynamics of cells acquiring either the prophage or the plasmid well but could only reproduce the number of cells acquiring both elements by assuming complex interactions between conjugative plasmids and prophages in sequential infections. Varying phage and plasmid infection parameters over empirically realistic ranges revealed that plasmids can overcome the negative impact of prophages through high conjugation rates. Overall, the presence of prophages introduces an additional death rate for plasmid carriers, the magnitude of which is determined in non-trivial ways by the environment, the phage and the plasmid. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Lukas Schwyter
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Daniel Gehrig
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Carolin Charlotte Wendling
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200471. [PMID: 34839705 PMCID: PMC8628070 DOI: 10.1098/rstb.2020.0471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium-legume symbiosis requires a 'mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Grace E. Wardell
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - Michael F. Hynes
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Peter J. Young
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| |
Collapse
|
11
|
Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol 2021; 30:534-543. [PMID: 34848115 DOI: 10.1016/j.tim.2021.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
The 'plasmid paradox' arises because, although plasmids are common features of bacterial genomes, theoretically they should not exist: rates of conjugation were believed insufficient to allow plasmids to persist by infectious transmission, whereas the costs of plasmid maintenance meant that plasmids should be purged by negative selection regardless of whether they encoded beneficial accessory traits because these traits should eventually be captured by the chromosome, enabling the loss of the redundant plasmid. In the decade since the plasmid paradox was described, new data and theory show that a range of ecological and evolutionary mechanisms operate in bacterial populations and communities to explain the widespread distribution and stable maintenance of plasmids. We conclude, therefore, that multiple solutions to the plasmid paradox are now well understood. The current challenge for the field, however, is to better understand how these solutions operate in natural bacterial communities to explain and predict the distribution of plasmids and the dynamics of the horizontal gene transfer that they mediate in bacterial (pan)genomes.
Collapse
Affiliation(s)
- Michael A Brockhurst
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Ellie Harrison
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
12
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Zwanzig M. The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental research and modeling. Comput Struct Biotechnol J 2020; 19:586-599. [PMID: 33510864 PMCID: PMC7807137 DOI: 10.1016/j.csbj.2020.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many antibiotic resistance genes are associated with plasmids. The ecological success of these mobile genetic elements within microbial communities depends on varying mechanisms to secure their own propagation, not only on environmental selection. Among the most important are the cost of plasmids and their ability to be transferred to new hosts through mechanisms such as conjugation. These are regulated by dynamic control systems of the conjugation machinery and genetic adaptations that plasmid-host pairs can acquire in coevolution. However, in complex communities, these processes and mechanisms are subject to a variety of interactions with other bacterial species and other plasmid types. This article summarizes basic plasmid properties and ecological principles particularly important for understanding the persistence of plasmid-coded antibiotic resistance in aquatic environments. Through selected examples, it further introduces to the features of different types of simulation models such as systems of ordinary differential equations and individual-based models, which are considered to be important tools to understand these complex systems. This ecological perspective aims to improve the way we study and understand the dynamics, diversity and persistence of plasmids and associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Martin Zwanzig
- Faculty of Environmental Sciences, Technische Universität Dresden, Pienner Str. 8, D-01737 Tharandt, Germany
| |
Collapse
|
15
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
16
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure. mBio 2019; 10:e01652-19. [PMID: 31551330 PMCID: PMC6759759 DOI: 10.1128/mbio.01652-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCE Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogen Pseudomonas aeruginosa These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.
