1
|
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics (Basel) 2024; 14:2319. [PMID: 39451642 PMCID: PMC11506786 DOI: 10.3390/diagnostics14202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial Resistance (AMR) has evolved from a mere concern into a significant global threat, with profound implications for public health, healthcare systems, and the global economy. Since the introduction of antibiotics between 1945 and 1963, their widespread and often indiscriminate use in human medicine, agriculture, and animal husbandry has led to the emergence and rapid spread of antibiotic-resistant genes. Bacteria have developed sophisticated mechanisms to evade the effects of antibiotics, including drug uptake limitation, drug degradation, target modification, efflux pumps, biofilm formation, and outer membrane vesicles production. As a result, AMR now poses a threat comparable to climate change and the COVID-19 pandemic, and projections suggest that death rates will be up to 10 million deaths annually by 2050, along with a staggering economic cost exceeding $100 trillion. Addressing AMR requires a multifaceted approach, including the development of new antibiotics, alternative therapies, and a significant shift in antibiotic usage and regulation. Enhancing global surveillance systems, increasing public awareness, and prioritizing investments in research, diagnostics, and vaccines are critical steps. By recognizing the gravity of the AMR threat and committing to collaborative action, its impact can be mitigated, and global health can be protected for future generations.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | | |
Collapse
|
2
|
Liang Y, Hugonnet JE, Rusconi F, Arthur M. Peptidoglycan-tethered and free forms of the Braun lipoprotein are in dynamic equilibrium in Escherichia coli. eLife 2024; 12:RP91598. [PMID: 39360705 PMCID: PMC11449479 DOI: 10.7554/elife.91598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Peptidoglycan (PG) is a giant macromolecule that completely surrounds bacterial cells and prevents lysis in hypo-osmotic environments. This net-like macromolecule is made of glycan strands linked to each other by two types of transpeptidases that form either 4→3 (PBPs) or 3→3 (LDTs) cross-links. Previously, we devised a heavy isotope-based PG full labeling method coupled to mass spectrometry to determine the mode of insertion of new subunits into the expanding PG network (Atze et al., 2022). We showed that PG polymerization operates according to different modes for the formation of the septum and of the lateral cell walls, as well as for bacterial growth in the presence or absence of β-lactams in engineered strains that can exclusively rely on LDTs for PG cross-linking when drugs are present. Here, we apply our method to the resolution of the kinetics of the reactions leading to the covalent tethering of the Braun lipoprotein (Lpp) to PG and the subsequent hydrolysis of that same covalent link. We find that Lpp and disaccharide-peptide subunits are independently incorporated into the expanding lateral cell walls. Newly synthesized septum PG appears to contain small amounts of tethered Lpp. LDTs did mediate intense shuffling of Lpp between PG stems leading to a dynamic equilibrium between the PG-tethered and free forms of Lpp.
