1
|
Xiao Q, Zhai L, Zhang X, Liu Y, Li J, Xie X, Xu G, He S, Fu H, Tang Y, Zhang F, Liu Y. How can we establish animal models of HIV-associated lymphoma? Animal Model Exp Med 2024; 7:484-496. [PMID: 38567763 PMCID: PMC11369037 DOI: 10.1002/ame2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/27/2024] [Indexed: 09/04/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV-associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Jun Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaoqing Xie
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Guofa Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Huihui Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yifeng Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Fujie Zhang
- Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
2
|
Latosińska JN, Latosińska M, Seliger J, Žagar V, Apih T. Butterfly Effect in Cytarabine: Combined NMR-NQR Experiment, Solid-State Computational Modeling, Quantitative Structure-Property Relationships and Molecular Docking Study. Pharmaceuticals (Basel) 2024; 17:445. [PMID: 38675407 PMCID: PMC11053780 DOI: 10.3390/ph17040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cytarabine (Ara-C) is a synthetic isomer of cytidine that differs from cytidine and deoxycytidine only in the sugar. The use of arabinose instead of deoxyribose hinders the formation of phosphodiester linkages between pentoses, preventing the DNA chain from elongation and interrupting the DNA synthesis. The minor structural alteration (the inversion of hydroxyl at the 2' positions of the sugar) leads to change of the biological activity from anti-depressant and DNA/RNA block builder to powerful anti-cancer. Our study aimed to determine the molecular nature of this phenomenon. Three 1H-14N NMR-NQR experimental techniques, followed by solid-state computational modelling (Quantum Theory of Atoms in Molecules, Reduced Density Gradient and 3D Hirshfeld surfaces), Quantitative Structure-Property Relationships, Spackman's Hirshfeld surfaces and Molecular Docking were used. Multifaceted analysis-combining experiments, computational modeling and molecular docking-provides deep insight into three-dimensional packing at the atomic and molecular levels, but is challenging. A spectrum with nine lines indicating the existence of three chemically inequivalent nitrogen sites in the Ara-C molecule was recorded, and the lines were assigned to them. The influence of the structural alteration on the NQR parameters was modeled in the solid (GGA/RPBE). For the comprehensive description of the nature of these interactions several factors were considered, including relative reactivity and the involvement of heavy atoms in various non-covalent interactions. The binding modes in the solid state and complex with dCK were investigated using the novel approaches: radial plots, heatmaps and root-mean-square deviation of the binding mode. We identified the intramolecular OH···O hydrogen bond as the key factor responsible for forcing the glycone conformation and strengthening NH···O bonds with Gln97, Asp133 and Ara128, and stacking with Phe137. The titular butterfly effect is associated with both the inversion and the presence of this intramolecular hydrogen bond. Our study elucidates the differences in the binding modes of Ara-C and cytidine, which should guide the design of more potent anti-cancer and anti-viral analogues.
Collapse
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Janez Seliger
- “Jožef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Veselko Žagar
- “Jožef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Tomaž Apih
- “Jožef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Schulz TF, Freise A, Stein SC. Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen: more than a key mediator of viral persistence. Curr Opin Virol 2023; 61:101336. [PMID: 37331160 DOI: 10.1016/j.coviro.2023.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus-8, is an oncogenic herpesvirus. Its latency-associated nuclear antigen (LANA) is essential for the persistence of KSHV in latently infected cells. LANA mediates replication of the latent viral genome during the S phase of a dividing cell and partitions episomes to daughter cells by attaching them to mitotic chromosomes. It also mediates the establishment of latency in newly infected cells through epigenetic mechanisms and suppresses the activation of the productive replication cycle. Furthermore, LANA promotes the proliferation of infected cell by acting as a transcriptional regulator and by modulating the cellular proteome through the recruitment of several cellular ubiquitin ligases. Finally, LANA interferes with the innate and adaptive immune system to facilitate the immune escape of infected cells.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Germany.
| | - Anika Freise
- Institute of Virology, Hannover Medical School, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany
| |
Collapse
|
6
|
Li X, Wang F, Zhang X, Sun Q, Kuang E. Suppression of KSHV lytic replication and primary effusion lymphoma by selective RNF5 inhibition. PLoS Pathog 2023; 19:e1011103. [PMID: 36656913 PMCID: PMC9888681 DOI: 10.1371/journal.ppat.1011103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Primary effusion lymphoma (PEL), a rare aggressive B-cell lymphoma in immunosuppressed patients, is etiologically associated with oncogenic γ-herpesvirus infection. Chemotherapy is commonly used to treat PEL but usually results in poor prognosis and survival; thus, novel therapies and drug development are urgently needed for PEL treatment. Here, we demonstrated that inhibition of Ring finger protein 5 (RNF5), an ER-localized E3 ligase, suppresses multiple cellular pathways and lytic replication of Kaposi sarcoma-associated herpesvirus (KSHV) in PEL cells. RNF5 interacts with and induces Ephrin receptors A3 (EphA3) and EphA4 ubiquitination and degradation. RNF5 inhibition increases the levels of EphA3 and EphA4, thereby reducing ERK and Akt activation and KSHV lytic replication. RNF5 inhibition decreased PEL xenograft tumor growth and downregulated viral gene expression, cell cycle gene expression, and hedgehog signaling in xenograft tumors. Our study suggests that RNF5 plays the critical roles in KSHV lytic infection and tumorigenesis of primary effusion lymphoma.
