1
|
Zhang Y, Cheng J, Lin C, Li F, Zhang X, Li C, Zhang D, Yang X, Xu D, Zhao Y, Zhao L, Li X, Tian H, Weng X, Wang W. Spatial heterogeneity determines the gastrointestinal microbiome signatures and ecological processes that govern bacterial community assembly in sheep. Microbiol Spectr 2024:e0111024. [PMID: 39714160 DOI: 10.1128/spectrum.01110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024] Open
Abstract
Sheep are one of the globally significant livestock, providing meat, dairy products, and wool for human life, playing an indispensable role in human civilization. Despite significant advancements in microbiome research in recent years, most studies have focused solely on the rumen, lacking a comprehensive study covering the microbiome of different gastrointestinal tract (GIT) regions in sheep. In this study, we collected 338 samples from 10 different regions of the sheep GIT and systematically investigated their microbiome signatures, including community structure, enterotypes, interactions among taxa, and microbial community assembly. Our results showed that the bacterial diversity of sheep GIT exhibited a U-shaped pattern along the GIT, with the lowest diversity in the jejunum. The bacterial community composition and enterotype varied along the GIT, mainly divided into three distinct groups (four-chambered stomach, small intestine, and large intestine). The rumen had the highest total number of bacterial taxa, unique taxa, and unique functions, while the enterotypes were the same in the three regions of the large intestine. The bacterial co-occurrence networks differed greatly between different GIT regions, with more positive correlations than negative ones. Furthermore, we found that the assembly processes of bacterial communities in the four-chambered stomach and small intestine were mainly stochastic, while those in the large intestine were mainly shaped by deterministic processes, with a higher ecological niche width than other GIT regions. Our results reveal the spatial pattern of bacterial communities in the sheep GIT and the intrinsic mechanisms of bacterial community assembly, laying the foundation for microbial interventions to improve sheep productivity and sustainable farming. IMPORTANCE Sheep's gastrointestinal tract harbors a diverse microbial community crucial for immune system balance, nutrient digestion, and overall health. We explored the microbial community composition, community types (enterotypes), bacterial interactions, and ecological processes in 10 gastrointestinal regions of 36 six-month-old Hu sheep raised under same diets and environmental conditions. Our findings revealed a unique U-shaped pattern of bacterial diversity from the rumen to the rectum, with the lowest diversity in the jejunum. The composition and enterotypes of bacterial communities varied spatially along the gastrointestinal tract, primarily categorized into three distinct groups. The rumen exhibited the highest abundance of bacterial taxa, unique taxa, and unique functions, while the enterotypes in the three regions of the large intestine were consistent. We explored the assembly processes of bacterial communities, elucidating how they find their ecological niches based on their characteristics and environmental demands. The assembly processes in the four-chambered stomach and small intestine resembled random selection, where bacterial positioning depended on luck and chance, while in the large intestine, it appeared more deterministic, with specific bacteria likely selected based on their unique skills and environmental requirements. This study enhances our understanding of microbial coexistence and interactions in complex ecosystems, with implications for improving animal productivity, disease treatment, and the development of novel microbial formulations.
Collapse
Affiliation(s)
- Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Changchun Lin
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaobin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Huibin Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Shi Z, Yao F, Liu Z, Zhang J. Microplastics predominantly affect gut microbiota by altering community structure rather than richness and diversity: A meta-analysis of aquatic animals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124639. [PMID: 39095000 DOI: 10.1016/j.envpol.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The impacts of microplastics on the gut microbiota, a crucial component of the health of aquatic animals, remain inadequately understood. This phylogenetically controlled meta-analysis aims to identify general patterns of microplastic effects on the alpha diversity (richness and Shannon index), beta diversity, and community structure of gut microbiota in aquatic animals. Data from 63 peer-reviewed articles on the Web of Science were synthesized, encompassing 424 observations across 31 aquatic species. The analysis showed that microplastics significantly altered the community structure of gut microbiota, with between-group distances being 87.75% higher than within-group distances. This effect was significant even at environmentally relevant concentrations (≤1 mg L-1). However, their effects on richness, Shannon index, and beta diversity (community variation) were found to be insignificant. The study also indicated that the effects of microplastics were primarily dependent on their concentration and size, while the phylogeny of tested species explained limited heterogeneity. Furthermore, variations in gut microbiota alpha diversity, beta diversity, and community structure were correlated with changes in antioxidant enzyme activities from the liver and hepatopancreas. This implies that gut microbiota attributes of aquatic animals may provide insights into host antioxidant levels. In summary, this study illuminates the impacts of microplastics on the gut microbiota of aquatic animals and examines the implications of these effects for host health. It emphasizes that microplastics mainly alter the community structure of gut microbiota rather than significantly affecting richness and diversity.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqiang Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Delleuze M, Schwob G, Orlando J, Gerard K, Saucède T, Brickle P, Poulin E, Cabrol L. Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean. FEMS Microbiol Ecol 2024; 100:fiae134. [PMID: 39363207 PMCID: PMC11523047 DOI: 10.1093/femsec/fiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.
Collapse
Affiliation(s)
- Mélanie Delleuze
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Marine Biology Lab, CP160/15, Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Karin Gerard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas 6210427, Chile
- Cape Horn Investigation Center, Puerto Williams 6350054, Chile
| | - Thomas Saucède
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 21000 Dijon, France
| | - Paul Brickle
- South Atlantic Environmental Research Institute, Port Stanley FIQQ 1ZZ, Falkland Islands
- School of Biological Sciences (Zoology), University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Aix-Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (M.I.O.) UM 110, 13009 Marseille, France
| |
Collapse
|
4
|
Zhang Y, Mao K, Chen K, Zhao Z, Ju F. Symbiont community assembly shaped by insecticide exposure and feedback on insecticide resistance of Spodoptera frugiperda. Commun Biol 2024; 7:1194. [PMID: 39333238 PMCID: PMC11436667 DOI: 10.1038/s42003-024-06892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Exploring the mechanism of microbiota assembly and its ecological consequences is crucial for connecting microbiome variation to ecosystem function. However, the influencing factors underlying microbiota assembly in the host-microbe system and their impact on the host phenotype remain unclear. Through investigating the prevalent and worsening ecological phenomenon of insecticide resistance in global agriculture, we found that insecticide exposure significantly changed the gut microbiota assembly patterns of a major agricultural invasive insect pest, Spodoptera frugiperda. The relative importance of various microbiota assembly processes significantly varied with habitat heterogeneity and heterogeneous selection serving as a potential predictor of the host's insecticide resistance in field populations. Moreover, disturbance of the gut microbiota assembly through antibiotics was revealed to significantly affect the rate and heritability of insecticide resistance evolution, leading to a delay in insecticide resistance evolution in this insect pest. These findings indicate that the gut microbiota assembly process of the insect host is influenced by persistent exposure to habitat conditions, particularly insecticides. This variation in insecticide exposure-related community assembly process subsequently influences the insect host's insecticide resistance phenotype. This study provides insights into gut microbiota assembly processes from a symbiotic perspective and underscores the significant impact of symbiotic community changes on host phenotypic variation.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang Province, China
| | - Kaikai Mao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China
| | - Keyi Chen
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China
- Center for Infectious Disease Research, Westlake University, 310024, Hangzhou, Zhejiang Province, China
| | - Ze Zhao
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China
- Center for Infectious Disease Research, Westlake University, 310024, Hangzhou, Zhejiang Province, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang Province, China.