Collapse
Affiliation(s)
- Yucheng Liang
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Filippo Rusconi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- GQE-Le Moulon/PA, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
3
|
Aliashkevich A, Guest T, Alvarez L, Gilmore MC, Rea D, Amstutz J, Mateus A, Schiffthaler B, Ruiz I, Typas A, Savitski MM, Brown PJB, Cava F. LD-transpeptidation is crucial for fitness and polar growth in Agrobacterium tumefaciens. PLoS Genet 2024; 20:e1011449. [PMID: 39432536 PMCID: PMC11527210 DOI: 10.1371/journal.pgen.1011449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/31/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Peptidoglycan (PG), a mesh-like structure which is the primary component of the bacterial cell wall, is crucial to maintain cell integrity and shape. While most bacteria rely on penicillin binding proteins (PBPs) for crosslinking, some species also employ LD-transpeptidases (LDTs). Unlike PBPs, the essentiality and biological functions of LDTs remain largely unclear. The Hyphomicrobiales order of the Alphaproteobacteria, known for their polar growth, have PG which is unusually rich in LD-crosslinks, suggesting that LDTs may play a more significant role in PG synthesis in these bacteria. Here, we investigated LDTs in the plant pathogen Agrobacterium tumefaciens and found that LD-transpeptidation, resulting from at least one of 14 putative LDTs present in this bacterium, is essential for its survival. Notably, a mutant lacking a distinctive group of 7 LDTs which are broadly conserved among the Hyphomicrobiales exhibited reduced LD-crosslinking and tethering of PG to outer membrane β-barrel proteins. Consequently, this mutant suffered severe fitness loss and cell shape rounding, underscoring the critical role played by these Hyphomicrobiales-specific LDTs in maintaining cell wall integrity and promoting elongation. Tn-sequencing screens further revealed non-redundant functions for A. tumefaciens LDTs. Specifically, Hyphomicrobiales-specific LDTs exhibited synthetic genetic interactions with division and cell cycle proteins, and a single LDT from another group. Additionally, our findings demonstrate that strains lacking all LDTs except one displayed distinctive phenotypic profiles and genetic interactions. Collectively, our work emphasizes the critical role of LD-crosslinking in A. tumefaciens cell wall integrity and growth and provides insights into the functional specialization of these crosslinking activities.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Thomas Guest
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Michael C. Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Daniel Rea
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Jennifer Amstutz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bastian Schiffthaler
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Iñigo Ruiz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M. Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
5
|
Alamán-Zárate MG, Rady BJ, Evans CA, Pian B, Greetham D, Marecos-Ortiz S, Dickman MJ, Lidbury IDEA, Lovering AL, Barstow BM, Mesnage S. Unusual 1-3 peptidoglycan cross-links in Acetobacteraceae are made by L,D-transpeptidases with a catalytic domain distantly related to YkuD domains. J Biol Chem 2024; 300:105494. [PMID: 38006948 PMCID: PMC10727944 DOI: 10.1016/j.jbc.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.
Collapse
Affiliation(s)
- Marcel G Alamán-Zárate
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Brooks J Rady
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Caroline A Evans
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Darren Greetham
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sabrina Marecos-Ortiz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Ian D E A Lidbury
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Buz M Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Stéphane Mesnage
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
6
|
Wang HJ, Hernández-Rocamora VM, Kuo CI, Hsieh KY, Lee SH, Ho MR, Tu Z, Vollmer W, Chang CI. Structural basis for the hydrolytic activity of the transpeptidase-like protein DpaA to detach Braun's lipoprotein from peptidoglycan. mBio 2023; 14:e0137923. [PMID: 37830798 PMCID: PMC10653827 DOI: 10.1128/mbio.01379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Cross-linking reaction of Braun's lipoprotein (Lpp) to peptidoglycan (PG) is catalyzed by some members of the YkuD family of transpeptidases. However, the exact opposite reaction of cleaving the Lpp-PG cross-link is performed by DpaA, which is also a YkuD-like protein. In this work, we determined the crystal structure of DpaA to provide the molecular rationale for the ability of the transpeptidase-like protein to cleave, rather than form, the Lpp-PG linkage. Our findings also revealed the structural features that distinguish the different functional types of the YkuD family enzymes from one another.
