1
|
Bautista C, Gagnon-Arsenault I, Utrobina M, Fijarczyk A, Bendixsen DP, Stelkens R, Landry CR. Hybrid adaptation is hampered by Haldane's sieve. Nat Commun 2024; 15:10319. [PMID: 39609385 PMCID: PMC11604976 DOI: 10.1038/s41467-024-54105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Hybrids between species exhibit plastic genomic architectures that could foster or slow down their adaptation. When challenged to evolve in an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates compared to parents. We find that hybrids and their parents converge onto similar molecular mechanisms of adaptation by mutations in pleiotropic transcription factors, but at a different pace. After 100 generations, mutations in these genes tend to be homozygous in the parents but heterozygous in the hybrids. We hypothesize that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain. Using genome editing, we first demonstrate that mutations display incomplete dominance, requiring homozygosity to show full impact and to entirely circumvent Haldane's sieve, which favors the fixation of dominant mutations. Second, tracking mutations in earlier generations confirmed a different rate of LOH in hybrids. Together, these findings show that Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic architecture that can limit the role of hybridization in adaptive evolution.
Collapse
Affiliation(s)
- Carla Bautista
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Mariia Utrobina
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
| |
Collapse
|
2
|
Zhou X, Hilk A, Solis NV, Scott N, Beach A, Soisangwan N, Billings CL, Burrack LS, Filler SG, Selmecki A. Single-cell detection of copy number changes reveals dynamic mechanisms of adaptation to antifungals in Candida albicans. Nat Microbiol 2024; 9:2923-2938. [PMID: 39227665 PMCID: PMC11524788 DOI: 10.1038/s41564-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Genomic copy number changes are associated with antifungal drug resistance and virulence across diverse fungal pathogens, but the rate and dynamics of these genomic changes in the presence of antifungal drugs are unknown. Here we optimized a dual-fluorescent reporter system in the diploid pathogen Candida albicans to quantify haplotype-specific copy number variation (CNV) and loss of heterozygosity (LOH) at the single-cell level with flow cytometry. We followed the frequency and dynamics of CNV and LOH at two distinct genomic locations in the presence and absence of antifungal drugs in vitro and in a murine model of candidiasis. Copy number changes were rapid and dynamic during adaptation to fluconazole and frequently involved competing subpopulations with distinct genotypes. This study provides quantitative evidence for the rapid speed at which diverse genotypes arise and undergo dynamic population-level fluctuations during adaptation to antifungal drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Nancy Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Annette Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Natthapon Soisangwan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Clara L Billings
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Laura S Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Regan SB, Medhi D, White TB, Jiang YZ, Jia S, Deng Q, Jasin M. Megabase-scale loss of heterozygosity provoked by CRISPR-Cas9 DNA double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615517. [PMID: 39386534 PMCID: PMC11463394 DOI: 10.1101/2024.09.27.615517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Harnessing DNA double-strand breaks (DSBs) is a powerful approach for gene editing, but it may provoke loss of heterozygosity (LOH), which predisposes to tumorigenesis. To interrogate this risk, we developed a two- color flow cytometry-based system (Flo-LOH), detecting LOH in ∼5% of cells following a DSB. After this initial increase, cells with LOH decrease due to a competitive disadvantage with parental cells, but if isolated, they stably propagate. Segmental loss from terminal deletions with de novo telomere addition and nonreciprocal translocations is observed as well as whole chromosome loss, especially following a centromeric DSB. LOH spans megabases distal from the DSB, but also frequently tens of megabases centromere-proximal. Inhibition of microhomology-mediated end joining massively increases LOH, which is synergistically increased with concomitant inhibition of canonical nonhomologous end joining. The capacity for large-scale LOH must therefore be considered when using DSB-based gene editing, especially in conjunction with end joining inhibition.