Collapse
Affiliation(s)
- Rosanna C T Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Plattner M, Shneider MM, Arbatsky NP, Shashkov AS, Chizhov AO, Nazarov S, Prokhorov NS, Taylor NMI, Buth SA, Gambino M, Gencay YE, Brøndsted L, Kutter EM, Knirel YA, Leiman PG. Structure and Function of the Branched Receptor-Binding Complex of Bacteriophage CBA120. J Mol Biol 2019; 431:3718-3739. [PMID: 31325442 DOI: 10.1016/j.jmb.2019.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages recognize their host cells with the help of tail fiber and tailspike proteins that bind, cleave, or modify certain structures on the cell surface. The spectrum of ligands to which the tail fibers and tailspikes can bind is the primary determinant of the host range. Bacteriophages with multiple tailspike/tail fibers are thought to have a wider host range than their less endowed relatives but the function of these proteins remains poorly understood. Here, we describe the structure, function, and substrate specificity of three tailspike proteins of bacteriophage CBA120-TSP2, TSP3 and TSP4 (orf211 through orf213, respectively). We show that tailspikes TSP2, TSP3 and TSP4 are hydrolases that digest the O157, O77, and O78 Escherichia coli O-antigens, respectively. We demonstrate that recognition of the E. coli O157:H7 host by CBA120 involves binding to and digesting the O157 O-antigen by TSP2. We report the crystal structure of TSP2 in complex with a repeating unit of the O157 O-antigen. We demonstrate that according to the specificity of its tailspikes TSP2, TSP3, and TSP4, CBA120 can infect E. coli O157, O77, and O78, respectively. We also show that CBA120 infects Salmonella enterica serovar Minnesota, and this host range expansion is likely due to the function of TSP1. Finally, we describe the assembly pathway and the architecture of the TSP1-TSP2-TSP3-TSP4 branched complex in CBA120 and its related ViI-like phages.
Collapse
Affiliation(s)
- Michel Plattner
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA; École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Mikhail M Shneider
- Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Nazarov
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sergey A Buth
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | | | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA.
| |
Collapse
|
18
|
Roberts PA, Huebinger RM, Keen E, Krachler AM, Jabbari S. Mathematical model predicts anti-adhesion-antibiotic-debridement combination therapies can clear an antibiotic resistant infection. PLoS Comput Biol 2019; 15:e1007211. [PMID: 31335907 PMCID: PMC6677339 DOI: 10.1371/journal.pcbi.1007211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/02/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
As antimicrobial resistance increases, it is crucial to develop new treatment strategies to counter the emerging threat. In this paper, we consider combination therapies involving conventional antibiotics and debridement, coupled with a novel anti-adhesion therapy, and their use in the treatment of antimicrobial resistant burn wound infections. Our models predict that anti-adhesion-antibiotic-debridement combination therapies can eliminate a bacterial infection in cases where each treatment in isolation would fail. Antibiotics are assumed to have a bactericidal mode of action, killing bacteria, while debridement involves physically cleaning a wound (e.g. with a cloth); removing free bacteria. Anti-adhesion therapy can take a number of forms. Here we consider adhesion inhibitors consisting of polystyrene microbeads chemically coupled to a protein known as multivalent adhesion molecule 7, an adhesin which mediates the initial stages of attachment of many bacterial species to host cells. Adhesion inhibitors competitively inhibit bacteria from binding to host cells, thus rendering them susceptible to removal through debridement. An ordinary differential equation model is developed and the antibiotic-related parameters are fitted against new in vitro data gathered for the present study. The model is used to predict treatment outcomes and to suggest optimal treatment strategies. Our model predicts that anti-adhesion and antibiotic therapies will combine synergistically, producing a combined effect which is often greater than the sum of their individual effects, and that anti-adhesion-antibiotic-debridement combination therapy will be more effective than any of the treatment strategies used in isolation. Further, the use of inhibitors significantly reduces the minimum dose of antibiotics required to eliminate an infection, reducing the chances that bacteria will develop increased resistance. Lastly, we use our model to suggest treatment regimens capable of eliminating bacterial infections within clinically relevant timescales.
Collapse
Affiliation(s)
- Paul A. Roberts
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ryan M. Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Emma Keen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne-Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
19
|
Zhao Y, Ye M, Zhang X, Sun M, Zhang Z, Chao H, Huang D, Wan J, Zhang S, Jiang X, Sun D, Yuan Y, Hu F. Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:918-925. [PMID: 30677957 DOI: 10.1016/j.scitotenv.2018.11.457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 05/21/2023]
Abstract
Antibiotic resistant pathogenic bacteria (ARPB) residual in soil-plant system has caused serious threat against public health and environmental safety. Being capable of targeted lysing host bacteria, phage therapy has been proposed as promising method to control the ARPB contamination in environments. In this study, microcosm trials were performed to investigate the impact of various phage treatments on the dissipation of tetracycline resistant Escherichia coli K-12 and chloramphenicol resistant Pseudomonas aeruginosa PAO1 in soil-carrot system. After 70 days of incubation, all the four phage treatments significantly decreased the abundance of the pathogenic bacteria and the corresponding antibiotic resistance genes (tetW and cmlA) in the soil-carrot system (p < 0.05), following the order of the cocktail phage treatment (phages ΦYSZ1 + ΦYSZ2) > the polyvalent phage (ΦYSZ3 phage with broad host range) treatment > host-specific phage (ΦYSZ2 and ΦYSZ1) treatments > the control. In addition, the polyvalent phage treatment also exerted positive impact on the diversity and stability of the bacterial community in the system, suggesting that this is an environmentally friendly technique with broad applications in the biocontrol of ARPB/ARGs in soil-plant system.