Collapse
Affiliation(s)
- Hsiu-Jung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Víctor M. Hernández-Rocamora
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- College of Life Science, Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Yin L, Wang X, Xu H, Yin B, Wang X, Zhang Y, Li X, Luo Y, Chen Z. Unrecognized risk of perfluorooctane sulfonate in promoting conjugative transfers of bacterial antibiotic resistance genes. Appl Environ Microbiol 2023; 89:e0053323. [PMID: 37565764 PMCID: PMC10537727 DOI: 10.1128/aem.00533-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Antibiotic resistance is a major global health crisis facing humanity, with horizontal gene transfer (HGT) as a principal dissemination mechanism in the natural and clinical environments. Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse effects on humans. However, it is unknown whether PFASs affect the HGT of bacterial antibiotic resistance. Using a genetically engineered Escherichia coli MG1655 as the donor of plasmid-encoded antibiotic resistance genes (ARGs), E. coli J53 and soil bacterial community as two different recipients, this study demonstrated that the conjugation frequency of ARGs between two E. coli strains was (1.45 ± 0.17) × 10-5 and perfluorooctane sulfonate (PFOS) at environmentally relevant concentrations (2-50 μg L-1) increased conjugation transfer between E. coli strains by up to 3.25-fold. Increases in reactive oxygen species production, cell membrane permeability, biofilm formation capacity, and cell contact in two E. coli strains were proposed as major promotion mechanisms from PFOS exposure. Weighted gene co-expression network analysis of transcriptome data identified a series of candidate genes whose expression changes could contribute to the increase in conjugation transfer induced by PFOS. Furthermore, PFOS also generally increased the ARG transfer into the studied soil bacterial community, although the uptake ability of different community members of the plasmid either increased or decreased upon PFOS exposure depending on specific bacterial taxa. Overall, this study reveals an unrecognized risk of PFOS in accelerating the dissemination of antibiotic resistance. IMPORTANCE Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse health effects. Although the influence of environmental pollutants on the spread of antibiotic resistance, one of the biggest threats to global health, has attracted increasing attention in recent years, it is unknown whether environmental residues of PFASs affect the dissemination of bacterial antibiotic resistance. Considering PFASs, often called "forever" compounds, have significantly higher environmental persistence than most emerging organic contaminants, exploring the effect of PFASs on the spread of antibiotic resistance is more environmentally relevant and has essential ecological and health significance. By systematically examining the influence of perfluorooctane sulfonate on the antibiotic resistance gene conjugative transfer, not only at the single-strain level but also at the community level, this study has uncovered an unrecognized risk of PFASs in promoting conjugative transfers of bacterial antibiotic resistance genes, which could be incorporated into the risk assessment framework of PFASs.
Collapse
Affiliation(s)
- Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Han Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Bo Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xingshuo Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yulin Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xinyao Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Hugonneau-Beaufet I, Barnier JP, Thiriet-Rupert S, Létoffé S, Mainardi JL, Ghigo JM, Beloin C, Arthur M. Characterization of Pseudomonas aeruginosa l,d-Transpeptidases and Evaluation of Their Role in Peptidoglycan Adaptation to Biofilm Growth. Microbiol Spectr 2023; 11:e0521722. [PMID: 37255442 PMCID: PMC10434034 DOI: 10.1128/spectrum.05217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that sustains the turgor pressure of the cytoplasm, determines cell shape, and acts as a scaffold for the anchoring of envelope polymers such as lipoproteins. The final cross-linking step of peptidoglycan polymerization is performed by classical d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family and by l,d-transpeptidases (LDTs), which are dispensable for growth in most bacterial species and whose physiological functions remain elusive. In this study, we investigated the contribution of LDTs to cell envelope synthesis in Pseudomonas aeruginosa grown in planktonic and biofilm conditions. We first assigned a function to each of the three P. aeruginosa LDTs by gene inactivation in P. aeruginosa, heterospecific gene expression in Escherichia coli, and, for one of them, direct determination of its enzymatic activity. We found that the three P. aeruginosa LDTs catalyze peptidoglycan cross-linking (LdtPae1), the anchoring of lipoprotein OprI to the peptidoglycan (LdtPae2), and the hydrolysis of the resulting peptidoglycan-OprI amide bond (LdtPae3). Construction of a phylogram revealed that LDTs performing each of these three functions in various species cannot be assigned to distinct evolutionary lineages, in contrast to what has been observed with PBPs. We showed that biofilm, but not planktonic bacteria, displayed an increase proportion of peptidoglycan cross-links formed by LdtPae1 and a greater extent of OprI anchoring to peptidoglycan, which is controlled by LdtPae2 and LdtPae3. Consistently, deletion of each of the ldt genes impaired biofilm formation and potentiated the bactericidal activity of EDTA. These results indicate that LDTs contribute to the stabilization of the bacterial cell envelope and to the adaptation of peptidoglycan metabolism to growth in biofilm. IMPORTANCE Active-site cysteine LDTs form a functionally heterologous family of enzymes that contribute to the biogenesis of the bacterial cell envelope through formation of peptidoglycan cross-links and through the dynamic anchoring of lipoproteins to peptidoglycan. Here, we report the role of three P. aeruginosa LDTs that had not been previously characterized. We show that these enzymes contribute to resistance to the bactericidal activity of EDTA and to the adaptation of cell envelope polymers to conditions that prevail in biofilms. These results indicate that LDTs should be considered putative targets in the development of drug-EDTA associations for the control of biofilm-related infections.