- Center for Infectious Disease Research, Westlake University, 310024, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Yang B, Yang Z, He K, Zhou W, Feng W. Soil Fungal Community Diversity, Co-Occurrence Networks, and Assembly Processes under Diverse Forest Ecosystems. Microorganisms 2024; 12:1915. [PMID: 39338589 PMCID: PMC11433935 DOI: 10.3390/microorganisms12091915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Fungal communities are critical players in the biogeochemical soil processes of forest ecosystems. However, the factors driving their diversity and community assembly are still unclear. In the present study, five typical vegetation types of soil fungal communities in Liziping Nature Reserve, China, were investigated using fungal ITS sequences. The results show that the topsoil fungal community is mainly dominated by the phyla Ascomycota, Basidiomycota, and Mortierellomycota. Although there was no significant difference in α diversity (Shannon, Simpson, and Pielou evenness indices) among different forest types, there was a significant difference in β diversity (community composition). This study found that soil pH, soil organic carbon, total nitrogen (TN), total phosphorus (TP), and the total nitrogen/total phosphorus (N/P) ratio are the main environmental factors that affect soil fungal communities. Each forest type has a specific co-occurrence network, indicating that these community structures have significant specificities and complexities. Deciduous evergreen broad-leaved forests as well as deciduous broad-leaved and evergreen broad-leaved mixed forests showed high modularity and average path lengths, indicating their highly modular nature without distinct small-scale characteristics. Furthermore, our findings indicate that the structures of topsoil fungal communities are mainly shaped by stochastic processes, with the diffusion limitation mechanism playing a particularly significant role.
Collapse
Affiliation(s)
- Bing Yang
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ke He
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Wenjia Zhou
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Wanju Feng
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
6
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2024:S0966-842X(24)00214-2. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
7
|
Zhu YX, Yang TY, Deng JH, Yin Y, Song ZR, Du YZ. Stochastic processes drive divergence of bacterial and fungal communities in sympatric wild insect species despite sharing a common diet. mSphere 2024; 9:e0038624. [PMID: 39105581 DOI: 10.1128/msphere.00386-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Arthropods harbor complex microbiota that play a pivotal role in host fitness. While multiple factors, like host species and diet, shape microbiota in arthropods, their impact on community assembly in wild insects remains largely unknown. In this study, we surveyed bacterial and fungal community assembly in nine sympatric wild insect species that share a common citrus fruit diet. Source tracking analysis suggested that these insects acquire some bacteria and fungi from the citrus fruit with varying degrees. Although sharing a common diet led to microbiota convergence, the diversity, composition, and network of both bacterial and fungal communities varied significantly among surveyed insect groups. Null model analysis indicated that stochastic processes, particularly dispersal limitation and drift, are primary drivers of structuring insect bacterial and fungal communities. Importantly, the influence of each community assembly process varied strongly depending on the host species. Thus, we proposed a speculative view that the host specificity of the microbiome and mycobiome assembly is widespread in wild insects despite sharing the same regional species pool. Overall, this research solidifies the importance of host species in shaping microbiomes and mycobiomes, providing novel insights into their assembly mechanisms in wild insects. IMPORTANCE Since the microbiome has been shown to impact insect fitness, a mechanistic understanding of community assembly has potentially significant applications but remains largely unexplored. In this paper, we investigate bacterial and fungal community assembly in nine sympatric wild insect species that share a common diet. The main findings indicate that stochastic processes drive the divergence of microbiomes and mycobiomes in nine sympatric wild insect species. These findings offer novel insights into the assembly mechanisms of microbiomes and mycobiomes in wild insects.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tian-Yue Yang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jing-Huan Deng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yue Yin
- Institute for the Control of the Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhang-Rong Song
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Yu-Zhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Schwob G, Almendras K, Veas-Mattheos K, Pezoa M, Orlando J. Host specialization and spatial divergence of bacteria associated with Peltigera lichens promote landscape gamma diversity. ENVIRONMENTAL MICROBIOME 2024; 19:57. [PMID: 39103916 DOI: 10.1186/s40793-024-00598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale. RESULTS The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks. CONCLUSIONS The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.
Collapse
Affiliation(s)
- Guillaume Schwob
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Katerin Almendras
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Karla Veas-Mattheos
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Matías Pezoa
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Julieta Orlando
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
| |
Collapse
|
9
|
Li B, Chen X, Ke L, Dai P, Ge Y, Liu YJ. Early-Life Sublethal Exposure to Thiacloprid Alters Adult Honeybee Gut Microbiota. Genes (Basel) 2024; 15:1001. [PMID: 39202363 PMCID: PMC11353648 DOI: 10.3390/genes15081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Thiacloprid, a neonicotinoid pesticide, is known to affect the gut microbiome of honeybees, yet studies often focus on immediate alternations during exposure, overlooking long-term microbiological impacts post-exposure. This study investigates the influences of sublethal thiacloprid administered during the larval developmental stage of honeybees on physiological changes and gut microbiota of adult honeybees. We found that thiacloprid exposure increased mortality and sugar intake in emerged honeybees. Using 16S rDNA sequencing, we analyzed intestinal microbial diversity of honeybees at one and six days post-emergence. Our findings reveal a significant but transient disruption in gut microbiota on day 1, with recovery from dysbiosis by day 6. This study emphasizes the importance of evaluating chronic sublethal exposure risks of thiacloprid to protect honeybee health.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China (L.K.)
| |
Collapse
|
10
|
Shan HW, Xia XJ, Feng YL, Wu W, Li HJ, Sun ZT, Li JM, Chen JP. The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction. NPJ Biofilms Microbiomes 2024; 10:64. [PMID: 39080326 PMCID: PMC11289440 DOI: 10.1038/s41522-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.
Collapse
Affiliation(s)
- Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Xie-Jiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hong-Jie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Zhang Z, Guo Y, Zhuang M, Liu F, Xia Z, Zhang Z, Yang F, Zeng H, Wu Y, Huang J, Xu K, Li J. Gut microbiome diversity and biogeography for Chinese bumblebee Bombus pyrosoma. mSystems 2024; 9:e0045924. [PMID: 38934544 PMCID: PMC11264632 DOI: 10.1128/msystems.00459-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota of the bumblebee is critical as it modulates the health and fitness of the host. However, the mechanisms underlying the formation and maintenance of the diversity of bumblebee gut bacteria over a long period of evolution have yet to be elucidated. In particular, the gut bacterial diversity and community assembly processes of Bombus pyrosoma across the Chinese border remain unclear. In this study, we systematically carried out unprecedented sampling of 513 workers of the species Bombus pyrosoma across the Chinese landscape and used full-length 16S rRNA gene sequencing to examine their gut microbiota diversity and biogeography. The gut microbiota composition and community structure of Bombus pyrosoma from different geographical locations were diverse. On the whole, the gut bacteria Gilliamella and Snodgrassella are dominant in bumblebees, but opportunistic pathogens Serratia and Pseudomonas are dominant in some sampling sites such as Hb15, Gs1, Gs45, Qhs15, and Ssx35. All or part of environmental factors such as latitude, annual mean temperature, elevation, human footprint, population density, and annual precipitation can affect the alpha diversity and community structure of gut bacteria. Further analysis showed that the assembly and shift of bumblebee gut bacterial communities under geographical variation were mainly driven by the stochastic drift of the neutral process rather than by variable selection of niche differentiation. In conclusion, our unprecedented sampling uncovers bumblebee gut microbiome diversity and shifts over evolutionary time. IMPORTANCE The microbiotas associated with organisms facilitates host health and fitness, and the homeostasis status of gut microbiota also reflects the habitat security faced by the host. In addition, managing gut microbiota is important to improve bumblebee health by understanding the ecological process of the gut microbiome. Thus, we first carried out an runprecedented sampling of 513 workers of the species Bombus pyrosoma across the Chinese landscape and used full-length 16S rRNA gene sequencing to uncover their gut microbiota diversity and biogeography. Our study provides new insights into the understanding of gut microbiome diversity and shifts for Chinese Bumblebee over evolutionary time.