Collapse
Affiliation(s)
- Yuanchao Zhao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinting Zhang
- School of Earth Sciences and Engineering, Hehai University, Nanjing 211106,China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dawei Sun
- Beijing GeoEnviron Engineering & Technology, lnc., Beijing 100095, China
| | - Yilin Yuan
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Mobile Compensatory Mutations Promote Plasmid Survival. mSystems 2019; 4:mSystems00186-18. [PMID: 30944871 PMCID: PMC6446977 DOI: 10.1128/msystems.00186-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
The global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics. Whereas chromosomal mutations are inherited vertically through bacterial fission, plasmid mutations can be inherited both vertically and horizontally and potentially reduce the initial cost of the plasmid in new host cells. Here we show using mathematical models and simulations that the dynamics of plasmids depends critically on the genomic location of the compensatory mutation. We demonstrate that plasmid-located compensatory evolution is better at enhancing plasmid persistence, even when its effects are smaller than those provided by chromosomal compensation. Moreover, either type of compensatory evolution facilitates the survival of resistance plasmids at low drug concentrations. These insights contribute to an improved understanding of the conditions and mechanisms driving the spread and the evolution of antibiotic resistance plasmids. IMPORTANCE Understanding the evolutionary forces that maintain antibiotic resistance genes in a population, especially when antibiotics are not used, is an important problem for human health and society. The most common platform for the dissemination of antibiotic resistance genes is conjugative plasmids. Experimental studies showed that mutations located on the plasmid or the bacterial chromosome can reduce the costs plasmids impose on their hosts, resulting in antibiotic resistance plasmids being maintained even in the absence of antibiotics. While chromosomal mutations are only vertically inherited by the daughter cells, plasmid mutations are also provided to bacteria that acquire the plasmid through conjugation. Here we demonstrate how the mode of inheritance of a compensatory mutation crucially influences the ability of plasmids to spread and persist in a bacterial population.
Collapse
|
21
|
Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev 2018; 42:781-804. [PMID: 30085063 PMCID: PMC6199537 DOI: 10.1093/femsre/fuy031] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem hindering treatment of bacterial infections, rendering many aspects of modern medicine less effective. AMR genes (ARGs) are frequently located on plasmids, which are self-replicating elements of DNA. They are often transmissible between bacteria, and some have spread globally. Novel strategies to combat AMR are needed, and plasmid curing and anti-plasmid approaches could reduce ARG prevalence, and sensitise bacteria to antibiotics. We discuss the use of curing agents as laboratory tools including chemicals (e.g. detergents and intercalating agents), drugs used in medicine including ascorbic acid, psychotropic drugs (e.g. chlorpromazine), antibiotics (e.g. aminocoumarins, quinolones and rifampicin) and plant-derived compounds. Novel strategies are examined; these include conjugation inhibitors (e.g. TraE inhibitors, linoleic, oleic, 2-hexadecynoic and tanzawaic acids), systems designed around plasmid incompatibility, phages and CRISPR/Cas-based approaches. Currently, there is a general lack of in vivo curing options. This review highlights this important shortfall, which if filled could provide a promising mechanism to reduce ARG prevalence in humans and animals. Plasmid curing mechanisms which are not suitable for in vivo use could still prove important for reducing the global burden of AMR, as high levels of ARGs exist in the environment.
