1
|
Wang L, Hou J, Yang K, Yu H, Zhang B, Liu Z, Zheng Y. Development of synthetic small regulatory RNA for Rhodococcus erythropolis. Biotechnol J 2024; 19:e2400022. [PMID: 38528342 DOI: 10.1002/biot.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
Rhodococci have been regarded as ideal chassis for biotransformation, biodegradation, and biosynthesis for their unique environmental persistence and robustness. However, most species of Rhodococcus are still difficult to metabolically engineer due to the lack of genetic tools and techniques. In this study, synthetic sRNA strategy was exploited for gene repression in R. erythropolis XP. The synthetic sRNA based on the RhlS scaffold from Pseudomonas aeruginosa functions better in repressing sfgfp expression than those based on E. coli MicC, SgrS, and P. aeruginosa PrrF1-2 scaffold. The RhlS-based sRNAs were applied to study the influence of sulfur metabolism on biodesulfurization (BDS) efficiency in R. erythropolis XP and successfully identified two genes involved in sulfur metabolism that affect the BDS efficiency significantly. The RhlS-based synthetic sRNAs show promise in the metabolic engineering of Rhodococcus and promote the industrial applications of Rhodococcus in environmental remediation and biosynthesis.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Jie Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P.R. China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Haonan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
2
|
Silva TP, Paixão SM, Tavares J, Paradela F, Crujeira T, Roseiro JC, Alves L. Streamlining the biodesulfurization process: development of an integrated continuous system prototype using Gordonia alkanivorans strain 1B. RSC Adv 2024; 14:725-742. [PMID: 38173596 PMCID: PMC10758933 DOI: 10.1039/d3ra07405f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Biodesulfurization is a biotechnological process that uses microorganisms as biocatalysts to actively remove sulfur from fuels. It has the potential to be cleaner and more efficient than the current industrial process, however several bottlenecks have prevented its implementation. Additionally, most works propose models based on direct cultivation on fuel, or batch production of biocatalysts followed by a processing step before application to batch biodesulfurization, which are difficult to replicate at a larger scale. Thus, there is a need for a model that can be adapted to a refining process, where fuel is being continuously produced to meet consumer needs. The main goal of this work was to develop the first bench-scale continuous biodesulfurization system that integrates biocatalyst production, biodesulfurization and fuel separation, into a single continuous process, taking advantage of the method for the continuous production of the biodesulfurization biocatalysts previously established. This system eliminates the need to process the biocatalysts and facilitates fuel separation, while mitigating some of the process bottlenecks. First, using the bacterium Gordonia alkanivorans strain 1B, continuous culture conditions were optimized to double biocatalyst production, and the produced biocatalysts were applied in batch biphasic biodesulfurization assays for a better understanding of the influence of different factors. Then, the novel integrated system was developed and evaluated using a model fuel (n-heptane + dibenzothiophene) in continuous biodesulfurization assays. With this system strain 1B surpassed its highest biodesulfurization rate, reaching 21 μmol h-1 g-1. Furthermore, by testing a recalcitrant model fuel, composed of n-heptane with dibenzothiophene and three alkylated derivatives (with 109 ppm of sulfur), 72% biodesulfurization was achieved by repeatedly passing the same fuel through the system, maintaining a constant response throughout sequential biodesulfurization cycles. Lastly, the system was also tested with real fuels (used tire/plastic pyrolysis oil; sweet and sour crude oils), revealing increased desulfurization activity. These results highlight the potential of the continuous biodesulfurization system to accelerate the transition from bench to commercial scale, contributing to the development of biodesulfurization biorefineries, centered on the valorization of sulfur-rich residues/biomasses for energy production.
