1
|
Sun H, Vargas-Blanco D, Zhou Y, Masiello C, Kelly J, Moy J, Korkin D, Shell S. Diverse intrinsic properties shape transcript stability and stabilization in Mycolicibacterium smegmatis. NAR Genom Bioinform 2024; 6:lqae147. [PMID: 39498432 PMCID: PMC11532794 DOI: 10.1093/nargab/lqae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Mycobacteria regulate transcript degradation to facilitate adaptation to environmental stress. However, the mechanisms underlying this regulation are unknown. Here we sought to gain understanding of the mechanisms controlling mRNA stability by investigating the transcript properties associated with variance in transcript stability and stress-induced transcript stabilization. We measured mRNA half-lives transcriptome-wide in Mycolicibacterium smegmatis in log phase growth and hypoxia-induced growth arrest. The transcriptome was globally stabilized in response to hypoxia, but transcripts of essential genes were generally stabilized more than those of non-essential genes. We then developed machine learning models that enabled us to identify the non-linear collective effect of a compendium of transcript properties on transcript stability and stabilization. We identified properties that were more predictive of half-life in log phase as well as properties that were more predictive in hypoxia, and many of these varied between leadered and leaderless transcripts. In summary, we found that transcript properties are differentially associated with transcript stability depending on both the transcript type and the growth condition. Our results reveal the complex interplay between transcript features and microenvironment that shapes transcript stability in mycobacteria.
Collapse
Affiliation(s)
- Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Catherine S Masiello
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jessica M Kelly
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Justin K Moy
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Dmitry Korkin
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Scarlet S Shell
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
2
|
Jenniches L, Michaux C, Popella L, Reichardt S, Vogel J, Westermann AJ, Barquist L. Improved RNA stability estimation through Bayesian modeling reveals most Salmonella transcripts have subminute half-lives. Proc Natl Acad Sci U S A 2024; 121:e2308814121. [PMID: 38527194 PMCID: PMC10998600 DOI: 10.1073/pnas.2308814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
RNA decay is a crucial mechanism for regulating gene expression in response to environmental stresses. In bacteria, RNA-binding proteins (RBPs) are known to be involved in posttranscriptional regulation, but their global impact on RNA half-lives has not been extensively studied. To shed light on the role of the major RBPs ProQ and CspC/E in maintaining RNA stability, we performed RNA sequencing of Salmonella enterica over a time course following treatment with the transcription initiation inhibitor rifampicin (RIF-seq) in the presence and absence of these RBPs. We developed a hierarchical Bayesian model that corrects for confounding factors in rifampicin RNA stability assays and enables us to identify differentially decaying transcripts transcriptome-wide. Our analysis revealed that the median RNA half-life in Salmonella in early stationary phase is less than 1 min, a third of previous estimates. We found that over half of the 500 most long-lived transcripts are bound by at least one major RBP, suggesting a general role for RBPs in shaping the transcriptome. Integrating differential stability estimates with cross-linking and immunoprecipitation followed by RNA sequencing (CLIP-seq) revealed that approximately 30% of transcripts with ProQ binding sites and more than 40% with CspC/E binding sites in coding or 3' untranslated regions decay differentially in the absence of the respective RBP. Analysis of differentially destabilized transcripts identified a role for ProQ in the oxidative stress response. Our findings provide insights into posttranscriptional regulation by ProQ and CspC/E, and the importance of RBPs in regulating gene expression.