Collapse
Affiliation(s)
- Zhengyi Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingsheng Zhuang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fugang Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyan Xia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihao Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huayan Zeng
- Luoping Yunling Bee Industry and Trade Co., Ltd, Yunnan, China
| | - Yueguo Wu
- Luoping Yunling Bee Industry and Trade Co., Ltd, Yunnan, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Xu
- Apiculture science Institute of Jilin Province, Jilin, China
| | - Jilian Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Zhu YX, Wang XY, Yang TY, Zhang HH, Li TP, Du YZ. Mechanisms of bacterial and fungal community assembly in leaf miners during transition from natural to laboratory environments. Front Microbiol 2024; 15:1424568. [PMID: 39091307 PMCID: PMC11291455 DOI: 10.3389/fmicb.2024.1424568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Environmental heterogeneity partly drives microbial succession in arthropods, while the microbial assembly mechanisms during environmental changes remain largely unknown. Here, we explored the temporal dynamics and assembly mechanisms within both bacterial and fungal communities in Liriomyza huidobrensis (Blanchard) during the transition from field to laboratory conditions. We observed a decrease in bacterial diversity and complexity of bacterial-fungal co-occurrence networks in leaf miners transitioning from wild to captive environments. Both neutral and null models revealed that stochastic processes, particularly drift (contributing over 70%), play a crucial role in governing bacterial and fungal community assembly. The relative contribution of ecological processes such as dispersal, drift, and selection varied among leaf miners transitioning from wild to captive states. Furthermore, we propose a hypothetical scenario for the assembly and succession of microbial communities in the leaf miner during the short- and long-term transition from the wild to captivity. Our findings suggest that environmental heterogeneity determines the ecological processes governing bacterial and fungal community assembly in leaf miners, offering new insights into microbiome and mycobiome assembly mechanisms in invasive pests amidst environmental change.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xin-Yu Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tian-Yue Yang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huan-Huan Zhang
- Institute of Vegetable, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yu-Zhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Shi Z, Yao F, Chen Q, Chen Y, Zhang J, Guo J, Zhang S, Zhang C. More deterministic assembly constrains the diversity of gut microbiota in freshwater snails. Front Microbiol 2024; 15:1394463. [PMID: 39040899 PMCID: PMC11260827 DOI: 10.3389/fmicb.2024.1394463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Growing evidence has suggested a strong link between gut microbiota and host fitness, yet our understanding of the assembly mechanisms governing gut microbiota remains limited. Here, we collected invasive and native freshwater snails coexisting at four independent sites in Guangdong, China. We used high-throughput sequencing to study the assembly processes of their gut microbiota. Our results revealed significant differences in the diversity and composition of gut microbiota between invasive and native snails. Specifically, the gut microbiota of invasive snails exhibited lower alpha diversity and fewer enriched bacteria, with a significant phylogenetic signal identified in the microbes that were enriched or depleted. Both the phylogenetic normalized stochasticity ratio (pNST) and the phylogenetic-bin-based null model analysis (iCAMP) showed that the assembly process of gut microbiota in invasive snails was more deterministic compared with that in native snails, primarily driven by homogeneous selection. The linear mixed-effects model revealed a significant negative correlation between deterministic processes (homogeneous selection) and alpha diversity of snail gut microbiota, especially where phylogenetic diversity explained the most variance. This indicates that homogeneous selection acts as a filter by the host for specific microbial lineages, constraining the diversity of gut microbiota in invasive freshwater snails. Overall, our study suggests that deterministic assembly-mediated lineage filtering is a potential mechanism for maintaining the diversity of gut microbiota in freshwater snails.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Qi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yingtong Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jing Guo
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shaobin Zhang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chunxia Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Li J, Fu N, Wang M, Gao C, Gao B, Ren L, Tao J, Luo Y. Functional and Compositional Changes in Sirex noctilio Gut Microbiome in Different Habitats: Unraveling the Complexity of Invasive Adaptation. Int J Mol Sci 2024; 25:2526. [PMID: 38473774 PMCID: PMC10931295 DOI: 10.3390/ijms25052526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The mutualistic symbiosis relationship between the gut microbiome and their insect hosts has attracted much scientific attention. The native woodwasp, Sirex nitobei, and the invasive European woodwasp, Sirex noctilio, are two pests that infest pines in northeastern China. Following its encounter with the native species, however, there is a lack of research on whether the gut microbiome of S. noctilio changed, what causes contributed to these alterations, and whether these changes were more conducive to invasive colonization. We used high-throughput and metatranscriptomic sequencing to investigate S. noctilio larval gut and frass from four sites where only S. noctilio and both two Sirex species and investigated the effects of environmental factors, biological interactions, and ecological processes on S. noctilio gut microbial community assembly. Amplicon sequencing of two Sirex species revealed differential patterns of bacterial and fungal composition and functional prediction. S. noctilio larval gut bacterial and fungal diversity was essentially higher in coexistence sites than in separate existence sites, and most of the larval gut bacterial and fungal community functional predictions were significantly different as well. Moreover, temperature and precipitation positively correlate with most of the highly abundant bacterial and fungal genera. Source-tracking analysis showed that S. noctilio larvae at coexistence sites remain dependent on adult gut transmission (vertical transmission) or recruitment to frass (horizontal transmission). Meanwhile, stochastic processes of drift and dispersal limitation also have important impacts on the assembly of S. noctilio larval gut microbiome, especially at coexistence sites. In summary, our results reveal the potential role of changes in S. noctilio larval gut microbiome in the successful colonization and better adaptation of the environment.
Collapse
Affiliation(s)
- Jiale Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding 071033, China
| | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Bingtao Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (N.F.); (M.W.); (C.G.); (B.G.); (J.T.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
16
|
Sbaghdi T, Garneau JR, Yersin S, Chaucheyras-Durand F, Bocquet M, Moné A, El Alaoui H, Bulet P, Blot N, Delbac F. The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam. Microorganisms 2024; 12:192. [PMID: 38258019 PMCID: PMC10819737 DOI: 10.3390/microorganisms12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.
Collapse
Affiliation(s)
- Thania Sbaghdi
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France;
- Microbiologie Environnement Digestif et Santé, INRAE, Université Clermont Auvergne, F-63122 Saint-Genès Champanelle, France
| | | | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, F-38000 Grenoble, France;
- Platform BioPark Archamps, ArchParc, F-74160 Archamps, France
| | - Nicolas Blot
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Frédéric Delbac
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| |
Collapse
|
17
|
Villabona N, Moran N, Hammer T, Reyes A. Conserved, yet disruption-prone, gut microbiomes in neotropical bumblebees. mSphere 2023; 8:e0013923. [PMID: 37855643 PMCID: PMC10732019 DOI: 10.1128/msphere.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Social bees are an important model for the ecology and evolution of gut microbiomes. These bees harbor ancient, specific, and beneficial gut microbiomes and are crucial pollinators. However, most of the research has concentrated on managed honeybees and bumblebees in the temperate zone. Here we used 16S rRNA gene sequencing to characterize gut microbiomes in wild neotropical bumblebee communities from Colombia. We also analyzed drivers of microbiome structure across our data and previously published data from temperate bumblebees. Our results show that lineages of neotropical bumblebees not only retained their ancient gut bacterial symbionts during dispersal from North America but also are prone to major disruption, a shift that is strongly associated with parasite infection. Finally, we also found that microbiomes are much more strongly structured by host phylogeny than by geography, despite the very different environmental conditions and plant communities in the two regions.
