1
|
Aoki N, Shimasaki T, Yazaki W, Sato T, Nakayasu M, Ando A, Kishino S, Ogawa J, Masuda S, Shibata A, Shirasu K, Yazaki K, Sugiyama A. An isoflavone catabolism gene cluster underlying interkingdom interactions in the soybean rhizosphere. ISME COMMUNICATIONS 2024; 4:ycae052. [PMID: 38707841 PMCID: PMC11069340 DOI: 10.1093/ismeco/ycae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume-microbiota interactions.
Collapse
Affiliation(s)
- Noritaka Aoki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohisa Shimasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoaki Sato
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Hara S, Kakizaki K, Bamba M, Itakura M, Sugawara M, Suzuki A, Sasaki Y, Takeda M, Tago K, Ohbayashi T, Aono T, Aoyagi LN, Shimada H, Shingubara R, Masuda S, Shibata A, Shirasu K, Wagai R, Akiyama H, Sato S, Minamisawa K. Does Rhizobial Inoculation Change the Microbial Community in Field Soils? A Comparison with Agricultural Land-use Changes. Microbes Environ 2024; 39:ME24006. [PMID: 39261062 PMCID: PMC11427313 DOI: 10.1264/jsme2.me24006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 09/13/2024] Open
Abstract
Although microbial inoculation may be effective for sustainable crop production, detrimental aspects have been argued because of the potential of inoculated microorganisms to behave as invaders and negatively affect the microbial ecosystem. We herein compared the impact of rhizobial inoculation on the soil bacterial community with that of agricultural land-use changes using a 16S rRNA amplicon ana-lysis. Soybean plants were cultivated with and without five types of bradyrhizobial inoculants (Bradyrhizobium diazoefficiens or Bradyrhizobium ottawaense) in experimental fields of Andosol, and the high nodule occupancy (35-72%) of bradyrhizobial inoculants was confirmed by nosZ PCR. However, bradyrhizobial inoculants did not significantly affect Shannon's diversity index (α-diversity) or shifts (β-diversity) in the bacterial community in the soils. Moreover, the soil bacterial community was significantly affected by land-use types (conventional cropping, organic cropping, and original forest), where β-diversity correlated with soil chemical properties (pH, carbon, and nitrogen contents). Therefore, the effects of bradyrhizobial inoculation on bacterial communities in bulk soil were minor, regardless of high nodule occupancy. We also observed a correlation between the relative abundance of bacterial classes (Alphaproteobacteria, Gammaproteobacteria, and Gemmatimonadetes) and land-use types or soil chemical properties. The impact of microbial inoculation on soil microbial ecosystems has been exami-ned to a limited extent, such as rhizosphere communities and viability. In the present study, we found that bacterial community shifts in soil were more strongly affected by land usage than by rhizobial inoculation. Therefore, the results obtained herein highlight the importance of assessing microbial inoculants in consideration of the entire land management system.
Collapse
Affiliation(s)
- Shintaro Hara
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Kaori Kakizaki
- Graduate School of Life Sciences, Tohoku University, Sendai, 980–8577, Japan
| | - Masaru Bamba
- Graduate School of Life Sciences, Tohoku University, Sendai, 980–8577, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, 980–8577, Japan
| | - Masayuki Sugawara
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555, Japan
| | - Atsuo Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, 980–8577, Japan
| | - Yuma Sasaki
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Masanori Takeda
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Toshihiro Aono
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Luciano Nobuhiro Aoyagi
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Hiroaki Shimada
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555, Japan
| | - Ryo Shingubara
- Research Center for Advanced Analysis (NAAC), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Yokohama, 230–0045, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, 230–0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, 230–0045, Japan
| | - Rota Wagai
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Hiroko Akiyama
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, 305–8604, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, 980–8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Sendai, 980–8577, Japan
| |
Collapse
|
3
|
Takamatsu K, Toyofuku M, Okutani F, Yamazaki S, Nakayasu M, Aoki Y, Kobayashi M, Ifuku K, Yazaki K, Sugiyama A. α-Tomatine gradient across artificial roots recreates the recruitment of tomato root-associated Sphingobium. PLANT DIRECT 2023; 7:e550. [PMID: 38116181 PMCID: PMC10728018 DOI: 10.1002/pld3.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
α-Tomatine is a major saponin that accumulates in tomatoes (Solanum lycopersicum). We previously reported that α-tomatine secreted from tomato roots modulates root-associated bacterial communities, particularly by enriching the abundance of Sphingobium belonging to the family Sphingomonadaceae. To further characterize the α-tomatine-mediated interactions between tomato plants and soil bacterial microbiota, we first cultivated tomato plants in pots containing different microbial inoculants originating from three field soils. Four bacterial genera, namely, Sphingobium, Bradyrhizobium, Cupriavidus, and Rhizobacter, were found to be commonly enriched in tomato root-associated bacterial communities. We constructed a pseudo-rhizosphere system using a mullite ceramic tube as an artificial root to investigate the influence of α-tomatine in modifying bacterial communities. The addition of α-tomatine from the artificial root resulted in the formation of a concentration gradient of α-tomatine that mimicked the tomato rhizosphere, and distinctive bacterial communities were observed in the soil close to the artificial root. Sphingobium was enriched according to the α-tomatine concentration gradient, whereas Bradyrhizobium, Cupriavidus, and Rhizobacter were not enriched in α-tomatine-treated soil. The tomato root-associated bacterial communities were similar to the soil bacterial communities in the vicinity of artificial root-secreting exudates; however, hierarchical cluster analysis revealed a distinction between root-associated and pseudo-rhizosphere bacterial communities. These results suggest that the pseudo-rhizosphere device at least partially creates a rhizosphere environment in which α-tomatine enhances the abundance of Sphingobium in the vicinity of the root. Enrichment of Sphingobium in the tomato rhizosphere was also apparent in publicly available microbiota data, further supporting the tight association between tomato roots and Sphingobium mediated by α-tomatine.
Collapse
Affiliation(s)
- Kyoko Takamatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Miwako Toyofuku
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Fuki Okutani
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | | | - Masaru Nakayasu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Yuichi Aoki
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kazufumi Yazaki
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Akifumi Sugiyama
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| |
Collapse
|