Collapse
Affiliation(s)
- Laura Jenniches
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
| | - Charlotte Michaux
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Linda Popella
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg97080, Germany
| | - Alexander J. Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg97080, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, ONL5L 1C6Canada
| |
Collapse
|
3
|
Zhou Y, Sun H, Rapiejko AR, Vargas-Blanco DA, Martini MC, Chase MR, Joubran SR, Davis AB, Dainis JP, Kelly JM, Ioerger TR, Roberts LA, Fortune SM, Shell SS. Mycobacterial RNase E cleaves with a distinct sequence preference and controls the degradation rates of most Mycolicibacterium smegmatis mRNAs. J Biol Chem 2023; 299:105312. [PMID: 37802316 PMCID: PMC10641625 DOI: 10.1016/j.jbc.2023.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
The mechanisms and regulation of RNA degradation in mycobacteria have been subject to increased interest following the identification of interplay between RNA metabolism and drug resistance. Mycobacteria encode multiple ribonucleases predicted to participate in mRNA degradation and/or processing of stable RNAs. RNase E is hypothesized to play a major role in mRNA degradation because of its essentiality in mycobacteria and its role in mRNA degradation in gram-negative bacteria. Here, we defined the impact of RNase E on mRNA degradation rates transcriptome-wide in the nonpathogenic model Mycolicibacterium smegmatis. RNase E played a rate-limiting role in degradation of the transcripts encoded by at least 89% of protein-coding genes, with leadered transcripts often being more affected by RNase E repression than leaderless transcripts. There was an apparent global slowing of transcription in response to knockdown of RNase E, suggesting that M. smegmatis regulates transcription in responses to changes in mRNA degradation. This compensation was incomplete, as the abundance of most transcripts increased upon RNase E knockdown. We assessed the sequence preferences for cleavage by RNase E transcriptome-wide in M. smegmatis and Mycobacterium tuberculosis and found a consistent bias for cleavage in C-rich regions. Purified RNase E had a clear preference for cleavage immediately upstream of cytidines, distinct from the sequence preferences of RNase E in gram-negative bacteria. We furthermore report a high-resolution map of mRNA cleavage sites in M. tuberculosis, which occur primarily within the RNase E-preferred sequence context, confirming that RNase E has a broad impact on the M. tuberculosis transcriptome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail R Rapiejko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Michael R Chase
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Samantha R Joubran
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Alexa B Davis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Joseph P Dainis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jessica M Kelly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Thomas R Ioerger
- Department of Computer Science & Engineering, Texas A&M University, College Station, Texas, USA
| | - Louis A Roberts
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
4
|
Barnabas V, Kashyap A, Raja R, Newar K, Rai D, Dixit NM, Mehra S. The Extent of Antimicrobial Resistance Due to Efflux Pump Regulation. ACS Infect Dis 2022; 8:2374-2388. [PMID: 36264222 DOI: 10.1021/acsinfecdis.2c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A key mechanism driving antimicrobial resistance (AMR) stems from the ability of bacteria to up-regulate efflux pumps upon exposure to drugs. The resistance gained by this up-regulation is pliable because of the tight regulation of efflux pump levels. This leads to temporary enhancement in survivability of bacteria due to higher efflux pump levels in the presence of antibiotics, which can be reversed when the cells are no longer exposed to the drug. Knowledge of the extent of resistance thus gained would inform intervention strategies aimed at mitigating AMR. Here, we combine mathematical modeling and experiments to quantify the maximum extent of resistance that efflux pump up-regulation can confer via phenotypic induction in the presence of drugs and genotypic abrogation of regulation. Our model describes the dynamics of drug transport in and out of cells coupled with the associated regulation of efflux pump levels and predicts the increase in the minimum inhibitory concentration (MIC) of drugs due to such regulation. To test the model, we measured the uptake and efflux as well as the MIC of the compound ethidium bromide (EtBr), a substrate of the efflux pump LfrA, in wild-type Mycobacterium smegmatis mc2155, as well as in two laboratory-generated strains. Our model captured the observed EtBr levels and MIC fold-changes quantitatively. Further, the model identified key parameters associated with the resulting resistance, variations in which could underlie the extent to which such resistance arises across different drug-bacteria combinations, potentially offering tunable handles to optimize interventions aimed at minimizing AMR.
Collapse
Affiliation(s)
- Vinay Barnabas
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Akanksha Kashyap
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Kapil Newar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Deepika Rai
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| |
Collapse
|
5
|
Martini MC, Hicks ND, Xiao J, Alonso MN, Barbier T, Sixsmith J, Fortune SM, Shell SS. Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1010705. [PMID: 35830479 PMCID: PMC9312406 DOI: 10.1371/journal.ppat.1010705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.