Collapse
|
4
|
Anderson MZ, Dietz SM. Evolution and strain diversity advance exploration of Candida albicans biology. mSphere 2024; 9:e0064123. [PMID: 39012122 PMCID: PMC11351040 DOI: 10.1128/msphere.00641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Fungi were some of the earliest organismal systems used to explore mutational processes and its phenotypic consequences on members of a species. Yeasts that cause significant human disease were quickly incorporated into these investigations to define the genetic and phenotypic drivers of virulence. Among Candida species, Candida albicans has emerged as a model for studying genomic processes of evolution because of its clinical relevance, relatively small genome, and ability to tolerate complex chromosomal changes. Here, we describe major recent findings that used evolution of strains from defined genetic backgrounds to delineate mutational and adaptative processes and include how nascent exploration into naturally occurring variation is contributing to these conceptual frameworks. Ultimately, efforts to discern adaptive mechanisms used by C. albicans will continue to divulge new biology and can better inform treatment regimens for the increasing prevalence of fungal disease.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Siobhan M. Dietz
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
7
|
Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model. J Fungi (Basel) 2022; 8:jof8070650. [PMID: 35887406 PMCID: PMC9323731 DOI: 10.3390/jof8070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
The heterozygous diploid genome of Candida albicans displays frequent genomic rearrangements, in particular loss-of-heterozygosity (LOH) events, which can be seen on all eight chromosomes and affect both laboratory and clinical strains. LOHs, which are often the consequence of DNA damage repair, can be observed upon stresses reminiscent of the host environment, and result in homozygous regions of various sizes depending on the molecular mechanisms at their origins. Recent studies have shed light on the biological importance of these frequent and ubiquitous LOH events in C. albicans. In diploid Saccharomyces cerevisiae, LOH facilitates the passage of recessive beneficial mutations through Haldane’s sieve, allowing rapid evolutionary adaptation. This also appears to be true in C. albicans, where the full potential of an adaptive mutation is often only observed upon LOH, as illustrated in the case of antifungal resistance and niche adaptation. To understand the genome-wide dynamics of LOH events in C. albicans, we constructed a collection of 15 strains, each one carrying a LOH reporter system on a different chromosome arm. This system involves the insertion of two fluorescent marker genes in a neutral genomic region on both homologs, allowing spontaneous LOH events to be detected by monitoring the loss of one of the fluorescent markers using flow cytometry. Using this collection, we observed significant LOH frequency differences between genomic loci in standard laboratory growth conditions; however, we further demonstrated that comparable heterogeneity was also observed for a given genomic locus between independent strains. Additionally, upon exposure to stress, three outcomes could be observed in C. albicans, where individual strains displayed increases, decreases, or no effect of stress in terms of LOH frequency. Our results argue against a general stress response triggering overall genome instability. Indeed, we showed that the heterogeneity of LOH frequency in C. albicans is present at various levels, inter-strain, intra-strain, and inter-chromosomes, suggesting that LOH events may occur stochastically within a cell, though the genetic background potentially impacts genome stability in terms of LOH throughout the genome in both basal and stress conditions. This heterogeneity in terms of genome stability may serve as an important adaptive strategy for the predominantly clonal human opportunistic pathogen C. albicans, by quickly generating a wide spectrum of genetic variation combinations potentially permitting subsistence in a rapidly evolving environment.
Collapse
|
8
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
9
|
Host defense mechanisms induce genome instability leading to rapid evolution in an opportunistic fungal pathogen. Infect Immun 2021; 90:e0032821. [PMID: 34898249 DOI: 10.1128/iai.00328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to generate genetic variation facilitates rapid adaptation in stressful environments. The opportunistic fungal pathogen Candida albicans frequently undergoes large-scale genomic changes, including aneuploidy and loss-of heterozygosity (LOH), following exposure to host environments. However, the specific host factors inducing C. albicans genome instability remain largely unknown. Here, we leveraged the genetic tractability of nematode hosts to investigate whether innate immune components, including antimicrobial peptides (AMPs) and reactive oxygen species (ROS), induced host-associated C. albicans genome instability. C. albicans associated with immunocompetent hosts carried multiple large-scale genomic changes including LOH, whole chromosome, and segmental aneuploidies. In contrast, C. albicans associated with immunocompromised hosts deficient in AMPs or ROS production had reduced LOH frequencies and fewer, if any, additional genomic changes. To evaluate if extensive host-induced genomic changes had long-term consequences for C. albicans adaptation, we experimentally evolved C. albicans in either immunocompetent or immunocompromised hosts and selected for increased virulence. C. albicans evolved in immunocompetent hosts rapidly increased virulence, but not in immunocompromised hosts. Taken together, this work suggests that host-produced ROS and AMPs induces genotypic plasticity in C. albicans which facilitates rapid evolution.