Collapse
Affiliation(s)
- Inès Hugonneau-Beaufet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Sylvie Létoffé
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Jean-Luc Mainardi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
10
|
Choi U, Park SH, Lee HB, Son JE, Lee CR. Coordinated and Distinct Roles of Peptidoglycan Carboxypeptidases DacC and DacA in Cell Growth and Shape Maintenance under Stress Conditions. Microbiol Spectr 2023; 11:e0001423. [PMID: 37098975 PMCID: PMC10269652 DOI: 10.1128/spectrum.00014-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023] Open
Abstract
Peptidoglycan (PG) is an essential bacterial architecture pivotal for shape maintenance and adaptation to osmotic stress. Although PG synthesis and modification are tightly regulated under harsh environmental stresses, few related mechanisms have been investigated. In this study, we aimed to investigate the coordinated and distinct roles of the PG dd-carboxypeptidases (DD-CPases) DacC and DacA in cell growth under alkaline and salt stresses and shape maintenance in Escherichia coli. We found that DacC is an alkaline DD-CPase, the enzyme activity and protein stability of which are significantly enhanced under alkaline stress. Both DacC and DacA were required for bacterial growth under alkaline stress, whereas only DacA was required for growth under salt stress. Under normal growth conditions, only DacA was necessary for cell shape maintenance, while under alkaline stress conditions, both DacA and DacC were necessary for cell shape maintenance, but their roles were distinct. Notably, all of these roles of DacC and DacA were independent of ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and the outer membrane lipoprotein Lpp. Instead, DacC and DacA interacted with penicillin-binding proteins (PBPs)-dd-transpeptidases-mostly in a C-terminal domain-dependent manner, and these interactions were necessary for most of their roles. Collectively, our results demonstrate the coordinated and distinct novel roles of DD-CPases in bacterial growth and shape maintenance under stress conditions and provide novel insights into the cellular functions of DD-CPases associated with PBPs. IMPORTANCE Most bacteria have a peptidoglycan architecture for cell shape maintenance and protection against osmotic challenges. Peptidoglycan dd-carboxypeptidases control the amount of pentapeptide substrates, which are used in the formation of 4-3 cross-links by the peptidoglycan synthetic dd-transpeptidases, penicillin-binding proteins (PBPs). Seven dd-carboxypeptidases exist in Escherichia coli, but the physiological significance of their redundancy and their roles in peptidoglycan synthesis are poorly understood. Here, we showed that DacC is an alkaline dd-carboxypeptidase for which both protein stability and enzyme activity are significantly enhanced at high pH. Strikingly, dd-carboxypeptidases DacC and DacA physically interacted with PBPs, and these interactions were necessary for cell shape maintenance as well as growth under alkaline and salt stresses. Thus, cooperation between dd-carboxypeptidases and PBPs may allow E. coli to overcome various stresses and to maintain cell shape.