Collapse
Affiliation(s)
- Michelle M C Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham B15 2TT, UK
| | - Maria Laura Ciusa
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Cross-resistance is modular in bacteria-phage interactions. PLoS Biol 2018; 16:e2006057. [PMID: 30281587 PMCID: PMC6188897 DOI: 10.1371/journal.pbio.2006057] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/15/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023] Open
Abstract
Phages shape the structure of natural bacterial communities and can be effective therapeutic agents. Bacterial resistance to phage infection, however, limits the usefulness of phage therapies and could destabilise community structures, especially if individual resistance mutations provide cross-resistance against multiple phages. We currently understand very little about the evolution of cross-resistance in bacteria–phage interactions. Here we show that the network structure of cross-resistance among spontaneous resistance mutants of Pseudomonas aeruginosa evolved against each of 27 phages is highly modular. The cross-resistance network contained both symmetric (reciprocal) and asymmetric (nonreciprocal) cross-resistance, forming two cross-resistance modules defined by high within- but low between-module cross-resistance. Mutations conferring cross-resistance within modules targeted either lipopolysaccharide or type IV pilus biosynthesis, suggesting that the modularity of cross-resistance was structured by distinct phage receptors. In contrast, between-module cross-resistance was provided by mutations affecting the alternative sigma factor, RpoN, which controls many lifestyle-associated functions, including motility, biofilm formation, and quorum sensing. Broader cross-resistance range was not associated with higher fitness costs or weaker resistance against the focal phage used to select resistance. However, mutations in rpoN, providing between-module cross-resistance, were associated with higher fitness costs than mutations associated with within-module cross-resistance, i.e., in genes encoding either lipopolysaccharide or type IV pilus biosynthesis. The observed structure of cross-resistance predicted both the frequency of resistance mutations and the ability of phage combinations to suppress bacterial growth. These findings suggest that the evolution of cross-resistance is common, is likely to play an important role in the dynamic structure of bacteria–phage communities, and could inform the design principles for phage therapy treatments. Phage therapy is a promising alternative to antibiotics for treating bacterial infections. Yet as with antibiotics, bacteria readily evolve resistance to phage attack, including cross-resistance that protects against multiple phages at once and so limits the usefulness of phage cocktails. Here we show, using laboratory experimental evolution of resistance against 27 phages in P. aeruginosa, that cross-resistance is common and determines the ability of phage combinations to suppress bacterial growth. Using whole-genome sequencing, we show that cross-resistance is most common against multiple phages that use the same receptor but that global regulator mutations provide generalist resistance, probably by simultaneously affecting the expression of multiple different phage receptors. Future trials should test if these features of cross-resistance evolution translate to more complex in vivo environments and can therefore be exploited to design more effective phage therapies for the clinic.
Collapse
Affiliation(s)
- Rosanna C. T. Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A. Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
24
|
Getino M, de la Cruz F. Natural and Artificial Strategies To Control the Conjugative Transmission of Plasmids. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0015-2016. [PMID: 29327679 PMCID: PMC11633558 DOI: 10.1128/microbiolspec.mtbp-0015-2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/19/2022] Open
Abstract
Conjugative plasmids are the main carriers of transmissible antibiotic resistance (AbR) genes. For that reason, strategies to control plasmid transmission have been proposed as potential solutions to prevent AbR dissemination. Natural mechanisms that bacteria employ as defense barriers against invading genomes, such as restriction-modification or CRISPR-Cas systems, could be exploited to control conjugation. Besides, conjugative plasmids themselves display mechanisms to minimize their associated burden or to compete with related or unrelated plasmids. Thus, FinOP systems, composed of FinO repressor protein and FinP antisense RNA, aid plasmids to regulate their own transfer; exclusion systems avoid conjugative transfer of related plasmids to the same recipient bacteria; and fertility inhibition systems block transmission of unrelated plasmids from the same donor cell. Artificial strategies have also been designed to control bacterial conjugation. For instance, intrabodies against R388 relaxase expressed in recipient cells inhibit plasmid R388 conjugative transfer; pIII protein of bacteriophage M13 inhibits plasmid F transmission by obstructing conjugative pili; and unsaturated fatty acids prevent transfer of clinically relevant plasmids in different hosts, promoting plasmid extinction in bacterial populations. Overall, a number of exogenous and endogenous factors have an effect on the sophisticated process of bacterial conjugation. This review puts them together in an effort to offer a wide picture and inform research to control plasmid transmission, focusing on Gram-negative bacteria.