Collapse
|
10
|
The Interplay Between Neutral and Adaptive Processes Shapes Genetic Variation During Candida Species Evolution. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Marton T, Maufrais C, d'Enfert C, Legrand M. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. mSphere 2020; 5:e00620-20. [PMID: 32878930 PMCID: PMC7471004 DOI: 10.1128/msphere.00620-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Most of our knowledge relating to molecular mechanisms of human fungal pathogenesis in Candida albicans relies on reverse genetics approaches, requiring strain engineering. DNA-mediated transformation of C. albicans has been described as highly mutagenic, potentially accentuated by the organism's genome plasticity, including the acquisition of genomic rearrangements, notably upon exposure to stress. The advent of CRISPR-Cas9 has vastly accelerated the process of genetically modifying strains, especially in diploid (such as C. albicans) and polyploid organisms. The effects of unleashing this nuclease within the genome of C. albicans are unknown, although several studies in other organisms report Cas9-associated toxicity and off-target DNA breaks. Upon the construction of a C. albicans strain collection, we took the opportunity to compare strains which were constructed using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation strategies, by quantifying and describing transformation-induced loss-of-heterozygosity and hyperploidy events. Our analysis of 57 strains highlights the mutagenic effects of transformation in C. albicans, regardless of the transformation protocol, but also underscores interesting differences in terms of genomic changes between strains obtained using different transformation protocols. Indeed, although strains constructed using the CRISPR-Cas9-free transformation method display numerous concomitant genomic changes randomly distributed throughout their genomes, the use of CRISPR-Cas9 leads to a reduced overall number of genome changes, particularly hyperploidies. Overall, in addition to facilitating strain construction by reducing the number of transformation steps, the CRISPR-Cas9-dependent transformation strategy in C. albicans appears to limit transformation-associated genome changes.IMPORTANCE Genome editing is essential to nearly all research studies aimed at gaining insight into the molecular mechanisms underlying various biological processes, including those in the opportunistic pathogen Candida albicans The adaptation of the CRISPR-Cas9 system greatly facilitates genome engineering in many organisms. However, our understanding of the effects of CRISPR-Cas9 technology on the biology of C. albicans is limited. In this study, we sought to compare the extents of transformation-induced genomic changes within strains engineered using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation methods. CRISPR-Cas9-dependent transformation allows one to simultaneously target both homologs and, importantly, appears less mutagenic in C. albicans, since strains engineered using CRISPR-Cas9 display an overall decrease in concomitant genomic changes.
Collapse
Affiliation(s)
- Timea Marton
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Melanie Legrand
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
12
|
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans. J Fungi (Basel) 2019; 6:jof6010010. [PMID: 31892130 PMCID: PMC7151161 DOI: 10.3390/jof6010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of C. albicans has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining C. albicans traits and have been shown to enable adaptation both to the host and to antifungal drugs. C. albicans isolates contain a heterozygous diploid genome that displays variation from the level of single nucleotides to largescale rearrangements and aneuploidy. The heterozygous nature of the genome is now increasingly recognized as being central to C. albicans biology, as the relative fitness of isolates has been shown to correlate with higher levels of overall heterozygosity. Moreover, loss of heterozygosity (LOH) events can arise frequently, either at single polymorphisms or at a chromosomal level, and both can alter the behavior of C. albicans cells during infection or can modulate drug resistance. In this review, we examine genome plasticity in this pathobiont focusing on how gene dosage variation and loss of heterozygosity events can arise and how these modulate C. albicans behavior.
Collapse
|
13
|
Ciudad T, Bellido A, Hermosa B, Andaluz E, Larriba G. DLH1, the Candida albicans homologue of the meiosis-specific DMC1, is not involved in DNA repair but catalyses spontaneous interhomologue recombination and might promote non-crossover events. Cell Microbiol 2019; 22:e13137. [PMID: 31701646 DOI: 10.1111/cmi.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Toni Ciudad
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Alberto Bellido
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Belén Hermosa
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Encarnación Andaluz
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Germán Larriba
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
14
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
15
|
Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Candida albicans. G3-GENES GENOMES GENETICS 2019; 9:3631-3644. [PMID: 31690596 PMCID: PMC6829120 DOI: 10.1534/g3.119.400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.