Collapse
Affiliation(s)
- Umji Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Han Byeol Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Ji Eun Son
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
- The Natural Science Research Institute, Myongji University, Yongin, Gyeonggido, Republic of Korea
| |
Collapse
|
11
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Voedts H, Kennedy SP, Sezonov G, Arthur M, Hugonnet JE. Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams. Nat Commun 2022; 13:7962. [PMID: 36575173 PMCID: PMC9794725 DOI: 10.1038/s41467-022-35528-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
The D,D-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of β-lactam antibiotics that block peptidoglycan polymerization. β-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a β-lactam-insensitive L,D-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by β-lactams in actively dividing bacteria. The functions of the 179 conditionally essential genes identified by this approach extend far beyond L,D-transpeptidase partners for peptidoglycan polymerization to include proteins involved in stress response and in the assembly of outer membrane polymers. The unsuspected effects of β-lactams include loss of the lipoprotein-mediated covalent bond that links the outer membrane to the peptidoglycan, destabilization of the cell envelope in spite of effective peptidoglycan cross-linking, and increased permeability of the outer membrane. The latter effect indicates that the mode of action of β-lactams involves self-promoted penetration through the outer membrane.
Collapse
Affiliation(s)
- Henri Voedts
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Sean P. Kennedy
- Institut Pasteur, Université Paris Cité, Département Biologie Computationnelle, F-75015 Paris, France
| | - Guennadi Sezonov
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Michel Arthur
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Jean-Emmanuel Hugonnet
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
13
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Toth M, Stewart NK, Smith CA, Lee M, Vakulenko SB. The l,d-Transpeptidase Ldt Ab from Acinetobacter baumannii Is Poorly Inhibited by Carbapenems and Has a Unique Structural Architecture. ACS Infect Dis 2022; 8:1948-1961. [PMID: 35973205 PMCID: PMC9764404 DOI: 10.1021/acsinfecdis.2c00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
l,d-Transpeptidases (LDTs) are enzymes that catalyze reactions essential for biogenesis of the bacterial cell wall, including formation of 3-3 cross-linked peptidoglycan. Unlike the historically well-known bacterial transpeptidases, the penicillin-binding proteins (PBPs), LDTs are resistant to inhibition by the majority of β-lactam antibiotics, with the exception of carbapenems and penems, allowing bacteria to survive in the presence of these drugs. Here we report characterization of LdtAb from the clinically important pathogen, Acinetobacter baumannii. We show that A. baumannii survives inactivation of LdtAb alone or in combination with PBP1b or PBP2, while simultaneous inactivation of LdtAb and PBP1a is lethal. Minimal inhibitory concentrations (MICs) of all 13 β-lactam antibiotics tested decreased 2- to 8-fold for the LdtAb deletion mutant, while further decreases were seen for both double mutants, with the largest, synergistic effect observed for the LdtAb + PBP2 deletion mutant. Mass spectrometry experiments showed that LdtAb forms complexes in vitro only with carbapenems. However, the acylation rate of these antibiotics is very slow, with the reaction taking longer than four hours to complete. Our X-ray crystallographic studies revealed that LdtAb has a unique structural architecture and is the only known LDT to have two different peptidoglycan-binding domains.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Clyde A Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Mass Spectrometry and Proteomics Facility, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance. Microbiol Spectr 2022; 10:e0173422. [PMID: 35758683 PMCID: PMC9430164 DOI: 10.1128/spectrum.01734-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin and β-lactams are clinically important antibiotics that inhibit the formation of peptidoglycan cross-links, but their binding targets are different. The binding target of vancomycin is d-alanine-d-alanine (d-Ala-d-Ala), whereas that of β-lactam is penicillin-binding proteins (PBPs). In this study, we revealed the divergent effects of peptidoglycan (PG) carboxypeptidase DacA on vancomycin and β-lactam resistance in Escherichia coli and Bacillus subtilis. The deletion of DacA induced sensitivity to most β-lactams, whereas it induced strong resistance toward vancomycin. Notably, both phenotypes did not have a strong association with ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and an Lpp outer membrane (OM) lipoprotein. Vancomycin resistance was induced by an increased amount of decoy d-Ala-d-Ala residues within PG, whereas β-lactam sensitivity was associated with physical interactions between DacA and PBPs. The presence of an OM permeability barrier strongly strengthened vancomycin resistance, but it significantly weakened β-lactam sensitivity. Collectively, our results revealed two distinct functions of DacA, which involved inverse modulation of bacterial resistance to clinically important antibiotics, β-lactams and vancomycin, and presented evidence for a link between DacA and PBPs. IMPORTANCE Bacterial PG hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and stress adaptation. Of all the PG hydrolases, the role of PG carboxypeptidases is poorly understood, especially regarding their impacts on antibiotic resistance. We have revealed two distinct functions of PG carboxypeptidase DacA with respect to antibiotic resistance. The deletion of DacA led to sensitivity to most β-lactams, while it caused strong resistance to vancomycin. Our study provides novel insights into the roles of PG carboxypeptidases in the regulation of antibiotic resistance and a potential clue for the development of a drug to improve the clinical efficacy of β-lactam antibiotics.