Collapse
Affiliation(s)
- Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
- * E-mail:
| |
Collapse
|
7
|
Liang W, Wang S, Wang H, Li X, Meng Q, Zhao Y, Zheng C. When 3D genome technology meets viral infection, including SARS-CoV-2. J Med Virol 2022; 94:5627-5639. [PMID: 35916043 PMCID: PMC9538846 DOI: 10.1002/jmv.28040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023]
Abstract
Mammalian chromosomes undergo varying degrees of compression to form three-dimensional genome structures. These three-dimensional structures undergo dynamic and precise chromatin interactions to achieve precise spatial and temporal regulation of gene expression. Most eukaryotic DNA viruses can invade their genomes into the nucleus. However, it is still poorly understood how the viral genome is precisely positioned after entering the host cell nucleus to find the most suitable location and whether it can specifically interact with the host genome to hijack the host transcriptional factories or even integrate into the host genome to complete its transcription and replication rapidly. Chromosome conformation capture technology can reveal long-range chromatin interactions between different chromosomal sites in the nucleus, potentially providing a reference for viral DNA-host chromatin interactions. This review summarized the research progress on the three-dimensional interaction between virus and host genome and the impact of virus integration into the host genome on gene transcription regulation, aiming to provide new insights into chromatin interaction and viral gene transcription regulation, laying the foundation for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Weizheng Liang
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Shuangqing Wang
- Department of NeurologyShenzhen University General Hospital, Shenzhen UniversityShenzhen, Guangdong ProvinceChina
| | - Hao Wang
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
| | - Xiushen Li
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen, GuangdongChina
- Shenzhen Key LaboratoryShenzhen University General HospitalShenzhen, GuangdongChina
| | - Qingxue Meng
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
| | - Yan Zhao
- Department of Mathematics and Computer ScienceFree University BerlinBerlinGermany
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
8
|
Qi L, Xu R, Ren X, Zhang W, Yang Z, Tu C, Li Z. Comprehensive Profiling Reveals Prognostic and Immunogenic Characteristics of Necroptosis in Soft Tissue Sarcomas. Front Immunol 2022; 13:877815. [PMID: 35663937 PMCID: PMC9159500 DOI: 10.3389/fimmu.2022.877815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
Soft tissue sarcomas (STSs) are heterogeneous malignancies derived from mesenchymal cells. Due to its rarity, heterogeneity, and limited overall response to chemotherapy, STSs represent a therapeutic challenge. Necroptosis is a novel therapeutic strategy for enhancing immunotherapy of cancer. Nevertheless, no research has explored the relationship between necroptosis-related genes (NRGs) and STSs. In this study, differentially expressed NRGs were identified using The Cancer Genome Atlas (TCGA) and The Cancer Genotype-Tissue Expression (GTEx) project. The expression levels of 34 NRGs were significantly different. Several key NRGs were validated using RT-qPCR and our own sequencing data. Patients with STSs were divided into two clusters using consensus cluster analysis, and significant differences were observed in their survival (p=0.002). We found the differentially expressed genes (DEGs) between the two clusters and carried out subsequent analysis. The necroptosis-related gene signatures with 10 key DEGs were identified with a risk score constructed. The prognosis of TCGA-SARC cohort with low necroptosis-related risk score was better (p<0.001). Meanwhile, the low-risk group had a significantly increased immune infiltration. Using the data of GSE17118 and another immunotherapy cohort as external validations, we observed significant survival differences between the two risk groups (p=0.019). The necroptosis-related risk score proved to be an independent prognostic factor, and a nomogram was further established and integrated with other clinical features. Notably, the necroptosis-related gene signature could also act as the prognostic indicator in other malignancies based on pan-cancer analysis. In summary, the study outlines NRGs in STSs and their potential role in prognosis and will be one of the important directions for future research.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Ruiling Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.,Department of Microbiology, Immunology & Molecular Genetics, UT Health Science Center, University of Texas Long School of Medicine, San Antonio, TX, United States
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
9
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
10
|
Ju E, Li T, Ramos da Silva S, Markazi A, Gao SJ. Reversible switching of primary cells between normal and malignant state by oncogenic virus KSHV and CRISPR/Cas9-mediated targeting of a major viral latent protein. J Med Virol 2021; 93:5065-5075. [PMID: 33942339 PMCID: PMC9016784 DOI: 10.1002/jmv.27046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022]
Abstract
Viral infection has been implicated in the pathogenesis of a plethora of human diseases. Although antiviral therapies effectively confront the viral spread and infection, how to completely eradicate the viral genome from infected cells remains a challenge. In this study, we demonstrated the reversible switching of primary cells between normal and malignant states by an oncogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) and CRISPR/Cas9-mediated targeting of a major viral latent protein. Primary cells can be transformed into malignant status by infection of KSHV, while elimination of the KSHV genome from latent KSHV-infected cells reverses KSHV-transformed primary cells back to a "normal state" by CRISPR/Cas-mediated knockout of viral major latent gene LANA. As a proof of concept, we demonstrated efficient elimination of KSHV episome in KSHV-associated primary effusion lymphoma cells resulting in the induction of apoptosis by liposome-encapsulated CRISPR/Cas9 ribonucleoprotein complexes (Lipo/Cas9-LANAsgRNA). Our work illustrates CRISPR/Cas as a promising technology for eliminating oncogenic viruses from persistently infected cells by taking advantage of the genetic differences between viral and cellular genomes. Compared to traditional antiviral therapy, our study offer an approach for antagonizing human oncogenic virus-related cancers by directly targeting as well as clearing viral genomes.