Collapse
Affiliation(s)
- Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Junpei Xiao
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria Natalia Alonso
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Thibault Barbier
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience 2022; 25:104233. [PMID: 35521527 PMCID: PMC9062218 DOI: 10.1016/j.isci.2022.104233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence. Single mycobacterial cells exhibit phenotypic variation in RNase E expression RNase E is implicated in the maintenance of mycobacterial cell growth homeostasis RNase E and HupB show a functional interplay in single mycobacterial cells RNase E-HupB disruption impairs Mycobacterium tuberculosis fate under drug and in macrophages
Collapse
|
7
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
8
|
Martini MC, Sun H, Shell SS. RNA Sequencing for Transcript 5'-End Mapping in Mycobacteria. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2314:513-531. [PMID: 34235668 DOI: 10.1007/978-1-0716-1460-0_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing technologies facilitate the analysis of multiple important properties of transcriptomes in addition to gene expression levels. Here, we describe a method for mapping RNA 5' ends in Mycobacterium tuberculosis and Mycobacterium smegmatis, which allows the determination of transcription start sites (TSSs), comparative analysis of promoter usage under different conditions, and mapping of endoribonucleolytic cleavage sites. We describe in detail the procedures for constructing RNA sequencing libraries appropriate for RNA 5' end mapping using an Illumina sequencing platform, as well as bioinformatic procedures for data analysis.
Collapse
Affiliation(s)
- M Carla Martini
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Huaming Sun
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.,Program in Bioinformatics & Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Scarlet S Shell
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA. .,Program in Bioinformatics & Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
9
|
Bergkessel M. Bacterial transcription during growth arrest. Transcription 2021; 12:232-249. [PMID: 34486930 PMCID: PMC8632087 DOI: 10.1080/21541264.2021.1968761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from in vitro experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.
Collapse
|
10
|
Villa JK, Han R, Tsai CH, Chen A, Sweet P, Franco G, Vaezian R, Tkavc R, Daly MJ, Contreras LM. A small RNA regulates pprM, a modulator of pleiotropic proteins promoting DNA repair, in Deinococcus radiodurans under ionizing radiation. Sci Rep 2021; 11:12949. [PMID: 34155239 PMCID: PMC8217566 DOI: 10.1038/s41598-021-91335-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Networks of transcriptional and post-transcriptional regulators are critical for bacterial survival and adaptation to environmental stressors. While transcriptional regulators provide rapid activation and/or repression of a wide-network of genes, post-transcriptional regulators, such as small RNAs (sRNAs), are also important to fine-tune gene expression. However, the mechanisms of sRNAs remain poorly understood, especially in less-studied bacteria. Deinococcus radiodurans is a gram-positive bacterium resistant to extreme levels of ionizing radiation (IR). Although multiple unique regulatory systems (e.g., the Radiation and Desiccation Response (RDR)) have been identified in this organism, the role of post-transcriptional regulators has not been characterized within the IR response. In this study, we have characterized an sRNA, PprS (formerly Dsr2), as a post-transcriptional coordinator of IR recovery in D. radiodurans. PprS showed differential expression specifically under IR and knockdown of PprS resulted in reduced survival and growth under IR, suggesting its importance in regulating post-radiation recovery. We determined a number of potential RNA targets involved in several pathways including translation and DNA repair. Specifically, we confirmed that PprS binds within the coding region to stabilize the pprM (DR_0907) transcript, a RDR modulator. Overall, these results are the first to present an additional layer of sRNA-based control in DNA repair pathways associated with bacterial radioresistance.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Runhua Han
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip Sweet
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Gabriela Franco
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Respina Vaezian
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rok Tkavc
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lydia M Contreras
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
12
|
Dong X, Qu G, Piazza CL, Belfort M. Group II intron as cold sensor for self-preservation and bacterial conjugation. Nucleic Acids Res 2020; 48:6198-6209. [PMID: 32379323 PMCID: PMC7293003 DOI: 10.1093/nar/gkaa313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 01/18/2023] Open
Abstract