Collapse
|
16
|
Grossman AS, Escobar CA, Mans EJ, Mucci NC, Mauer TJ, Jones KA, Moore CC, Abraham PE, Hettich RL, Schneider L, Campagna SR, Forest KT, Goodrich-Blair H. A Surface Exposed, Two-Domain Lipoprotein Cargo of a Type XI Secretion System Promotes Colonization of Host Intestinal Epithelia Expressing Glycans. Front Microbiol 2022; 13:800366. [PMID: 35572647 PMCID: PMC9100927 DOI: 10.3389/fmicb.2022.800366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The only known required component of the newly described Type XI secretion system (TXISS) is an outer membrane protein (OMP) of the DUF560 family. TXISSOMPs are broadly distributed across proteobacteria, but properties of the cargo proteins they secrete are largely unexplored. We report biophysical, histochemical, and phenotypic evidence that Xenorhabdus nematophila NilC is surface exposed. Biophysical data and structure predictions indicate that NilC is a two-domain protein with a C-terminal, 8-stranded β-barrel. This structure has been noted as a common feature of TXISS effectors and may be important for interactions with the TXISSOMP. The NilC N-terminal domain is more enigmatic, but our results indicate it is ordered and forms a β-sheet structure, and bioinformatics suggest structural similarities to carbohydrate-binding proteins. X. nematophila NilC and its presumptive TXISSOMP partner NilB are required for colonizing the anterior intestine of Steinernema carpocapsae nematodes: the receptacle of free-living, infective juveniles and the anterior intestinal cecum (AIC) in juveniles and adults. We show that, in adult nematodes, the AIC expresses a Wheat Germ Agglutinin (WGA)-reactive material, indicating the presence of N-acetylglucosamine or N-acetylneuraminic acid sugars on the AIC surface. A role for this material in colonization is supported by the fact that exogenous addition of WGA can inhibit AIC colonization by X. nematophila. Conversely, the addition of exogenous purified NilC increases the frequency with which X. nematophila is observed at the AIC, demonstrating that abundant extracellular NilC can enhance colonization. NilC may facilitate X. nematophila adherence to the nematode intestinal surface by binding to host glycans, it might support X. nematophila nutrition by cleaving sugars from the host surface, or it might help protect X. nematophila from nematode host immunity. Proteomic and metabolomic analyses of wild type X. nematophila compared to those lacking nilB and nilC revealed differences in cell wall and secreted polysaccharide metabolic pathways. Additionally, purified NilC is capable of binding peptidoglycan, suggesting that periplasmic NilC may interact with the bacterial cell wall. Overall, these findings support a model that NilB-regulated surface exposure of NilC mediates interactions between X. nematophila and host surface glycans during colonization. This is a previously unknown function for a TXISS.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Cristian A. Escobar
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
| | - Erin J. Mans
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Nicholas C. Mucci
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Terra J. Mauer
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
| | - Katarina A. Jones
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Cameron C. Moore
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Liesel Schneider
- Department of Animal Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R. Campagna
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biological and Small Molecule Mass Spectrometry Core, The University of Tennessee, Knoxville, Knoxville, TN, United States
- The University of Tennessee Oak Ridge Innovation Institute, Knoxville, TN, United States
| | - Katrina T. Forest
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
- Katrina T. Forest,
| | - Heidi Goodrich-Blair
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Bacteriology, The University of Wisconsin–Madison, Madison, WI, United States
- *Correspondence: Heidi Goodrich-Blair,
| |
Collapse
|
17