Collapse
Affiliation(s)
- Nickole Villabona
- Research Group on Computational Biology and Microbial Ecology, Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Nancy Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Tobin Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Alejandro Reyes
- Research Group on Computational Biology and Microbial Ecology, Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Liu HH, Chen L, Shao HB, Gao S, Hong XY, Bing XL. Environmental Factors and the Symbiont Cardinium Influence the Bacterial Microbiome of Spider Mites Across the Landscape. MICROBIAL ECOLOGY 2023; 87:1. [PMID: 37991578 DOI: 10.1007/s00248-023-02314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Microbes play a key role in the biology, ecology, and evolution of arthropods. Despite accumulating data on microbial communities in arthropods that feed on plants using piercing-sucking mouthparts, we still lack a comprehensive understanding of the composition and assembly factors of the microbiota, particularly in field-collected spider mites. Here, we applied 16S rRNA amplicon sequencing to investigate the characters of the bacterial community in 140 samples representing 420 mite individuals, belonging to eight Tetranychus species (Acari: Tetranychidae) collected from 26 sites in China. The results showed that the bacterial composition of spider mites varied significantly among different species, locations, and plants. The environment showed a significant influence on the bacterial community of spider mites, with different relative contributions. Latitude and precipitation were found to be the main factors influencing the bacterial community composition. The dissimilarity of bacterial community and geographical distance between mite locations were significantly correlated. The assembly of spider mite bacterial communities seemed to be mainly influenced by stochastic processes. Furthermore, the symbiont Cardinium was found to be important in shaping the microbiota of many Tetranychus species. The relative abundance of Cardinium was > 50% in T. viennensis, T. urticae G, T. urticae R, and T. turkestani. Removing Cardinium reads from our analysis significantly changed Shannon diversity index and weighted beta diversity in these species. Altogether, this study provides novel insights into bacterial diversity patterns that contribute to our knowledge of the symbiotic relationships between arthropods and their bacterial communities.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui-Biao Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
19
|
Mi JX, Liu KL, Ding WL, Zhang MH, Wang XF, Shaukat A, Rehman MU, Jiao XL, Huang SC. Comparative analysis of the gut microbiota of wild wintering whooper swans (Cygnus Cygnus), captive black swans (Cygnus Atratus), and mute swans (Cygnus Olor) in Sanmenxia Swan National Wetland Park of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93731-93743. [PMID: 37515622 DOI: 10.1007/s11356-023-28876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
The gastrointestinal microbiota, a complex ecosystem, is involved in the physiological activities of hosts and the development of diseases. Birds occupy a critical ecological niche in the ecosystem, performing a variety of ecological functions and possessing a complex gut microbiota composition. However, the gut microbiota of wild and captive birds has received less attention in the same region. We profiled the fecal gut microbiome of wild wintering whooper swans (Cygnus Cygnus; Cyg group, n = 25), captive black swans (Cygnus Atratus; Atr group, n = 20), and mute swans (Cygnus Olor; Olor group, n = 30) using 16S rRNA gene sequencing to reveal differences in the gut microbial ecology. The results revealed that the three species of swans differed significantly in terms of the alpha and beta diversity of their gut microbiota, as measured by ACE, Chao1, Simpson and Shannon indices, principal coordinates analysis (PCoA) and non-metricmulti-dimensional scaling (NMDS) respectively. Based on the results of the linear discriminant analysis effect size (LEfSe) and random forest analysis, we found that there were substantial differences in the relative abundance of Gottschalkia, Trichococcus, Enterococcus, and Kurthia among the three groups. Furthermore, an advantageous pattern of interactions between microorganisms was shown by the association network analysis. Among these, Gottschalkia had the higher area under curve (AUC), which was 0.939 (CI = 0.879-0.999), indicating that it might be used as a biomarker to distinguish between wild and captive black swans. Additionally, PICRUSt2 predictions indicated significant differences in gut microbiota functions between wild and captive trumpeter swans, with the gut microbiota functions of Cyg group focusing on carbohydrate metabolism, membrane transport, cofactor, and vitamin metabolism pathways, the Atr group on lipid metabolism, and the Olor group on cell motility, amino acid metabolism, and replication and repair pathways. These findings showed that the gut microbiota of wild and captive swans differed, which is beneficial to understand the gut microecology of swans and to improve regional wildlife conservation strategies.
Collapse
Affiliation(s)
- Jun-Xian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen-Li Ding
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Ming-Hui Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Xue-Fei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department, Quetta, Balochistan, 87500, Pakistan
| | - Xi-Lan Jiao
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China.
| |
Collapse
|
20
|
Guan Y, Bao L, Zhou L, Dai C, Li Z, Zhang S, Shang Y, Niu W, Zhang Y, Wang H. Comparative analysis of the fecal microbiota of healthy and injured common kestrel ( Falco tinnunculus) from the Beijing Raptor Rescue Center. PeerJ 2023; 11:e15789. [PMID: 37637157 PMCID: PMC10452619 DOI: 10.7717/peerj.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
The gut microbiota is a complex ecosystem that interacts with many other factors to affect the health and disease states of the host. The common kestrel (Falco tinnunculus) is protected at the national level in China. However, the available sequencing data of the gut microbiota from the feces of wild common kestrels, especially for being rescued individuals by professional organization, remains limited. In the present study, we characterized the fecal bacterial communities of healthy and injured common kestrels, and compared the structure of their fecal microbiota by analyzing the V3-V4 region of the 16S rRNA gene using high-throughput sequencing technology with the Illumina MiSeq platform. We found that Firmicutes, Proteobacteria and Actinobacteria were the most predominant phyla in common kestrels. Further, the beta diversity analysis showed that changes in gut microbes were associated with injuries to the common kestrel. The Bacteroides/Firmicutes ratio was significantly lower in the injured group. At the genus level, Glutamicibacter showed significant difference in the two groups. The aim of our current study was to characterize the basic bacterial composition and community structure in the feces of healthy common kestrels, and then compare the differences in the fecal microbiota between healthy and injured individuals. Patescibacteria, Spirochaetes, and Glutamicibacter may be studied as potential biomarkers for certain diseases in raptors. The results could provide the basic data for additional research on the fecal microbiota of common kestrels and contribute to the rescue of wild raptors in the future.
Collapse
Affiliation(s)
- Yu Guan
- Beijing Normal University, Beijing, China
| | - Lei Bao
- Beijing Normal University, Beijing, China
| | - Lei Zhou
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Chang Dai
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Zhisai Li
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Shuai Zhang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Yugang Shang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | | | | | | |
Collapse
|
21
|
Kawasaki S, Ozawa K, Mori T, Yamamoto A, Ito M, Ohkuma M, Sakamoto M, Matsutani M. Symbiosis of Carpenter Bees with Uncharacterized Lactic Acid Bacteria Showing NAD Auxotrophy. Microbiol Spectr 2023; 11:e0078223. [PMID: 37347191 PMCID: PMC10433979 DOI: 10.1128/spectrum.00782-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Eusocial bees (such as honey bees and bumble bees) harbor core gut microbiomes that are transmitted through social interaction between nestmates. Carpenter bees are not eusocial; however, recent microbiome analyses found that Xylocopa species harbor distinctive core gut microbiomes. In this study, we analyzed the gut microbiomes of three Xylocopa species in Japan between 2016 and 2021 by V1 to V2 region-based 16S rDNA amplicon sequencing, and 14 candidate novel species were detected based on the full-length 16S rRNA gene sequences. All Xylocopa species harbor core gut microbiomes consisting of primarily lactic acid bacteria (LAB) that were phylogenetically distant from known species. Although they were difficult to cultivate, two LAB species from two different Xylocopa species were isolated by supplementing bacterial culture supernatants. Both genomes exhibited an average LAB genome size with a large set of genes for carbohydrate utilization but lacked genes to synthesize an essential coenzyme NAD, which is unique among known insect symbionts. Our findings of phylogenetically distinct core LAB of NAD auxotrophy reflected the evolution of Xylocopa-restricted bacteria retention and maintenance through vertical transmission of microbes during solitary life. We propose five candidate novel species belonging to the families Lactobacillaceae and Bifidobacteriaceae, including a novel genus, and their potential functions in carbohydrate utilization. IMPORTANCE Recent investigations found unique microbiomes in carpenter bees, but the description of individual microbes, including isolation and genomics, remains largely unknown. Here, we found that the Japanese Xylocopa species also harbor core gut microbiomes. Although most of them were difficult to isolate a pure colony, we successfully isolated several strains. We performed whole-genome sequencing of the isolated candidate novel species and found that the two Lactobacillaceae strains belonging to the Xylocopa-specific novel LAB clade lack the genes for synthesizing NAD, a coenzyme central to metabolism in all living organisms. Here, we propose a novel genus for the two LAB species based on very low 16S rRNA gene sequence similarities and genotypic characters.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaori Ozawa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Tatsunori Mori