Group II introns are self-splicing ribozymes and mobile genetic elements. Splicing is required for both expression of the interrupted host gene and intron retromobility. For the pRS01 plasmid-encoded Lactococcus lactis group II intron, Ll.LtrB, splicing enables expression of the intron's host relaxase protein. Relaxase, in turn, initiates horizontal transfer of the conjugative pRS01 plasmid and stimulates retrotransposition of the intron. Little is known about how splicing of bacterial group II introns is influenced by environmental conditions. Here, we show that low temperatures can inhibit Ll.LtrB intron splicing. Whereas autocatalysis is abolished in the cold, splicing is partially restored by the intron-encoded protein (IEP). Structure profiling reveals cold-induced disruptions of key tertiary interactions, suggesting that a kinetic trap prevents the intron RNA from assuming its native state. Interestingly, while reduced levels of transcription and splicing lead to a paucity of excised intron in the cold, levels of relaxase mRNA are maintained, partially due to diminished intron-mediated mRNA targeting, allowing intron spread by conjugal transfer. Taken together, this study demonstrates not only the intrinsic cold sensitivity of group II intron splicing and the role of the IEP for cold-stress adaptation, but also maintenance of horizontal plasmid and intron transfer under cold-shock.
Collapse
Affiliation(s)
- Xiaolong Dong
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Guosheng Qu
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Carol Lyn Piazza
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
13
|
Abstract
The ability to rapidly respond to changing nutrients is crucial for E. coli to survive in many environments, including the gut. Reorganization of gene expression is the first step used by bacteria to adjust their metabolism accordingly. It involves fine-tuning of both transcription (transcriptional regulation) and mRNA stability (posttranscriptional regulation). While the forms of transcriptional regulation have been extensively studied, the role of mRNA stability during a metabolic switch is poorly understood. Investigating E. coli genomewide transcriptome and mRNA stability during metabolic transitions representative of the carbon source fluctuations in many environments, we have documented the role of mRNA stability in the response to nutrient changes. mRNAs are globally stabilized during carbon depletion. For a few genes, this leads directly to expression upregulation. As these genes are regulators of stress responses and metabolism, our work sheds new light on the likely importance of posttranscriptional regulations in response to environmental stress. Bacteria have to continuously adjust to nutrient fluctuations from favorable to less-favorable conditions and in response to carbon starvation. The glucose-acetate transition followed by carbon starvation is representative of such carbon fluctuations observed in Escherichia coli in many environments. Regulation of gene expression through fine-tuning of mRNA pools constitutes one of the regulation levels required for such a metabolic adaptation. It results from both mRNA transcription and degradation controls. However, the contribution of transcript stability regulation in gene expression is poorly characterized. Using combined transcriptome and mRNA decay analyses, we investigated (i) how transcript stability changes in E. coli during the glucose-acetate-starvation transition and (ii) if these changes contribute to gene expression changes. Our work highlights that transcript stability increases with carbon depletion. Most of the stabilization occurs at the glucose-acetate transition when glucose is exhausted, and then stabilized mRNAs remain stable during acetate consumption and carbon starvation. Meanwhile, expression of most genes is downregulated and we observed three times less gene expression upregulation. Using control analysis theory on 375 genes, we show that most of gene expression regulation is driven by changes in transcription. Although mRNA stabilization is not the controlling phenomenon, it contributes to the emphasis or attenuation of transcriptional regulation. Moreover, upregulation of 18 genes (33% of our studied upregulated set) is governed mainly by transcript stabilization. Because these genes are associated with responses to nutrient changes and stress, this underscores a potentially important role of posttranscriptional regulation in bacterial responses to nutrient starvation. IMPORTANCE The ability to rapidly respond to changing nutrients is crucial for E. coli to survive in many environments, including the gut. Reorganization of gene expression is the first step used by bacteria to adjust their metabolism accordingly. It involves fine-tuning of both transcription (transcriptional regulation) and mRNA stability (posttranscriptional regulation). While the forms of transcriptional regulation have been extensively studied, the role of mRNA stability during a metabolic switch is poorly understood. Investigating E. coli genomewide transcriptome and mRNA stability during metabolic transitions representative of the carbon source fluctuations in many environments, we have documented the role of mRNA stability in the response to nutrient changes. mRNAs are globally stabilized during carbon depletion. For a few genes, this leads directly to expression upregulation. As these genes are regulators of stress responses and metabolism, our work sheds new light on the likely importance of posttranscriptional regulations in response to environmental stress.
