1
|
Price MN, Arkin AP. Interactive tools for functional annotation of bacterial genomes. Database (Oxford) 2024; 2024:baae089. [PMID: 39241109 PMCID: PMC11378808 DOI: 10.1093/database/baae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/08/2024]
Abstract
Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the functions of proteins is missing from the underlying databases. We discuss how to use interactive tools to quickly find different kinds of information relevant to a protein's function. Many of these tools are available via PaperBLAST (http://papers.genomics.lbl.gov). Combining these tools often allows us to infer a protein's function. Ideally, accurate annotations would allow us to predict a bacterium's capabilities from its genome sequence, but in practice, this remains challenging. We describe interactive tools that infer potential capabilities from a genome sequence or that search a genome to find proteins that might perform a specific function of interest. Database URL: http://papers.genomics.lbl.gov.
Collapse
Affiliation(s)
- Morgan N Price
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Adam P Arkin
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| |
Collapse
|
2
|
He Z, Li P, Liu P, Xu P. Exploring stachydrine: from natural occurrence to biological activities and metabolic pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1442879. [PMID: 39170783 PMCID: PMC11337228 DOI: 10.3389/fpls.2024.1442879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Stachydrine, also known as proline betaine, is a prominent constituent of traditional Chinese herb Leonurus japonicus, renowned for its significant pharmacological effects. Widely distributed in plants like Leonurus and Citrus aurantium, as well as various bacteria, stachydrine serves pivotal physiological functions across animal, plant, and bacterial kingdoms. This review aims to summarizes diverse roles and mechanisms of stachydrine in addressing cardiovascular and cerebrovascular diseases, neuroprotection, anticancer activity, uterine regulation, anti-inflammatory response, obesity management, and respiratory ailments. Notably, stachydrine exhibits cardioprotective effects via multiple pathways encompassing anti-inflammatory, antioxidant, anti-apoptotic, and modulation of calcium handling functions. Furthermore, its anti-cancer properties inhibit proliferation and migration of numerous cancer cell types. With a bi-directional regulatory effect on uterine function, stachydrine holds promise for obstetrics and gynecology-related disorders. In plants, stachydrine serves as a secondary metabolite, contributing to osmotic pressure regulation, nitrogen fixation, pest resistance, and stress response. Similarly, in bacteria, it plays a crucial osmoprotective role, facilitating adaptation to high osmotic pressure environments. This review also addresses ongoing research on the anabolic metabolism of stachydrine. While the biosynthetic pathway remains incompletely understood, the metabolic pathway is well-established. A deeper understanding of stachydrine biosynthesis holds significance for elucidating its mechanism of action, advancing the study of plant secondary metabolism, enhancing drug quality control, and fostering new drug development endeavors.
Collapse
Affiliation(s)
- Zekun He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Pan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Hu H, Qiu K, Hao Q, He X, Qin L, Chen L, Yang C, Dai X, Liu H, Xu H, Guo H, Li J, Wu R, Feng J, Zhou Y, Han J, Xiao C, Wang X. Electromagnetic Field-Assisted Frozen Tissue Planarization Enhances MALDI-MSI in Plant Spatial Omics. Anal Chem 2024; 96:11809-11822. [PMID: 38975729 DOI: 10.1021/acs.analchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kaidi Qiu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaoyan Dai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
4
|
Parekh T, Tsai M, Spiro S. Choline degradation in Paracoccus denitrificans: identification of sources of formaldehyde. J Bacteriol 2024; 206:e0008124. [PMID: 38501746 PMCID: PMC11025334 DOI: 10.1128/jb.00081-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.