Collapse
Affiliation(s)
- Enguo Ju
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ashley Markazi
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
KSHV-specific antivirals targeting the protein-DNA interaction of the latency-associated nuclear antigen. Future Med Chem 2021; 13:1141-1151. [PMID: 34036806 DOI: 10.4155/fmc-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human herpesviruses that is responsible for cancer, especially in immunosuppressed people, such as patients with AIDS. So far, there are no KSHV-specifc antiviral agents available. In this review, we provide an overview on one particular target-centered approach toward novel anti-KSHV drugs focusing on interfering with the molecular functions of the latency-associated nuclear antigen (LANA). This review focuses on attempts to interfere with the LANA-DNA interaction mediated by the C-terminal domain. We describe the drug discovery approaches chosen for this endeavor as well as molecular structures that were identified in this innovative concept toward novel and KSHV-specific antiherpesviral agents.
Collapse
|
12
|
Asha K, Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front Cell Infect Microbiol 2021; 11:603309. [PMID: 33816328 PMCID: PMC8017445 DOI: 10.3389/fcimb.2021.603309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses utilize various host factors to establish latent infection, survival, and spread disease in the host. These factors include host cellular machinery, host proteins, gene expression, multiple transcription factors, cellular signal pathways, immune cell activation, transcription factors, cytokines, angiogenesis, invasion, and factors promoting metastasis. The knowledge and understanding of host genes, protein products, and biochemical pathways lead to discovering safe and effective antivirals to prevent viral reactivation and spread infection. Here, we focus on the contribution of pro-inflammatory, anti-inflammatory, and resolution lipid metabolites of the arachidonic acid (AA) pathway in the lifecycle of herpesvirus infections. We discuss how various herpesviruses utilize these lipid pathways to their advantage and how we target them to combat herpesvirus infection. We also summarize recent development in anti-herpesvirus therapeutics and new strategies proposed or under clinical trials. These anti-herpesvirus therapeutics include inhibitors blocking viral life cycle events, engineered anticancer agents, epigenome influencing factors, immunomodulators, and therapeutic compounds from natural extracts.
Collapse
Affiliation(s)
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
13
|
Calderon A, Soldan SS, De Leo A, Deng Z, Frase DM, Anderson EM, Zhang Y, Vladimirova O, Lu F, Leung JC, Murphy ME, Lieberman PM. Identification of Mubritinib (TAK 165) as an inhibitor of KSHV driven primary effusion lymphoma via disruption of mitochondrial OXPHOS metabolism. Oncotarget 2020; 11:4224-4242. [PMID: 33245718 PMCID: PMC7679036 DOI: 10.18632/oncotarget.27815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
KSHV-associated cancers have poor prognoses and lack therapeutics that selectively target viral gene functions. We developed a screening campaign to identify known drugs that could be repurposed for the treatment of KSHV-associated cancers. We focused on primary effusion lymphoma (PEL), which has particularly poor treatment outcomes. We developed a luciferase reporter assay to test the ability of drugs to inhibit DNA binding of the KSHV LANA DNA binding domain (DBD). In parallel, we screened drugs for selective inhibition of a KSHV+ PEL cells. While potent hits were identified in each assay, only one hit, Mubritinib, was found to score in both assays. Mubritinib caused PEL cells to undergo cell cycle arrest with accumulation of sub-G1 population and Annexin V. Mubritinib inhibited LANA binding to KSHV terminal repeat (TR) DNA in KSHV+ PEL cells, but did not lead to KSHV lytic cycle reactivation. Mubritinib was originally identified as a receptor tyrosine kinase (RTK) inhibitor selective for HER2/ErbB2. But recent studies have revealed that Mubritinib can also inhibit the electron transport chain (ETC) complex at nanomolar concentrations. We found that other related ETC complex inhibitors (Rotenone and Deguelin) exhibited PEL cell growth inhibition while RTK inhibitors failed. Seahorse analysis demonstrated that Mubritinib selectively inhibits the maximal oxygen consumption (OCR) in PEL cells and metabolomics revealed changes in ATP/ADP and ATP/AMP ratios. These findings indicate that PEL cells are selectively sensitive to ETC complex inhibitors and provide a rationale for repurposing Mubritinib for selective treatment of PEL.