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Arisa Yamamoto
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Midoriko Ito
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
22
|
Qin Z, Zhao Z, Xia L, Yu G, Miao A, Liu Y. Significant roles of core prokaryotic microbiota across soil profiles in an organic contaminated site: Insight into microbial assemblage, co-occurrence patterns, and potentially key ecological functions. ENVIRONMENTAL RESEARCH 2023; 231:116195. [PMID: 37207735 DOI: 10.1016/j.envres.2023.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Extreme environmental disturbances induced by organic contaminated sites impose serious impacts on soil microbiomes. However, our understanding of the responses of the core microbiota and its ecological roles in organic contaminated sites is limited. In this study, we took a typical organic contaminated site as an example and investigated the composition and structure, assembly mechanisms of core taxa and their roles in key ecological functions across soil profiles. Results presented that core microbiota with a considerably lower number of species (7.93%) than occasional taxa presented comparatively high relative abundances (38.04%) yet, which was mainly comprised of phyla Proteobacteria (49.21%), Actinobacteria (12.36%), Chloroflexi (10.63%), and Firmicutes (8.21%). Furthermore, core microbiota was more influenced by geographical differentiation than environmental filtering, which possessed broader niche widths and stronger phylogenetic signals for ecological preferences than occasional taxa. Null modelling suggested that stochastic processes dominated the assembly of the core taxa and maintained a stable proportion along soil depths. Core microbiota had a greater impact on microbial community stability and possessed higher functional redundancy than occasional taxa. Additionally, the structural equation model illustrated that core taxa played pivotal roles in degrading organic contaminants and maintaining key biogeochemical cycles potentially. Overall, this study deepens our knowledge of the ecology of core microbiota under complicated environmental conditions in organic contaminated sites, and provides a fundamental basis for preserving and potentially utilizing core microbiota to maintain soil health.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing, 210016, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
23
|
Qu S, Shen C, Zhang L, Wang J, Zhang LM, Chen B, Sun GX, Ge Y. Dispersal limitation and host selection drive geo-specific and plant-specific differentiation of soil bacterial communities in the Tibetan alpine ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160944. [PMID: 36526178 DOI: 10.1016/j.scitotenv.2022.160944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soil bacteria, which are active in shrub encroachment, play key roles in regulating ecosystem structure and function. However, the differentiation characteristics and assembly process of bacterial communities in scrubbed grasslands remain unknown. Taking the Qinghai-Tibet Plateau, a hotspot of shrub encroachment, as the study area, we collected 192 soils near nine natural typical shrubs' roots on a trans-longitude transect (about 1800 km) and investigated the bacterial communities using 16S rRNA amplicon sequencing. We found that the bacterial communities exhibited plant-specific and geographic-specific differentiation. On the one hand, bacterial communities differed significantly across plant species, with widely distributed shrubs harboring high diversity communities but few plant-specific taxa, and narrowly distributed shrubs possessing low diversity communities but more plant-specific taxa. Besides, there was a significant negative correlation between bacterial community similarity and plant phylogenetic distance. On the other hand, bacterial communities differed across geographic sites, with a significant decay in bacterial community similarity with geographic distance. The bacterial alpha diversity varied in an inverted V-shape from west to east, peaking at 91°E, which could be largely driven by mean annual temperature, soil pH and soil total carbon content. Community differentiation increased with the heterogeneity degree of assembly processes, and the dominant assembly process in these two specific differentiations differed. Dominated by stochastic and deterministic forces, respectively, geography diverged bacterial communities primarily through increased dispersal limitation, whereas plants diverged bacterial communities primarily through increased variable selection. Our study provides new insight into the characteristics and mechanisms of root-surrounding soil bacteria differentiation in scrubbed grasslands, contributing to the scientific management of degraded grasslands and the prediction of bacterial community structure and ecosystem function in response to global change.
Collapse
Affiliation(s)
- Sai Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Pan B, Han X, Yu K, Sun H, Mu R, Lian CA. Geographical distance, host evolutionary history and diet drive gut microbiome diversity of fish across the Yellow River. Mol Ecol 2023; 32:1183-1196. [PMID: 36478318 DOI: 10.1111/mec.16812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fish represent a large part of the taxonomic diversity of vertebrates and are of high commercial value. However, the factors influencing the gut microbiota composition of freshwater fish over large spatial scales remain unclear. Therefore, this study explored gut microbiome diversity in 24 fish species from the Yellow River, which spans over 1500 km across China. The results showed that geographical distance, host phylogeny and diet significantly influenced gut microbial community diversity, whereas sex, body length and body weight had minimal influence. Geographical distance was the primary factor shaping gut microbiota, and dissimilarity in microbial community structure increased with an increase in geographical distance, which was mainly driven by dispersal limitation. The microbial communities were more homogeneous at higher host taxonomic resolutions due to the dominant role of homogeneous selection in community convergence. Phylosymbiosis was observed across all host species, with a stronger pattern in Cypriniformes, which harbour host-specific microbial taxa. Host diet explained little variation in gut microbiome diversity, although it was significant for all diversity metrics tested. These findings collectively suggest that the geographical and host-based patterns of fish gut microbiota tend to be shaped by different ecological forces across the Yellow River. The present work provides a robust assessment of multiple factors driving fish gut microbial community assembly and offers insight into the mechanisms underlying shifts in fish gut microbiota in rivers across large spatial scales.
Collapse
Affiliation(s)
- Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - He Sun
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Rong Mu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Chun-Ang Lian
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
25
|
Handy MY, Sbardellati DL, Yu M, Saleh NW, Ostwald MM, Vannette RL. Incipiently social carpenter bees (Xylocopa) host distinctive gut bacterial communities and display geographical structure as revealed by full-length PacBio 16S rRNA sequencing. Mol Ecol 2023; 32:1530-1543. [PMID: 36239475 DOI: 10.1111/mec.16736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota of bees affects nutrition, immunity and host fitness, yet the roles of diet, sociality and geographical variation in determining microbiome structure, including variant-level diversity and relatedness, remain poorly understood. Here, we use full-length 16S rRNA amplicon sequencing to compare the crop and gut microbiomes of two incipiently social carpenter bee species, Xylocopa sonorina and Xylocopa tabaniformis, from multiple geographical sites within each species' range. We found that Xylocopa species share a set of core taxa consisting of Bombilactobacillus, Bombiscardovia and Lactobacillus, found in >95% of all individual bees sampled, and Gilliamella and Apibacter were also detected in the gut of both species with high frequency. The crop bacterial community of X. sonorina comprised nearly entirely Apilactobacillus with occasionally abundant nectar bacteria. Despite sharing core taxa, Xylocopa species' microbiomes were distinguished by multiple bacterial lineages, including species-specific variants of core taxa. The use of long-read amplicons revealed otherwise cryptic species and population-level differentiation in core microbiome members, which was masked when a shorter fragment of the 16S rRNA (V4) was considered. Of the core taxa, Bombilactobacillus and Bombiscardovia exhibited differentiation in amplicon sequence variants among bee populations, but this was lacking in Lactobacillus, suggesting that some bacterial genera in the gut may be structured by different processes. We conclude that these Xylocopa species host a distinctive microbiome, similar to that of previously characterized social corbiculate apids, which suggests that further investigation to understand the evolution of the bee microbiome and its drivers is warranted.