Collapse
Affiliation(s)
- Trusha Parekh
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Marcus Tsai
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Stephen Spiro
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
5
|
Czech L, Gertzen C, Smits SHJ, Bremer E. Guilty by association: importers, exporters and
MscS
‐type mechanosensitive channels encoded in biosynthetic gene clusters for the stress‐protectant ectoine. Environ Microbiol 2022; 24:5306-5331. [DOI: 10.1111/1462-2920.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
- Department of Chemistry and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Christoph Gertzen
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Pharmaceutical and Medicinal Chemistry Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Sander H. J. Smits
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Biochemistry Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| |
Collapse
|
6
|
Duan Y, Wei Y, Xing M, Liu J, Jiang L, Lu Q, Liu X, Liu Y, Ang EL, Liao RZ, Yuchi Z, Zhao H, Zhang Y. Anaerobic Hydroxyproline Degradation Involving C-N Cleavage by a Glycyl Radical Enzyme. J Am Chem Soc 2022; 144:9715-9722. [PMID: 35611954 DOI: 10.1021/jacs.2c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxyprolines are highly abundant in nature as they are components of many structural proteins and osmolytes. Anaerobic degradation of trans-4-hydroxy-l-proline (t4L-HP) was previously found to involve the glycyl radical enzyme (GRE) t4L-HP dehydratase (HypD). Here, we report a pathway for anaerobic hydroxyproline degradation that involves a new GRE, trans-4-hydroxy-d-proline (t4D-HP) C-N-lyase (HplG). In this pathway, cis-4-hydroxy-l-proline (c4L-HP) is first isomerized to t4D-HP, followed by radical-mediated ring opening by HplG to give 2-amino-4-ketopentanoate (AKP), the first example of a ring opening reaction catalyzed by a GRE 1,2-eliminase. Subsequent cleavage by AKP thiolase (OrtAB) yields acetyl-CoA and d-alanine. We report a crystal structure of HplG in complex with t4D-HP at a resolution of 2.7 Å, providing insights into its catalytic mechanism. Different from HypD commonly identified in proline-reducing Clostridia, HplG is present in other types of fermenting bacteria, including propionate-producing bacteria, underscoring the diversity of enzymatic radical chemistry in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yongxu Duan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Meining Xing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xumei Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Truong DP, Rousseau S, Machala BW, Huddleston JP, Zhu M, Hull KG, Romo D, Raushel FM, Sacchettini JC, Glasner ME. Second-Shell Amino Acid R266 Helps Determine N-Succinylamino Acid Racemase Reaction Specificity in Promiscuous N-Succinylamino Acid Racemase/ o-Succinylbenzoate Synthase Enzymes. Biochemistry 2021; 60:3829-3840. [PMID: 34845903 DOI: 10.1021/acs.biochem.1c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.
Collapse
Affiliation(s)
- Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Simon Rousseau
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Benjamin W Machala
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Jamison P Huddleston
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Mingzhao Zhu
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Kenneth G Hull
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Daniel Romo
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Frank M Raushel
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States.,Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - James C Sacchettini
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| |
Collapse
|
8
|
Picking JW, Behrman EJ, Zhang L, Krzycki JA. MtpB, a member of the MttB superfamily from the human intestinal acetogen Eubacterium limosum, catalyzes proline betaine demethylation. J Biol Chem 2019; 294:13697-13707. [PMID: 31341018 DOI: 10.1074/jbc.ra119.009886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The trimethylamine methyltransferase MttB is the founding member of a widely distributed superfamily of microbial proteins. Genes encoding most members of the MttB superfamily lack the codon for pyrrolysine that distinguishes previously characterized trimethylamine methyltransferases, leaving the function(s) of most of the enzymes in this superfamily unknown. Here, investigating the MttB family member MtpB from the human intestinal isolate Eubacterium limosum ATCC 8486, an acetogen that excretes N-methyl proline during growth on proline betaine, we demonstrate that MtpB catalyzes anoxic demethylation of proline betaine. MtpB along with MtqC (a corrinoid protein) and MtqA (a methylcorrinoid:tetrahydrofolate methyltransferase) was much more abundant in E. limosum cells grown on proline betaine than on lactate. We observed that recombinant MtpB methylates Co(I)-MtqC in the presence of proline betaine and that other quaternary amines are much less preferred substrates. MtpB, MtqC, and MtqA catalyze tetrahydrofolate methylation with proline betaine, thereby forming a key intermediate in the Wood-Ljungdahl acetogenesis pathway. To our knowledge, MtpB methylation of Co(I)-MtqC for the subsequent methylation of tetrahydrofolate represents the first described anoxic mechanism of proline betaine demethylation. The activities of MtpB and associated proteins in acetogens or other anaerobes provide a possible mechanism for the production of N-methyl proline by the gut microbiome. MtpB's activity characterized here strengthens the hypothesis that much of the MttB superfamily comprises quaternary amine-dependent methyltransferases.