Collapse
|
14
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
15
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
16
|
Ishkov IP, Ahn SJ, Rice KC, Hagen SJ. Environmental Triggers of lrgA Expression in Streptococcus mutans. Front Microbiol 2020; 11:18. [PMID: 32047487 PMCID: PMC6997555 DOI: 10.3389/fmicb.2020.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
The cidAB and lrgAB operons of Streptococcus mutans encode proteins that are structurally similar to the bacteriophage lambda family of holin-antiholin proteins, which are believed to facilitate cell death in other bacterial species. Although their precise function is not known, cidAB and lrgAB are linked to multiple virulence traits of S. mutans, including oxidative stress tolerance, biofilm formation, and autolysis. Here we investigate the regulation of lrgAB which in S. mutans shows a complex dependence on growth conditions that is not fully understood. By combining single-cell imaging of a fluorescent gene reporter with microfluidic control of the extracellular environment, we identify specific environmental cues that trigger lrgA expression and characterize cell-to-cell heterogeneity in lrgA activity. We find that the very abrupt activation of lrgA at stationary phase is tightly synchronized across the population. This activation is controlled by a small number of inputs that are sensitive to growth phase: extracellular pyruvate, glucose, and molecular oxygen. Activation of lrgA appears to be self-limiting, so that strong expression of lrgA is confined to a short interval of time. lrgA is programmed to switch on briefly at the end of exponential growth, as glucose and molecular oxygen are exhausted and extracellular pyruvate is available. Our findings are consistent with studies of other bacteria showing that homologs of lrgAB participate, with input from lytST, in the reimport of pyruvate for anaerobic fermentative growth.
Collapse
Affiliation(s)
- Ivan P Ishkov
- Department of Physics, University of Florida, Gainesville, FL, United States
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
L-Alanine specifically potentiates fluoroquinolone efficacy against Mycobacterium persisters via increased intracellular reactive oxygen species. Appl Microbiol Biotechnol 2020; 104:2137-2147. [PMID: 31940082 DOI: 10.1007/s00253-020-10358-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 02/01/2023]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis remains a major global health concern; M. tuberculosis drug resistance and persistence further fueled the situation. Nutrient supportive therapy was intensively pursued to complement the conventional treatment, as well as their synergy with current antibiotics. To explore whether L-alanine can synergize with fluoroquinolones against M. tuberculosis, M. smegmatis was used as a surrogate in this study. We found that L-alanine can boost the bactericidal efficacy of fluoroquinolones, increasing the production of intracellular reactive oxygen species. This effect is very significant for persisters. Accelerated tricarboxylic acid cycle and/or nucleotide metabolism were observed after the addition of L-alanine. M. smegmatis MSMEG2660 is a homolog of the alanine dehydrogenase (Rv2780, MSMEG2659) negative regulator Rv2779c and involved in the L-alanine potentiation of fluoroquinolone via funneling more alanine into tricarboxylic acid. Deletion mutant of the MSMEG2660 (∆Ms2660) became more susceptible, and more readily revived from persistence. We firstly found that L-alanine can synergize with fluoroquinolones against Mycobacterium, especially the persisters via promoting metabolism. This will inspire new avenue to eliminate Mycobacterium persisters.
Collapse
|