Collapse
Affiliation(s)
- Madeline Y Handy
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Dino L Sbardellati
- Microbiology Graduate Group, University of California Davis, Davis, California, USA
| | - Michael Yu
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nicholas W Saleh
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | | | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| |
Collapse
|
26
|
Jiang JZ, Fang YF, Wei HY, Zhu P, Liu M, Yuan WG, Yang LL, Guo YX, Jin T, Shi M, Yao T, Lu J, Ye LT, Shi SK, Wang M, Duan M, Zhang DC. A remarkably diverse and well-organized virus community in a filter-feeding oyster. MICROBIOME 2023; 11:2. [PMID: 36611217 PMCID: PMC9825006 DOI: 10.1186/s40168-022-01431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Viruses play critical roles in the marine environment because of their interactions with an extremely broad range of potential hosts. Many studies of viruses in seawater have been published, but viruses that inhabit marine animals have been largely neglected. Oysters are keystone species in coastal ecosystems, yet as filter-feeding bivalves with very large roosting numbers and species co-habitation, it is not clear what role they play in marine virus transmission and coastal microbiome regulation. RESULTS Here, we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit contigs (≥ 800 bp) and 3473 high-quality viral genomes, enabling the first comprehensive overview of both DNA and RNA viral communities in the oyster Crassostrea hongkongensis. We discovered tremendous diversity among novel viruses that inhabit this oyster using multiple approaches, including reads recruitment, viral operational taxonomic units, and high-quality virus genomes. Our results show that these viruses are very different from viruses in the oceans or other habitats. In particular, the high diversity of novel circoviruses that we found in the oysters indicates that oysters may be potential hotspots for circoviruses. Notably, the viruses that were enriched in oysters are not random but are well-organized communities that can respond to changes in the health state of the host and the external environment at both compositional and functional levels. CONCLUSIONS In this study, we generated a first "knowledge landscape" of the oyster virome, which has increased the number of known oyster-related viruses by tens of thousands. Our results suggest that oysters provide a unique habitat that is different from that of seawater, and highlight the importance of filter-feeding bivalves for marine virus exploration as well as their essential but still invisible roles in regulating marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yi-Fei Fang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Majorbio Bio-Pharm Technology Co Ltd, Shanghai, 201203, China
| | - Hong-Ying Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Peng Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Guang Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Li-Ling Yang
- Tianjin Agricultural University, Tianjin, 300384, China
| | | | - Tao Jin
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Mang Shi
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Shao-Kun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, 518067, Guangdong, China
| | - Meng Wang
- Bureau of Agriculture and Rural Affairs of Conghua District, Guangzhou, 510925, Guangdong, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China, Hubei.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
| |
Collapse
|
27
|
Yang Y, Liu X, Guo J, Xu H, Liu Y, Lu Z. Gut bacterial communities and their assembly processing in Cnaphalocrocis medinalis from different geographic sources. Front Microbiol 2022; 13:1035644. [PMID: 36590437 PMCID: PMC9797858 DOI: 10.3389/fmicb.2022.1035644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The insect gut harbors numerous microorganisms that may have functions in development and reproduction, digestion, immunity and protection, and detoxification. Recently, the influence factors on gut microbiota were evaluated in the rice leaffolder Cnaphalocrocis medinalis, a widespread insect pest in paddy fields. However, the relationship between gut microbiota composition and geography is poorly understood in C. medinalis. Methods To reveal the patterns of C. medinalis gut bacterial communities across geographic sources and the ecological processes driving the patterns, C. medinalis were sampled from six geographic sources in China, Thailand, and Vietnam in 2016, followed by gut bacterial 16S ribosomal RNA gene sequencing. Results A total of 22 bacterial phyla, 56 classes, 84 orders, 138 families, 228 genera, and 299 species were generated in C. medinalis from six geographic sources. All alpha diversity indices differed among the samples from different geographic sources. Analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) both revealed significant differences in the gut microbiota of C. medinalis from six geographic sources. A total of 94 different taxa were screened as indicators for the gut microbiota of C. medinalis from six geographic sources by linear discriminant analysis effect size (LEfSe). The gene ontology (GO) pathways of the gut microbiota in C. medinalis differed among geographic sources. In total, the bacterial communities within geographic sources were mainly determined by stochastic processes, and those between geographic sources were mainly determined by deterministic processes. Discussion This study elucidates that geography plays a crucial role in shaping the gut microbiota of C. medinalis. Thus, it enriches our knowledge of gut bacteria in C. medinalis and sheds light on the mechanisms underlying C. medinalis gut microbial shifts across geography.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,College of Plant Protection, Southwest University, Chongqing, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China,*Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Zhongxian Lu,
| |
Collapse
|
28
|
Zhu Y, Yang R, Wang X, Wen T, Gong M, Shen Y, Xu J, Zhao D, Du Y. Gut microbiota composition in the sympatric and diet-sharing Drosophila simulans and Dicranocephalus wallichii bowringi shaped largely by community assembly processes rather than regional species pool. IMETA 2022; 1:e57. [PMID: 38867909 PMCID: PMC10989964 DOI: 10.1002/imt2.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
Clarifying the mechanisms underlying microbial community assembly from regional microbial pools is a central issue of microbial ecology, but remains largely unexplored. Here, we investigated the gut bacterial and fungal microbiome assembly processes and potential sources in Drosophila simulans and Dicranocephalus wallichii bowringi, two wild, sympatric insect species that share a common diet of waxberry. While some convergence was observed, the diversity, composition, and network structure of the gut microbiota significantly differed between these two host species. Null model analyses revealed that stochastic processes (e.g., drift, dispersal limitation) play a principal role in determining gut microbiota from both hosts. However, the strength of each ecological process varied with the host species. Furthermore, the source-tracking analysis showed that only a minority of gut microbiota within D. simulans and D. wallichii bowringi are drawn from a regional microbial pool from waxberries, leaves, or soil. Results from function prediction implied that host species-specific gut microbiota might arise partly through host functional requirement and specific selection across host-microbiota coevolution. In conclusion, our findings uncover the importance of community assembly processes over regional microbial pools in shaping sympatric insect gut microbiome structure and function.
Collapse
Affiliation(s)
- Yu‐Xi Zhu
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Run Yang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xin‐Yu Wang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving fertilizersNanjing Agricultural UniversityNanjingChina
| | - Ming‐Hui Gong
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Yuan Shen
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Jue‐Ye Xu
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Dian‐Shu Zhao
- Entomology and Nematology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Yu‐Zhou Du
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| |
Collapse
|
29
|
Deng Y, Yang S, Zhao H, Luo J, Yang W, Hou C. Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120278. [PMID: 36167169 DOI: 10.1016/j.envpol.2022.120278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are omnipresent in the environment due to their widespread use, and they have wide-ranging negative impacts on organisms. Virus resistance differs substantially between domesticated Apis mellifera and wild Apis cerana, although both are commonly raised in China. Here, we investigated whether antibiotics can increase the sensitivity of honey bees to viral infection using the Israeli acute paralysis virus (IAPV) and tetracycline as representative virus and antibiotic. Although IAPV multiplied to lower levels in A. cerana than A. mellifera, resulting in decreased mortality (P < 0.01), there was no significant difference in immune responses to viral infection between the two species. Adult worker bees (A. cerana and A. mellifera) were treated with or without tetracycline to demonstrate the prominent role of gut microbiota against viral infection, and found Lactobacillus played a vital antiviral role in A. cerana. In A. cerana but not A. mellifera, tetracycline treatment reduced clearly bee survival and increased susceptibility to IAPV infection (P < 0.01). Our findings revealed that long-term antibiotic treatment in A. mellifera had altered the native gut microbiome and promoted the sensitivity to viral infection. We highlight the effects of antibiotics exposure on resistance to microbial and viral infection.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China
| | - Ji Luo
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, 530002, People's Republic of China
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China.
| |
Collapse
|
30
|
Cheng X, Wang H, Zeng Z, Li L, Zhao R, Bodelier PLE, Wang Y, Liu X, Su C, Liu S. Niche differentiation of atmospheric methane-oxidizing bacteria and their community assembly in subsurface karst caves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:886-896. [PMID: 35925016 DOI: 10.1111/1758-2229.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/17/2023]
Abstract
Karst caves are recently proposed as atmospheric methane sinks in terrestrial ecosystems. Despite of the detection of atmospheric methane-oxidizing bacteria (atmMOB) in caves, we still know little about their ecology and potential ability of methane oxidation in this ecosystem. To understand atmMOB ecology and their potential in methane consumption, we collected weathered rocks and sediments from three different caves in southwestern China. We determined the potential methane oxidization rates in the range of 1.25 ± 0.08 to 1.87 ± 0.41 ng CH4 g-1 DW h-1 , which are comparable to those reported in forest and grassland soils. Results showed that alkaline oligotrophic caves harbour high numbers of atmMOB, particularly upland soil cluster (USC), which significantly correlated with temperature, CH4 and CO2 concentrations. The absolute abundance of USCγ was higher than that of USCα. USCγ-OPS (open patch soil) and USCγ-SS (subsurface soil) dominated in most samples, whereas USCα-BFS (boreal forest soil) only predominated in the sediments near cave entrances, indicating niche differentiation of atmMOB in caves. Overwhelming dominance of homogenous selection in community assembly resulted in convergence of atmMOB communities. Collectively, our results demonstrated the niche differentiation of USC in subsurface alkaline caves and their non-negligible methane-oxidizing potential, providing brand-new knowledge about atmMOB ecology in subsurface biosphere.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Hongmei Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Zhilin Zeng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Lu Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Yiheng Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan, P. R. China
| | - Chuntian Su
- CAGS/Key Laboratory of Karst Dynamics, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, P. R. China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
31
|
Micro"bee"ota: Honey Bee Normal Microbiota as a Part of Superorganism. Microorganisms 2022; 10:microorganisms10122359. [PMID: 36557612 PMCID: PMC9785237 DOI: 10.3390/microorganisms10122359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Honey bees are model organisms for microbiota research. Gut microbiomes are very interesting for surveys due to their simple structure and relationship with hive production. Long-term studies reveal the gut microbiota patterns of various hive members, as well as the functions, sources, and interactions of the majority of its bacteria. But the fungal non-pathogenic part of gut microbiota is almost unexplored, likewise some other related microbiota. Honey bees, as superorganisms, interact with their own microorganisms, the microbial communities of food stores, hive surfaces, and other environments. Understanding microbiota diversity, its transition ways, and hive niche colonization control are necessary for understanding any separate microbiota niche because of their interplay. The long coevolution of bees with the microorganisms populating these niches makes these systems co-dependent, integrated, and stable. Interaction with the environment, hive, and other bees determines caste lifestyle as well as individual microbiota. In this article, we bring together studies on the microbiota of the western honey bee. We show a possible relationship between caste determination and microbiota composition. And what is primary: caste differentiation or microbiota composition?