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat Commun 2022; 13:1509. [PMID: 35314810 PMCID: PMC8938487 DOI: 10.1038/s41467-022-29007-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPeptidoglycan hydrolases contribute to the generation of helical cell shape in Campylobacter and Helicobacter bacteria, while cytoskeletal or periskeletal proteins determine the curved, vibrioid cell shape of Caulobacter and Vibrio. Here, we identify a peptidoglycan hydrolase in the vibrioid-shaped predatory bacterium Bdellovibrio bacteriovorus which invades and replicates within the periplasm of Gram-negative prey bacteria. The protein, Bd1075, generates cell curvature in B. bacteriovorus by exerting LD-carboxypeptidase activity upon the predator cell wall as it grows inside spherical prey. Bd1075 localizes to the outer convex face of B. bacteriovorus; this asymmetric localization requires a nuclear transport factor 2-like (NTF2) domain at the protein C-terminus. We solve the crystal structure of Bd1075, which is monomeric with key differences to other LD-carboxypeptidases. Rod-shaped Δbd1075 mutants invade prey more slowly than curved wild-type predators and stretch invaded prey from within. We therefore propose that the vibrioid shape of B. bacteriovorus contributes to predatory fitness.
Collapse
|
19
|
Tan WB, Chng SS. Genetic interaction mapping highlights key roles of the Tol-Pal complex. Mol Microbiol 2022; 117:921-936. [PMID: 35066953 DOI: 10.1111/mmi.14882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
The conserved Tol-Pal trans-envelope complex is important for outer membrane (OM) stability and cell division in Gram-negative bacteria. It is proposed to mediate OM constriction during cell division via cell wall tethering. Yet, recent studies suggest the complex has additional roles in OM lipid homeostasis and septal wall separation. How Tol-Pal facilitates all these processes is unclear. To gain insights into its function(s), we applied transposon-insertion sequencing, and report here a detailed network of genetic interactions with the tol-pal locus in Escherichia coli. We found one positive and >20 negative strong interactions based on fitness. Disruption osmoregulated-periplasmic glucan biosynthesis restores fitness and OM barrier function, but not proper division, in tol-pal mutants. In contrast, deleting genes involved in OM homeostasis and cell wall remodeling cause synthetic growth defects in strains lacking Tol-Pal, especially exacerbating OM barrier and/or division phenotypes. Notably, the ΔtolA mutant having additional defects in OM protein assembly (ΔbamB) exhibited severe division phenotypes, even when single mutants divided normally; this highlights the possibility for OM phenotypes to indirectly impact cell division. Overall, our work underscores the intricate nature of Tol-Pal function, and reinforces its key roles in cell wall-OM tethering, cell wall remodeling, and in particular, OM homeostasis.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| |
Collapse
|
20
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
21
|
Cleavage of Braun's lipoprotein Lpp from the bacterial peptidoglycan by a paralog of l,d-transpeptidases, LdtF. Proc Natl Acad Sci U S A 2021; 118:2101989118. [PMID: 33941679 DOI: 10.1073/pnas.2101989118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gram-negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM, protecting cells from turgor and environmental stress conditions. In several bacteria, including Escherichia coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun's lipoprotein), that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery, Lpp has been studied extensively, and although l,d-transpeptidases, the enzymes that catalyze the formation of PG-Lpp linkages, have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly identified paralog of l,d-transpeptidases in E. coli, is a murein hydrolytic enzyme that catalyzes cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF was earlier presumed to be an l,d-transpeptidase; however, our results show that it is indeed an l,d-endopeptidase that hydrolyzes the products generated by the l,d-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG-Lpp cross-links, suggesting a role for LdtF in the regulation of PG-OM linkages to maintain the structural integrity of the bacterial cell envelope.
Collapse
|