Collapse
Affiliation(s)
- Jonathan W Picking
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
| | - Edward J Behrman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Liwen Zhang
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, Ohio State University, Columbus, Ohio 43210
| | - Joseph A Krzycki
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210 .,Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Dynamic Analysis of Metabolic Response in Gastric Ulcer (GU) Rats with Electroacupuncture Treatment Using 1H NMR-Based Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1291427. [PMID: 31143240 PMCID: PMC6501414 DOI: 10.1155/2019/1291427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/09/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Gastric ulcer (GU), a common digestive disease, has a high incidence and seriously endangers health of human. According to the previous studies, it has been proved that electroacupuncture at acupoints of stomach meridian had a good effect on GU. However, there are few published studies on metabolic response in gastric ulcer (GU) rats with electroacupuncture treatment. Herein, we observed the metabolic profiles in biological samples (stomach, liver, and kidney) of GU rats with electroacupuncture treatment by 1H NMR metabolomics combined with pathological examination. The male SD rats were induced by intragastric administration of 70% ethanol after fasting for 24 hours and treated by electroacupuncture at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days, or 7 days, respectively. And the conventional histopathological examinations as well as metabolic pathways assays were also performed. We found that GU rats were basically cured after electroacupuncture treatment for 4 days and had a complete recovery after electroacupuncture treatment for 7 days by being modulated comprehensive metabolic changes, involved in the function of neurotransmitters, energy metabolism, cells metabolism, antioxidation, tissue repairing, and other metabolic pathways. These findings may be helpful to facilitate the mechanism elucidating of electroacupuncture treatment on GU.
Collapse
|
10
|
Wang Q, Zeng S, Wu X, Lei H, Wang Y, Tang H. Interspecies Developmental Differences in Metabonomic Phenotypes of Lycium ruthenicum and L. barbarum Fruits. J Proteome Res 2018; 17:3223-3236. [DOI: 10.1021/acs.jproteome.8b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qi Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
11
|
Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. mSphere 2018; 3:mSphere00089-18. [PMID: 29600278 PMCID: PMC5874438 DOI: 10.1128/msphere.00089-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages of C. difficile colonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and that C. difficile gene expression is consistent with their utilization by the bacterium in vivo. We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential for C. difficile colonization and disease. Antibiotics alter the gut microbiota and decrease resistance to Clostridium difficile colonization; however, the mechanisms driving colonization resistance are not well understood. Loss of resistance to C. difficile colonization due to antibiotic treatment is associated with alterations in the gut metabolome, specifically, with increases in levels of nutrients that C. difficile can utilize for growth in vitro. To define the nutrients that C. difficile requires for colonization and pathogenesis in vivo, we used a combination of mass spectrometry and RNA sequencing (RNA Seq) to model the gut metabolome and C. difficile transcriptome throughout an acute infection in a mouse model at the following time points: 0, 12, 24, and 30 h. We also performed multivariate-based integration of the omics data to define the signatures that were most important throughout colonization and infection. Here we show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time in the mouse cecum and that C. difficile gene expression is consistent with their utilization in vivo. This was also reinforced by the multivariate-based integration of the omics data where we were able to discriminate the metabolites and transcripts that support C. difficile physiology between the different time points throughout colonization and infection. This report illustrates how important the availability of amino acids and other nutrients is for the initial stages of C. difficile colonization and progression of disease. Future studies identifying the source of the nutrients and engineering bacteria capable of outcompeting C. difficile in the gut will be important for developing new targeted bacterial therapeutics. IMPORTANCEClostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages of C. difficile colonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and that C. difficile gene expression is consistent with their utilization by the bacterium in vivo. We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential for C. difficile colonization and disease.