Collapse
Affiliation(s)
- María Getino
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| |
Collapse
|
25
|
Cairns J, Becks L, Jalasvuori M, Hiltunen T. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0040. [PMID: 27920385 DOI: 10.1098/rstb.2016.0040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Lutz Becks
- Department of Evolutionary Ecology/Community Dynamics Group, Max Planck Institute for Evolutionary Biology, August Thienemann Street 2, Plön 24306, Germany
| | - Matti Jalasvuori
- Department of Biological and Environmental Science/Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
| | - Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| |
Collapse
|
26
|
Hall JPJ, Brockhurst MA, Dytham C, Harrison E. The evolution of plasmid stability: Are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid 2017; 91:90-95. [PMID: 28461121 DOI: 10.1016/j.plasmid.2017.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Conjugative plasmids are widespread and play an important role in bacterial evolution by accelerating adaptation through horizontal gene transfer. However, explaining the long-term stability of plasmids remains challenging because segregational loss and the costs of plasmid carriage should drive the loss of plasmids though purifying selection. Theoretical and experimental studies suggest two key evolutionary routes to plasmid stability: First, the evolution of high conjugation rates would allow plasmids to survive through horizontal transmission as infectious agents, and second, compensatory evolution to ameliorate the cost of plasmid carriage can weaken purifying selection against plasmids. How these two evolutionary strategies for plasmid stability interact is unclear. Here, we summarise the literature on the evolution of plasmid stability and then use individual based modelling to investigate the evolutionary interplay between the evolution of plasmid conjugation rate and cost amelioration. We find that, individually, both strategies promote plasmid stability, and that they act together to increase the likelihood of plasmid survival. However, due to the inherent costs of increasing conjugation rate, particularly where conjugation is unlikely to be successful, our model predicts that amelioration is the more likely long-term solution to evolving stable bacteria-plasmid associations. Our model therefore suggests that bacteria-plasmid relationships should evolve towards lower plasmid costs that may forestall the evolution of highly conjugative, 'infectious' plasmids.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Calvin Dytham
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
27
|
Werisch M, Berger U, Berendonk TU. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids. Plasmid 2017; 91:96-104. [PMID: 28461122 DOI: 10.1016/j.plasmid.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/27/2022]
Abstract
Some plasmids can be transferred by conjugation to other bacterial hosts. But almost half of the plasmids are non-transmissible. These plasmid types can only be transmitted to the daughter cells of their host after bacterial fission. Previous studies suggest that non-transmissible plasmids become extinct in the absence of selection of their encoded traits, as plasmid-free bacteria are more competitive. Here, we aim to identify mechanisms that enable non-transmissible plasmids to persist, even if they are not beneficial. For this purpose, an individual-based model for plasmid population dynamics was set up and carefully tested for structural consistency and plausibility. Our results demonstrate that non-transmissible plasmids can be stably maintained in a population, even if they impose a substantial burden on their host cells growth. A prerequisite is the co-occurrence of an incompatible and costly conjugative plasmid type, which indirectly facilitates the preservation of the non-transmissible type. We suggest that this constellation might be considered as a potential mechanism maintaining plasmids and associated antibiotic resistances. It should be investigated in upcoming laboratory experiments.
Collapse
Affiliation(s)
- Martin Werisch
- Technische Universität Dresden, Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt 01735, Germany.
| | - Uta Berger
- Technische Universität Dresden, Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt 01735, Germany
| | - Thomas U Berendonk
- Technische Universität Dresden, Department of Hydro Sciences, Institute of Hydrobiology, Dresden 01217, Germany
| |
Collapse
|
28
|
Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci U S A 2016; 113:8260-5. [PMID: 27385827 DOI: 10.1073/pnas.1600974113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability.
Collapse
|
29
|
Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. PLoS Biol 2016; 14:e1002478. [PMID: 27270455 PMCID: PMC4896427 DOI: 10.1371/journal.pbio.1002478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance. Altruistic host bacteria can preferentially enhance the horizontal transfer of beneficial plasmids (such as those conferring antibiotic resistance or virulence) to others of their kind. In bacteria, genes can move between cells, sometimes with the donor host cell actively involved in the gene transfer mechanisms. This movement of genes is called horizontal gene transfer, and it increases the prevalence of mobile genes in bacterial populations. However, it is not clear if donor host cells benefit from gene spread, or are simply exploited by selfish genes. Here, we show with both modelling and experiments that for the donor host, investing in the transfer of beneficial genes—such as those conferring antibiotic resistance—can be understood as an altruistic behaviour. This behaviour is costly to the donor but beneficial to recipients and can be selected for if a sufficient proportion of recipient cells share the donors’ transfer allele. Preferential transfer from donors towards recipients that share this allele occurs when dispersal is limited or if discrimination mechanisms are present. Our work suggests that both processes are likely to be widespread in nature, promoting horizontal gene spread by host donor cells. As many antimicrobial resistance and virulence genes are mobile, our work further implies that the spread of harmful traits among human pathogens may be modulated by host bacteria in a direction that depends on the bacterial ability to transfer the traits specifically to their kind.