Collapse
Affiliation(s)
| | | | | | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | | | - Yue Zhang
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | - Fang Lu
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | | | | |
Collapse
|
14
|
Ju E, Li T, Liu Z, da Silva SR, Wei S, Zhang X, Wang X, Gao SJ. Specific Inhibition of Viral MicroRNAs by Carbon Dots-Mediated Delivery of Locked Nucleic Acids for Therapy of Virus-Induced Cancer. ACS NANO 2020; 14:476-487. [PMID: 31895530 PMCID: PMC7119180 DOI: 10.1021/acsnano.9b06333] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Viruses are associated with up to 15% of human cancer. MicroRNAs (miRNAs) encoded by numerous oncogenic viruses including Kaposi's sarcoma-associated herpesvirus (KSHV) play significant roles in regulating the proliferation and survival of virus-induced cancer cells, hence representing attractive therapeutic targets. Here, we report that specific inhibition of viral miRNAs by carbon dots (Cdots)-mediated delivery of locked nucleic acid (LNA)-based suppressors inhibit the proliferation of KSHV-associated primary effusion lymphoma (PEL) cells. Specifically, a combination of Cdots-LNAs to knock down the levels of KSHV miR-K12-1, miR-K12-4, and miR-K12-11 induces apoptosis and inhibits proliferation of PEL cells. Significantly, these Cdots-LNAs effectively inhibit the initiation of PEL and regress established PEL in a xenograft mouse model. These results demonstrate the feasibility of using Cdots to deliver miRNA suppressors for targeting viral cancers. Our study with viral miRNAs as targets may provide the scientific basis for using antisense drugs for human cancers associated with oncogenic viruses.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carbon/chemistry
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Screening Assays, Antitumor
- Female
- Herpesvirus 8, Human/chemistry
- Lymphoma/drug therapy
- Lymphoma/pathology
- Lymphoma/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Oligonucleotides/chemistry
- Oligonucleotides/pharmacology
- Particle Size
- Quantum Dots/chemistry
- RNA, Viral/antagonists & inhibitors
- Rats
- Surface Properties
Collapse
Affiliation(s)
- Enguo Ju
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Shan Wei
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Xinquan Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Xian Wang
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| |
Collapse
|
15
|
Ding L, Zhu Q, Zhou F, Tan H, Xu W, Pan C, Zhu C, Wang Y, Zhang H, Fu W, Qian Z, Yuan Z, Xu H, Wei F, Cai Q. Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma. PLoS Pathog 2019; 15:e1008174. [PMID: 31830143 PMCID: PMC6932820 DOI: 10.1371/journal.ppat.1008174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/26/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi’s sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus. Primary effusion lymphoma is a common AIDS-associated malignancy caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV), and is currently absence of efficient and specific treatment. Natural product from herbal medicines is a major source of drug discovery for the treatment of a variety of diseases. In this study, the authors demonstrated that Cambogin, a polycyclic polyprenylated acylphloroglucinols (PPAPs) isolated from the branches of Garcinia esculenta (a tropical evergreen tree and traditional cancer treatment across Southern Asia), is a potent and effective inhibitor of KSHV-latently infected cells at a low concentration (nM) in vitro and in vivo, through targeting viral LANASIM-SUMO2 interaction.
Collapse
Affiliation(s)
- Ling Ding
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Feng Zhou
- Baoji Affiliated Hospital of Xi’an Medical University, Baoji & MOE Key Laboratory of Western Resources and Modern Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chengling Pan
- Beijing Computing Center, Beijing Academy of Science and Technology & Beijing Beike Deyuan Bio-Pharm Technology Company, Beijing, P. R. China
| | - Caixia Zhu
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- * E-mail: (HX); (FW); (QC)
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- * E-mail: (HX); (FW); (QC)
| | - Qiliang Cai
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Expert Workstation, Baoji Central Hospital, Baoji, P. R. China
- * E-mail: (HX); (FW); (QC)
| |
Collapse
|