Collapse
Affiliation(s)
- Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Filipe Paradela
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Teresa Crujeira
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - José C Roseiro
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| |
Collapse
|
3
|
Martzoukou O, Mamma D, Hatzinikolaou DG. Medium composition overturns the widely accepted sulfate-dependent repression of desulfurization phenotype in Rhodococcus qingshengii IGTS8. Biotechnol Bioeng 2023; 120:3092-3098. [PMID: 37218382 DOI: 10.1002/bit.28436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Microbial desulfurization has been extensively studied as a promising alternative to the widely applied chemical desulfurization process. Sulfur removal from petroleum and its products becomes essential, as the environmental regulations become increasingly stringent. Rhodococcus qingshengii IGTS8 has gained ground as a naturally occurring model biocatalyst, due to its superior specific activity for desulfurization of dibenzothiophene (DBT). Recalcitrant organic sulfur compounds-DBT included-are preferentially removed by selective carbon-sulfur bond cleavage to avoid a reduction in the calorific value of the fuel. The process, however, still has not reached economically sustainable levels, as certain limitations have been identified. One of those bottlenecks is the repression of catalytic activity caused by ubiquitous sulfur sources such as inorganic sulfate, methionine, or cysteine. Herein, we report an optimized culture medium for wild-type stain IGTS8 that completely alleviates the sulfate-mediated repression of biodesulfurization activity without modification of the natural biocatalyst. Medium C not only promotes growth in the presence of several sulfur sources, including DBT, but also enhances biodesulfurization of resting cells grown in the presence of up to 5 mM sulfate. Based on the above, the present work can be considered as a step towards the development of a more viable commercial biodesulfurization process.
Collapse
Affiliation(s)
- Olga Martzoukou
- Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Diomi Mamma
- Biotechnology Laboratory, Sector of Synthesis and Development of Industrial Processes (IV), School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Dimitris G Hatzinikolaou
- Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Zumsteg J, Hirschler A, Carapito C, Maurer L, Villette C, Heintz D, Dahl C, El Nayal A, Sangal V, Mahmoud H, Van Dorsselaer A, Ismail W. Mechanistic insights into sulfur source-driven physiological responses and metabolic reorganization in the fuel-biodesulfurizing Rhodococcus qingshengii IGTS8. Appl Environ Microbiol 2023; 89:e0082623. [PMID: 37655899 PMCID: PMC10537767 DOI: 10.1128/aem.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Comparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of Rhodococcus qingshengii IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO4 as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions. While most central metabolic enzymes were less abundant in the presence of DBT, a key enzyme of the glyoxylate shunt, isocitrate lyase, was up to 26-fold more abundant. Several C1 metabolism and oligotrophy-related enzymes were significantly more abundant in the biodesulfurizing culture. R. qingshengii IGTS8 exhibited oligotrophic growth in liquid and solid media under carbon starvation. Moreover, the oligotrophic growth was faster on the solid medium in the presence of DBT compared to MgSO4 cultures. In the DBT culture, the cell envelope and phospholipids were remodeled, with lower levels of phosphatidylethanolamine and unsaturated and short-chain fatty acids being the most prominent changes. Biodesulfurization increased the biosynthesis of osmoprotectants (ectoine and mannosylglycerate) as well as glutamate and induced the stringent response. Our findings reveal highly diverse and overlapping stress responses that could protect the biodesulfurizing culture not only from the associated sulfate limitation but also from chemical, oxidative, and osmotic stress, allowing efficient resource management. IMPORTANCE Despite decades of research, a commercially viable bioprocess for fuel desulfurization has not been developed yet. This is mainly due to lack of knowledge of the physiology and metabolism of fuel-biodesulfurizing bacteria. Being a stressful condition, biodesulfurization could provoke several stress responses that are not understood. This is particularly important because a thorough understanding of the microbial stress response is essential for the development of environmentally friendly and industrially efficient microbial biocatalysts. Our comparative systems biology studies provide a mechanistic understanding of the biology of biodesulfurization, which is crucial for informed developments through the rational design of recombinant biodesulfurizers and optimization of the bioprocess conditions. Our findings enhance the understanding of the physiology, metabolism, and stress response not only in biodesulfurizing bacteria but also in rhodococci, a precious group of biotechnologically important bacteria.