Collapse
|
12
|
Ellens KW, Christian N, Singh C, Satagopam VP, May P, Linster CL. Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Res 2017; 45:11495-11514. [PMID: 29059321 PMCID: PMC5714238 DOI: 10.1093/nar/gkx937] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023] Open
Abstract
The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research.
Collapse
Affiliation(s)
- Kenneth W Ellens
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nils Christian
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Charandeep Singh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Functional characterization of aconitase X as a cis-3-hydroxy-L-proline dehydratase. Sci Rep 2016; 6:38720. [PMID: 27929065 PMCID: PMC5144071 DOI: 10.1038/srep38720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
In the aconitase superfamily, which includes the archetypical aconitase, homoaconitase, and isopropylmalate isomerase, only aconitase X is not functionally annotated. The corresponding gene (LhpI) was often located within the bacterial gene cluster involved in L-hydroxyproline metabolism. Screening of a library of (hydroxy)proline analogues revealed that this protein catalyzes the dehydration of cis-3-hydroxy-L-proline to Δ1-pyrroline-2-carboxylate. Furthermore, electron paramagnetic resonance and site-directed mutagenic analyses suggests the presence of a mononuclear Fe(III) center, which may be coordinated with one glutamate and two cysteine residues. These properties were significantly different from those of other aconitase members, which catalyze the isomerization of α- to β-hydroxy acids, and have a [4Fe-4S] cluster-binding site composed of three cysteine residues. Bacteria with the LhpI gene could degrade cis-3-hydroxy-L-proline as the sole carbon source, and LhpI transcription was up-regulated not only by cis-3-hydroxy-L-proline, but also by several isomeric 3- and 4-hydroxyprolines.
Collapse
|
14
|
Castro JC, Maddox JD, Cobos M, Requena D, Zimic M, Bombarely A, Imán SA, Cerdeira LA, Medina AE. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis. BMC Genomics 2015; 16:997. [PMID: 26602763 PMCID: PMC4658800 DOI: 10.1186/s12864-015-2225-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
Background Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. Results In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. Conclusions This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with the empirically observed capability of M. dubia to synthesize and accumulate AsA and other important molecules, and adds to our current knowledge of the molecular biology and biochemistry of their production in plants. By providing insights into the mechanisms underpinning these metabolic processes, these results can be used to direct efforts to genetically manipulate this organism in order to enhance the production of these bioactive phytochemicals. The accumulation of AsA precursor and discovery of genes associated with their biosynthesis and metabolism in M. dubia is intriguing and worthy of further investigation. The sequences and pathways produced here present the genetic framework required for further studies. Quantitative transcriptomics in concert with studies of the genome, proteome, and metabolome under conditions that stimulate production and accumulation of AsA and their precursors are needed to provide a more comprehensive view of how these pathways for AsA metabolism are regulated and linked in this species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2225-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan C Castro
- Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Pasaje Los Paujiles S/N, San Juan Bautista, Iquitos, Perú. .,Círculo de Investigación en Plantas con Efecto en Salud (FONDECYT N° 010-2014), Lima, Perú.
| | - J Dylan Maddox
- Pritzker Laboratory for Molecular Systematics and Evolution, The Field Museum of Natural History, Chicago, IL, USA.
| | - Marianela Cobos
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú (UCP), Av. Abelardo Quiñones km 2.5, San Juan Bautista, Iquitos, Perú.
| | - David Requena
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias, Universidad Peruana Cayetano Heredia (UPCH), Av. Honorio Delgado 430, San Martín de Porres, Lima, Perú. .,FARVET S.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta, Ica, Perú.