Collapse
|
32
|
Zhao N, Ma Z, Jiang Y, Shi Y, Xie Y, Wang Y, Wu S, Liu S, Wang S. Geographical patterns of Fejervarya limnocharis gut microbiota by latitude along mainland China’s coastline. Front Microbiol 2022; 13:1062302. [DOI: 10.3389/fmicb.2022.1062302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota affects many aspects of host biology and plays key roles in the coevolutionary association with its host. Geographical gradients may play a certain role on gut microbiota variation in the natural environment. However, the distribution pattern of amphibian gut microbiota in the latitudinal gradient remains largely unexplored. Here, we sampled six natural populations of Fejervarya limnocharis along the eastern coastline of mainland China (spanning 20°–30° N = 1,300 km) using 16S rRNA amplicon sequencing to characterize the gut microbiota. First of all, a significant correlation between gut microbial diversity and latitude was observed in our research system. Second, we discovered that latitude influenced the composition of the gut microbiota of F. limnocharis. Finally, we detected that geographical distance could not determine gut microbiota composition in F. limnocharis. These results indicate that latitude can play an important role in shaping the gut microbial diversity of amphibian. Our study offers the first evidence that gut microbial diversity of amphibian presents a latitudinal pattern and highlights the need for increased numbers of individuals to be sampled during microbiome studies in wild populations along environmental gradients.
Collapse
|
33
|
Wang B, Zhong H, Liu Y, Ruan L, Kong Z, Mou X, Wu L. Diet drives the gut microbiome composition and assembly processes in winter migratory birds in the Poyang Lake wetland, China. Front Microbiol 2022; 13:973469. [PMID: 36212828 PMCID: PMC9537367 DOI: 10.3389/fmicb.2022.973469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The complex gut bacterial communities may facilitate the function, distribution, and diversity of birds. For migratory birds, long-distance traveling poses selection pressures on their gut microbiota, ultimately affecting the birds’ health, fitness, ecology, and evolution. However, our understanding of mechanisms that underlie the assembly of the gut microbiome of migratory birds is limited. In this study, the gut microbiota of winter migratory birds in the Poyang Lake wetland was characterized using MiSeq sequencing of 16S rRNA genes. The sampled bird included herbivorous, carnivorous, and omnivorous birds from a total of 17 species of 8 families. Our results showed that the gut microbiota of migratory birds was dominated by four major bacterial phyla: Firmicutes (47.8%), Proteobacteria (18.2%), Fusobacteria (12.6%), and Bacteroidetes (9.1%). Dietary specialization outweighed the phylogeny of birds as an important factor governing the gut microbiome, mainly through regulating the deterministic processes of homogeneous selection and stochastic processes of homogeneous dispersal balance. Moreover, the omnivorous had more bacterial diversity than the herbivorous and carnivorous. Microbial networks for the gut microbiome of the herbivorous and carnivorous were less integrated, i.e., had lower average node degree and greater decreased network stability upon node attack removal than those of the omnivorous birds. Our findings advance the understanding of host-microbiota interactions and the evolution of migratory bird dietary flexibility and diversification.
Collapse
Affiliation(s)
- Binhua Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Hui Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Yajun Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Luzhang Ruan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Zhaoyu Kong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, OH, United States
- *Correspondence: Xiaozhen Mou,
| | - Lan Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
- Lan Wu,
| |
Collapse
|
34
|
Li B, Shen C, Wu HY, Zhang LM, Wang J, Liu S, Jing Z, Ge Y. Environmental selection dominates over dispersal limitation in shaping bacterial biogeographical patterns across different soil horizons of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156177. [PMID: 35613642 DOI: 10.1016/j.scitotenv.2022.156177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial biogeographical patterns have been widely explored from horizontal to vertical scales. However, studies of microbial vertical distributions were still limited (e.g., how soil genetic horizons influence microbial distributions). To shed light on this question, we investigated soil bacterial communities across three soil horizons (topsoil: horizon A; midsoil: horizon B; subsoil: horizon C) of 60 soil profiles along a 3500 km transect in the Qinghai-Tibet Plateau. We found that bacterial diversity was highest in the topsoil and lowest in the subsoil, and community composition significantly differed across soil horizons. The network complexity decreased from topsoil to subsoil. There were significant geographical/environmental distance-decay relationships (DDR) in three soil horizons, with a lower slope from topsoil to subsoil due to the decreased environmental heterogeneity. Variation partitioning analysis (VPA) showed that bacterial community variations were explained more by environmental than spatial factors. Although environmental selection processes played a dominant role, null model analysis revealed that deterministic processes (mainly variable selection) decreased with deeper soil horizons, while stochastic processes (mainly dispersal limitation) increased from topsoil to subsoil. These results suggested that microbial biogeographical patterns and community assembly processes were soil horizon dependent. Our study provides new insights into the microbial vertical distributions in large-scale alpine regions and highlights the vital role of soil genetic horizons in affecting microbial community assembly, which has implications for understanding the pedogenetic process and microbial responses to extreme environment under climate change.
Collapse
Affiliation(s)
- Bojian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Yong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Su Q, Tang M, Hu J, Tang J, Zhang X, Li X, Niu Q, Zhou X, Luo S, Zhou X. Significant compositional and functional variation reveals the patterns of gut microbiota evolution among the widespread Asian honeybee populations. Front Microbiol 2022; 13:934459. [PMID: 36118209 PMCID: PMC9478171 DOI: 10.3389/fmicb.2022.934459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiome is a crucial element that facilitates a host’s adaptation to a changing environment. Compared to the western honeybee Apis mellifera, the Asian honeybee, Apis cerana populations across its natural range remain mostly semi-feral and are less affected by bee management, which provides a good system to investigate how gut microbiota evolve under environmental heterogeneity on large geographic scales. We compared and analyzed the gut microbiomes of 99 Asian honeybees, from genetically diverged populations covering 13 provinces across China. Bacterial composition varied significantly across populations at phylotype, sequence-discrete population (SDP), and strain levels, but with extensive overlaps, indicating that the diversity of microbial community among A. cerana populations is driven by nestedness. Pollen diets were significantly correlated with both the composition and function of the gut microbiome. Core bacteria, Gilliamella and Lactobacillus Firm-5, showed antagonistic turnovers and contributed to the enrichment in carbohydrate transport and metabolism. By feeding and inoculation bioassays, we confirmed that the variations in pollen polysaccharide composition contributed to the trade-off of these core bacteria. Progressive change, i.e., nestedness, is the foundation of gut microbiome evolution among the Asian honeybee. Such a transition during the co-diversification of gut microbiomes is affected by environmental factors, diets in general, and pollen polysaccharides in particular.