Collapse
Affiliation(s)
- Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Loïc Maurer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Département mécanique, ICube Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie, UNISTRA/CNRS/ENGEES/INSA, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ashraf El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
5
|
Advancing Desulfurization in the Model Biocatalyst Rhodococcus qingshengii IGTS8 via an In Locus Combinatorial Approach. Appl Environ Microbiol 2023; 89:e0197022. [PMID: 36688659 PMCID: PMC9973023 DOI: 10.1128/aem.01970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.
Collapse
|
6
|
Bacterial Biological Factories Intended for the Desulfurization of Petroleum Products in Refineries. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The removal of sulfur by deep hydrodesulfurization is expensive and environmentally unfriendly. Additionally, sulfur is not separated completely from heterocyclic poly-aromatic compounds. In nature, several microorganisms (Rhodococcus erythropolis IGTS8, Gordonia sp., Bacillus sp., Mycobacterium sp., Paenibacillus sp. A11-2 etc.) have been reported to remove sulfur from petroleum fractions. All these microbes remove sulfur from recalcitrant organosulfur compounds via the 4S pathway, showing potential for some organosulfur compounds only. Activity up to 100 µM/g dry cell weights is needed to meet the current demand for desulfurization. The present review describes the desulfurization capability of various microorganisms acting on several kinds of sulfur sources. Genetic engineering approaches on Gordonia sp. and other species have revealed a variety of good substrate ranges of desulfurization, both for aliphatic and aromatic organosulfur compounds. Whole genome sequence analysis and 4S pathway inhibition by a pTeR group inhibitor have also been discussed. Now, emphasis is being placed on how to commercialize the microbes for industrial-level applications by incorporating biodesulfurization into hydrodesulfurization systems. Thus, this review summarizes the potentialities of microbes for desulfurization of petroleum. The information included in this review could be useful for researchers as well as the economical commercialization of bacteria in petroleum industries.
Collapse
|
7
|
Glekas PD, Martzoukou O, Mastrodima ME, Zarkadoulas E, Kanakoglou DS, Kekos D, Pachnos M, Mavridis G, Mamma D, Hatzinikolaou DG. Deciphering the biodesulfurization potential of two novel Rhodococcus isolates from a unique Greek environment. AIMS Microbiol 2022; 8:484-506. [PMID: 36694580 PMCID: PMC9834085 DOI: 10.3934/microbiol.2022032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Sustainable biodesulfurization (BDS) processes require the use of microbial biocatalysts that display high activity against the recalcitrant heterocyclic sulfur compounds and can simultaneously withstand the harsh conditions of contact with petroleum products, inherent to any industrial biphasic BDS system. In this framework, the functional microbial BDS-related diversity in a naturally oil-exposed ecosystem, was examined through a 4,6-dimethyl-dibenzothiophene based enrichment process. Two new Rhodococcus sp. strains were isolated, which during a medium optimization process revealed a significantly enhanced BDS activity profile when compared to the model strain R. qingshengii IGTS8. In biocatalyst stability studies conducted in biphasic mode using partially hydrodesulfurized diesel under various process conditions, the new strains also presented an enhanced stability phenotype. In these studies, it was also demonstrated for all strains, that the BDS activity losses were decoupled from the overall cells' viability, in addition to the fact that the use of whole-broth biocatalyst positively affected BDS performance.
Collapse
Affiliation(s)
- Panayiotis D. Glekas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Olga Martzoukou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Maria-Eleni Mastrodima
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Efstathios Zarkadoulas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Dimitrios S. Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Dimitris Kekos
- Biotechnology Laboratory, Sector of Synthesis and Development of Industrial Processes (IV), School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Michalis Pachnos
- Division of European Affairs, Motor Oil Hellas, 15121 Marousi, Athens, Greece
| | - George Mavridis
- Division of European Affairs, Motor Oil Hellas, 15121 Marousi, Athens, Greece
| | - Diomi Mamma
- Biotechnology Laboratory, Sector of Synthesis and Development of Industrial Processes (IV), School of Chemical Engineering, National Technical University of Athens, Athens, Greece,* Correspondence:
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece,* Correspondence: ; Tel: +306932782004
| |
Collapse
|