Collapse
|
30
|
Harrison E, Dytham C, Hall JPJ, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Rapid compensatory evolution promotes the survival of conjugative plasmids. Mob Genet Elements 2016; 6:e1179074. [PMID: 27510852 PMCID: PMC4964889 DOI: 10.1080/2159256x.2016.1179074] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
Conjugative plasmids play a vital role in bacterial adaptation through horizontal gene transfer. Explaining how plasmids persist in host populations however is difficult, given the high costs often associated with plasmid carriage. Compensatory evolution to ameliorate this cost can rescue plasmids from extinction. In a recently published study we showed that compensatory evolution repeatedly targeted the same bacterial regulatory system, GacA/GacS, in populations of plasmid-carrying bacteria evolving across a range of selective environments. Mutations in these genes arose rapidly and completely eliminated the cost of plasmid carriage. Here we extend our analysis using an individual based model to explore the dynamics of compensatory evolution in this system. We show that mutations which ameliorate the cost of plasmid carriage can prevent both the loss of plasmids from the population and the fixation of accessory traits on the bacterial chromosome. We discuss how dependent the outcome of compensatory evolution is on the strength and availability of such mutations and the rate at which beneficial accessory traits integrate on the host chromosome.
Collapse
Affiliation(s)
| | - Calvin Dytham
- Department of Biology, University of York , York, UK
| | | | - David Guymer
- Department of Biology, University of York , York, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool , Liverpool, UK
| | | |
Collapse
|
31
|
Harrison E, Truman J, Wright R, Spiers AJ, Paterson S, Brockhurst MA. Plasmid carriage can limit bacteria-phage coevolution. Biol Lett 2016; 11:rsbl.2015.0361. [PMID: 26268992 PMCID: PMC4571675 DOI: 10.1098/rsbl.2015.0361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria–phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria–phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Biology, University of York, York YO10 5DD, UK
| | - Julie Truman
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rosanna Wright
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|
32
|
Cairns J, Jalasvuori M, Ojala V, Brockhurst M, Hiltunen T. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation. Biol Lett 2016; 12:20150953. [PMID: 26843557 PMCID: PMC4780553 DOI: 10.1098/rsbl.2015.0953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Matti Jalasvuori
- Department of Biological and Environmental Science/Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland
| | - Ville Ojala
- Department of Biological and Environmental Science/Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland
| | | | - Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
33
|
Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol 2015; 25:2034-9. [PMID: 26190075 DOI: 10.1016/j.cub.2015.06.024] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/25/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
Abstract
Plasmids drive genomic diversity in bacteria via horizontal gene transfer [1, 2]; nevertheless, explaining their survival in bacterial populations is challenging [3]. Theory predicts that irrespective of their net fitness effects, plasmids should be lost: when parasitic (costs outweigh benefits), plasmids should decline due to purifying selection [4-6], yet under mutualism (benefits outweigh costs), selection favors the capture of beneficial accessory genes by the chromosome and loss of the costly plasmid backbone [4]. While compensatory evolution can enhance plasmid stability within populations [7-15], the propensity for this to occur across the parasitism-mutualism continuum is unknown. We experimentally evolved Pseudomonas fluorescens and its mercury resistance mega-plasmid, pQBR103 [16], across an environment-mediated parasitism-mutualism continuum. Compensatory evolution stabilized plasmids by rapidly ameliorating the cost of plasmid carriage in all environments. Genomic analysis revealed that, in both parasitic and mutualistic treatments, evolution repeatedly targeted the gacA/gacS bacterial two-component global regulatory system while leaving the plasmid sequence intact. Deletion of either gacA or gacS was sufficient to completely ameliorate the cost of plasmid carriage. Mutation of gacA/gacS downregulated the expression of ∼17% of chromosomal and plasmid genes and appears to have relieved the translational demand imposed by the plasmid. Chromosomal capture of mercury resistance accompanied by plasmid loss occurred throughout the experiment but very rarely invaded to high frequency, suggesting that rapid compensatory evolution can limit this process. Compensatory evolution can explain the widespread occurrence of plasmids and allows bacteria to retain horizontally acquired plasmids even in environments where their accessory genes are not immediately useful.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Biology, University of York, York YO10 5DD, UK
| | - David Guymer
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|