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias, Universidad Peruana Cayetano Heredia (UPCH), Av. Honorio Delgado 430, San Martín de Porres, Lima, Perú. .,FARVET S.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta, Ica, Perú.
| | | | - Sixto A Imán
- Área de Conservación de Recursos Fitogenéticos, Instituto Nacional de Innovación Agraria (INIA), Calle San Roque 209, Iquitos, Perú.
| | - Luis A Cerdeira
- Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Pasaje Los Paujiles S/N, San Juan Bautista, Iquitos, Perú.
| | - Andersson E Medina
- Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Pasaje Los Paujiles S/N, San Juan Bautista, Iquitos, Perú.
| |
Collapse
|
15
|
Erşan YÇ, Belie ND, Boon N. Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Feng Y, Kumar R, Ravcheev DA, Zhang H. Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism. Microbiologyopen 2015; 4:644-59. [PMID: 26037461 PMCID: PMC4554459 DOI: 10.1002/mbo3.270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 11/05/2022] Open
Abstract
Recently, we determined that BioR, the GntR family of transcription factor, acts as a repressor for biotin metabolism exclusively distributed in certain species of α-proteobacteria, including the zoonotic agent Brucella melitensis and the plant pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Paracoccus denitrificans, another closely related member of the same phylum α-proteobacteria featuring with denitrification. Not only does it encode two BioR homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respectively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each contains two tandem BioR boxes). It raised the possibility that unexpected complexity is present in BioR-mediated biotin regulation. Here we report that this is the case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed with LC-QToF-MS. Phylogenetic analyses combined with GC percentage raised a possibility that the bioR2 gene might be acquired by horizontal gene transfer. Gel shift assays revealed that the predicted BioR-binding sites are functional for the two BioR homologs, in much similarity to the scenario seen with the BioR site of A. tumefaciens bioBFDAZ. Using the A. tumefaciens reporter system carrying a plasmid-borne LacZ fusion, we revealed that the two homologs of P. denitrificans BioR are functional repressors for biotin metabolism. As anticipated, not only does the addition of exogenous biotin stimulate efficiently the expression of bioYB operon encoding biotin transport/uptake system BioY, but also inhibits the transcription of the bioBFDAGC operon resembling the de novo biotin synthetic pathway. EMSA-based screening failed to demonstrate that the biotin-related metabolite is involved in BioR-DNA interplay, which is consistent with our former observation with Brucella BioR. Our finding defined a complex regulatory network for biotin metabolism in P. denitrificans by two BioR proteins.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ritesh Kumar
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030
| | - Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 2, avenue de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Huimin Zhang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
17
|
Bashir A, Hoffmann T, Kempf B, Xie X, Smits SHJ, Bremer E. Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis. MICROBIOLOGY-SGM 2014; 160:2283-2294. [PMID: 25012968 DOI: 10.1099/mic.0.079665-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
L-Proline is a widely used compatible solute and is employed by Bacillus subtilis, through both synthesis and uptake, as an osmostress protectant. Here, we assessed the stress-protective potential of the plant-derived L-proline derivatives N-methyl-L-proline, L-proline betaine (stachydrine), trans-4-L-hydroxproline and trans-4-hydroxy-L-proline betaine (betonicine) for cells challenged by high salinity or extremes in growth temperature. l-Proline betaine and betonicine conferred salt stress protection, but trans-4-L-hydroxyproline and N-methyl-L-proline was unable to do so. Except for L-proline, none of these compounds served as a nutrient for B. subtilis. L-Proline betaine was a considerably better osmostress protectant than betonicine, and its import strongly reduced the l-proline pool produced by B. subtilis under osmotic stress conditions, whereas a supply of betonicine affected the L-proline pool only modestly. Both compounds downregulated the transcription of the osmotically inducible opuA operon, albeit to different extents. Mutant studies revealed that L-proline betaine was taken up via the ATP-binding cassette transporters OpuA and OpuC, and the betaine-choline-carnitine-transporter-type carrier OpuD; betonicine was imported only through OpuA and OpuC. L-Proline betaine and betonicine also served as temperature stress protectants. A striking difference between these chemically closely related compounds was observed: L-proline betaine was an excellent cold stress protectant, but did not provide heat stress protection, whereas the reverse was true for betonicine. Both compounds were primarily imported in temperature-challenged cells via the high-capacity OpuA transporter. We developed an in silico model for the OpuAC-betonicine complex based on the crystal structure of the OpuAC solute receptor complexed with L-proline betaine.