Collapse
Affiliation(s)
- Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiahui Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xingan Li
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Shiqi Luo,
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Xin Zhou,
| |
Collapse
|
36
|
Zhu YX, Huo QB, Wen T, Wang XY, Zhao MY, Du YZ. Mechanisms of fungal community assembly in wild stoneflies moderated by host characteristics and local environment. NPJ Biofilms Microbiomes 2022; 8:31. [PMID: 35477734 PMCID: PMC9046381 DOI: 10.1038/s41522-022-00298-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022] Open
Abstract
Deterministic and stochastic forces both drive microbiota assembly in animals, yet their relative contribution remains elusive, especially in wild aquatic-insect-associated fungal communities. Here, we applied amplicon sequencing to survey the assembly mechanisms of the fungal community in 155 wild stonefly individuals involving 44 species of 20 genera within eight families collected from multiple locations in China. Analysis showed that fungal diversity and network complexity differed significantly among the eight stonefly families, and that the fungal communities in stoneflies exhibited a significant distance-decay pattern across large spatial scales. Both a structural equation model and variance partitioning analysis revealed that environmental factors (e.g., geographical, climatic) outweigh host attributes in shaping the fungal community of stoneflies. Using neutral and null model analyses, we also find that deterministic processes play a larger role than stochasticity in driving the fungal community assembly. However, the relative contribution of ecological processes including dispersal, drift, and selection, varied strongly with host taxonomy. Furthermore, environmental conditions also significantly affect the strength of these ecological processes. Overall, our findings illustrate that variations in host attributes and environment factors may moderate the relative influence of deterministic and stochastic processes to fungal community composition in wild stoneflies, which provides new insights into mechanisms of microbial community assembly in aquatic arthropods.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing-Bo Huo
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yu Wang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Meng-Yuan Zhao
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
37
|
Species Identity Dominates over Environment in Driving Bacterial Community Assembly in Wild Invasive Leaf Miners. Microbiol Spectr 2022; 10:e0026622. [PMID: 35343791 PMCID: PMC9045101 DOI: 10.1128/spectrum.00266-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The microbiota of invasive animal species may be pivotal to their adaptation and spread, yet the processes driving the assembly and potential sources of host-microbiota remain poorly understood. Here, we characterized microbiota of four Liriomyza leaf miner fly species totaling 310 individuals across 43 geographical populations in China and assessed whether the microbiota of the wild leaf miner was acquired from the soil microbiota or the host plant microbiota, using high-throughput 16S rRNA sequencing. Bacterial communities differed significantly among four leaf miner species but did not mirror host phylogeny. Microbiota diversity in the native L. chinensis was significantly higher than in three invasive leaf miners (i.e., L. trifolii, L. huidobrensis, and L. sativae), yet the microbial community of the invasive species exhibited a more connected and complex network structure. Structural equation models revealed that host species identity was more important than environmental factors (e.g., geography, climate, or plants) in shaping microbiota composition. Using neutral and null model analyses, we found that deterministic processes like variable selection played a primary role in driving microbial community assembly, with some influence by stochastic processes like drift. The relative degree of these processes governing microbiota was likely correlated with host species but independent of either geographical or climatic factors. Finally, source tracking analysis showed that leaf miners might acquire microbes from their host plant rather than the soil. Our results provide a robust assessment of the ecological processes governing bacterial community assembly and potential sources of microbes in invasive leaf miners. IMPORTANCE The invasion of foreign species, including leaf miners, is a major threat to world biota. Host-associated microbiota may facilitate host adaption and expansion in a variety of ways. Thus, understanding the processes that drive leaf miner microbiota assembly is imperative for better management of invasive species. However, how microbial communities assemble during the leaf miner invasions and how predictable the processes remain unexplored. This work quantitatively deciphers the relative importance of deterministic process and stochastic process in governing the assembly of four leaf miner microbiotas and identifies potential sources of leaf miner-colonizing microbes from the soil-plant-leaf miner continuum. Our study provides new insights into the mechanisms underlying the drive of leaf miner microbiota assembly.
Collapse
|
38
|
Chen P, Huang J, Rao L, Zhu W, Yu Y, Xiao F, Yu H, Wu Y, Hu R, Liu X, He Z, Yan Q. Environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150963. [PMID: 34656599 DOI: 10.1016/j.scitotenv.2021.150963] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The environmental stresses could significantly affect the structure and functions of microbial communities colonized in the gut ecosystem. However, little is known about how engineered nanoparticles (ENPs), which have recently become a common pollutant in the environment, affect the gut microbiota across fish development. Based on the high-throughput sequencing of the 16S rRNA gene amplicon, we explored the ecological succession of gut microbiota in zebrafish exposed to nanoparticles for three months. The nanoparticles used herein including titanium dioxide nanoparticles (nTiO2, 100 μg/L), zinc oxide nanoparticles (nZnO, 100 μg/L), and selenium nanoparticles (nSe, 100 μg/L). Our results showed that nanoparticles exposure reduced the alpha diversity of gut microbiota at 73-90 days post-hatching (dph), but showed no significant effects at 14-36 dph. Moreover, nTiO2 significantly (p < 0.05) altered the composition of the gut microbial communities at 73-90 dph (e.g., decreasing abundance of Cetobacterium and Vibrio). Moreover, we found that homogeneous selection was the major process (16.6-57.8%) governing the community succession of gut microbiota. Also, nanoparticles exposure caused topological alterations to microbial networks and led to increased positive interactions to destabilize the gut microbial community. This study reveals the environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development, which provides novel insights to understand the gut microbial responses to ENPs over the development of aquatic animals.
Collapse
Affiliation(s)
- Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liuyu Rao
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wengen Zhu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjie Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Lv M, Lei Q, Yin H, Hu T, Wang S, Dong K, Pan H, Liu Y, Lin Q, Cao Z. In vitro Effects of Prebiotics and Synbiotics on Apis cerana Gut Microbiota. Pol J Microbiol 2022; 70:511-520. [PMID: 34970318 PMCID: PMC8702607 DOI: 10.33073/pjm-2021-049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/27/2021] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.
Collapse
Affiliation(s)
- Mingkui Lv
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qingzhi Lei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Huajuan Yin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Tiannian Hu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Sifan Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Kun Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming, People's Republic of China
| | - Yiqiu Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming, People's Republic of China
| |
Collapse
|
40
|
Liu YJ, Jing Z, Bai XT, Diao QY, Wang J, Wu YY, Zhao Q, Xia T, Xing B, Holden PA, Ge Y. Nano-La 2O 3 Induces Honeybee ( Apis mellifera) Death and Enriches for Pathogens in Honeybee Gut Bacterial Communities. Front Microbiol 2021; 12:780943. [PMID: 34925285 PMCID: PMC8674717 DOI: 10.3389/fmicb.2021.780943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Honeybees (Apis mellifera) can be exposed via numerous potential pathways to ambient nanoparticles (NPs), including rare earth oxide (REO) NPs that are increasingly used and released into the environment. Gut microorganisms are pivotal in mediating honeybee health, but how REO NPs may affect honeybee health and gut microbiota remains poorly understood. To address this knowledge gap, honeybees were fed pollen and sucrose syrup containing 0, 1, 10, 100, and 1000mgkg-1 of nano-La2O3 for 12days. Nano-La2O3 exerted detrimental effects on honeybee physiology, as reflected by dose-dependent adverse effects of nano-La2O3 on survival, pollen consumption, and body weight (p<0.05). Nano-La2O3 caused the dysbiosis of honeybee gut bacterial communities, as evidenced by the change of gut bacterial community composition, the enrichment of pathogenic Serratia and Frischella, and the alteration of digestion-related taxa Bombella (p<0.05). There were significant correlations between honeybee physiological parameters and the relative abundances of pathogenic Serratia and Frischella (p<0.05), underscoring linkages between honeybee health and gut bacterial communities. Taken together, this study demonstrates that nano-La2O3 can cause detrimental effects on honeybee health, potentially by disordering gut bacterial communities. This study thus reveals a previously overlooked effect of nano-La2O3 on the ecologically and economically important honeybee species Apis mellifera.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Ting Bai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yun Diao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yan Wu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Patricia A. Holden
- Bren School of Environmental Science & Management, Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Yuan Ge
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|