Collapse
Affiliation(s)
- Abdallah Bashir
- Max Planck Institute for Terrestrial Microbiology, Emeritus Group R. K. Thauer, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany.,Al-Azhar University Gaza, Faculty of Science, Biology Department, PO Box 1277, Gaza, Palestine.,Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Tamara Hoffmann
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Strasse, 35043 Marburg, Germany.,Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Bettina Kempf
- Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Xiulan Xie
- NMR Facility, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 8, 35043 Marburg, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Erhard Bremer
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Strasse, 35043 Marburg, Germany.,Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| |
Collapse
|
18
|
Jacobson MP, Kalyanaraman C, Zhao S, Tian B. Leveraging structure for enzyme function prediction: methods, opportunities, and challenges. Trends Biochem Sci 2014; 39:363-71. [PMID: 24998033 DOI: 10.1016/j.tibs.2014.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023]
Abstract
The rapid growth of the number of protein sequences that can be inferred from sequenced genomes presents challenges for function assignment, because only a small fraction (currently <1%) has been experimentally characterized. Bioinformatics tools are commonly used to predict functions of uncharacterized proteins. Recently, there has been significant progress in using protein structures as an additional source of information to infer aspects of enzyme function, which is the focus of this review. Successful application of these approaches has led to the identification of novel metabolites, enzyme activities, and biochemical pathways. We discuss opportunities to elucidate systematically protein domains of unknown function, orphan enzyme activities, dead-end metabolites, and pathways in secondary metabolism.
Collapse
Affiliation(s)
- Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA.
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
| | - Suwen Zhao
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
| | - Boxue Tian
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Zhao S, Sakai A, Zhang X, Vetting MW, Kumar R, Hillerich B, San Francisco B, Solbiati J, Steves A, Brown S, Akiva E, Barber A, Seidel RD, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. eLife 2014; 3. [PMID: 24980702 PMCID: PMC4113996 DOI: 10.7554/elife.03275] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes. DOI:http://dx.doi.org/10.7554/eLife.03275.001 DNA molecules are polymers in which four nucleotides—guanine, adenine, thymine, and cytosine—are arranged along a sugar backbone. The sequence of these four nucleotides along the DNA strand determines the genetic code of the organism, and can be deciphered using various genome sequencing techniques. Microbial genomes are particularly easy to sequence as they contain fewer than several million nucleotides, compared with the 3 billion or so nucleotides that are present in the human genome. Reading a genome sequence is straight forward, but predicting the physiological functions of the proteins encoded by the genes in the sequence can be challenging. In a process called genome annotation, the function of protein is predicted by comparing the relevant gene to the genes of proteins with known functions. However, microbial genomes and proteins are hugely diverse and over 50% of the microbial genomes that have been sequenced have not yet been related to any physiological function. With thousands of microbial genomes waiting to be deciphered, large scale approaches are needed. Zhao et al. take advantage of a particular characteristic of microbial genomes. DNA sequences that code for two proteins required for the same task tend to be closer to each other in the genome than two sequences that code for unrelated functions. Operons are an extreme example; an operon is a unit of DNA that contains several genes that are expressed as proteins at the same time. Zhao et al. have developed a bioinformatic method called the genome neighbourhood network approach to work out the function of proteins based on their position relative to other proteins in the genome. When applied to the proline racemase superfamily (PRS), which contains enzymes with similar sequences that can catalyze three distinct chemical reactions, the new approach was able to assign a function to the majority of proteins in a public database of PRS enzymes, and also revealed new members of the PRS family. Experiments confirmed that the proteins behaved as predicted. The next challenge is to develop the genome neighbourhood network approach so that it can be applied to more complex systems. DOI:http://dx.doi.org/10.7554/eLife.03275.002
Collapse
Affiliation(s)
- Suwen Zhao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Ayano Sakai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xinshuai Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Ritesh Kumar
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Brandan Hillerich
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jose Solbiati
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Adam Steves
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Shoshana Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Alan Barber
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Ronald D Seidel
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|