Collapse
|
16
|
Gorter de Vries AR, Couwenberg LGF, van den Broek M, de la Torre Cortés P, Ter Horst J, Pronk JT, Daran JMG. Allele-specific genome editing using CRISPR-Cas9 is associated with loss of heterozygosity in diploid yeast. Nucleic Acids Res 2019; 47:1362-1372. [PMID: 30517747 PMCID: PMC6379674 DOI: 10.1093/nar/gky1216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Targeted DNA double-strand breaks (DSBs) with CRISPR–Cas9 have revolutionized genetic modification by enabling efficient genome editing in a broad range of eukaryotic systems. Accurate gene editing is possible with near-perfect efficiency in haploid or (predominantly) homozygous genomes. However, genomes exhibiting polyploidy and/or high degrees of heterozygosity are less amenable to genetic modification. Here, we report an up to 99-fold lower gene editing efficiency when editing individual heterozygous loci in the yeast genome. Moreover, Cas9-mediated introduction of a DSB resulted in large scale loss of heterozygosity affecting DNA regions up to 360 kb and up to 1700 heterozygous nucleotides, due to replacement of sequences on the targeted chromosome by corresponding sequences from its non-targeted homolog. The observed patterns of loss of heterozygosity were consistent with homology directed repair. The extent and frequency of loss of heterozygosity represent a novel mutagenic side-effect of Cas9-mediated genome editing, which would have to be taken into account in eukaryotic gene editing. In addition to contributing to the limited genetic amenability of heterozygous yeasts, Cas9-mediated loss of heterozygosity could be particularly deleterious for human gene therapy, as loss of heterozygous functional copies of anti-proliferative and pro-apoptotic genes is a known path to cancer.
Collapse
Affiliation(s)
| | - Lucas G F Couwenberg
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | | | - Jolanda Ter Horst
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| |
Collapse
|
17
|
Ene IV, Bennett RJ, Anderson MZ. Mechanisms of genome evolution in Candida albicans. Curr Opin Microbiol 2019; 52:47-54. [PMID: 31176092 DOI: 10.1016/j.mib.2019.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022]
Abstract
The fungus Candida albicans exists as a prevalent commensal and an important opportunistic pathogen that can infect multiple niches of its human host. Recent studies have examined the diploid genome of C. albicans by performing both short-term microevolution studies and comparative genomics on collections of clinical isolates. Common mechanisms driving genome dynamics include accumulation of point mutations, loss of heterozygosity (LOH) events, large-scale chromosomal rearrangements, and even ploidy change, with important consequences for both drug resistance and host adaptation. Evidence for recombination between C. albicans lineages also highlights a role for (para)sex in shaping the species population structure. Ongoing work will continue to define the contributions of genome evolution to phenotypic variation and the role of host pressures in driving adaptive processes.
Collapse
Affiliation(s)
- Iuliana V Ene
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Legrand M, Jaitly P, Feri A, d'Enfert C, Sanyal K. Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends Genet 2019; 35:292-307. [PMID: 30826131 DOI: 10.1016/j.tig.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as uncontested unicellular model organisms, as major discoveries made in the field of genome biology using yeast genetics have proved to be relevant from yeast to humans. The yeast Candida albicans has attracted much attention because of its ability to switch between a harmless commensal and a dreaded human pathogen. C. albicans bears unique features regarding its life cycle, genome structure, and dynamics, and their links to cell biology and adaptation to environmental challenges. Examples include a unique reproduction cycle with haploid, diploid, and tetraploid forms; a distinctive organisation of chromosome hallmarks; a highly dynamic genome, with extensive karyotypic variations, including aneuploidies, isochromosome formation, and loss-of-heterozygosity; and distinctive links between the response to DNA alterations and cell morphology. These features have made C. albicans emerge as a new and attractive unicellular model to study genome biology and dynamics in eukaryotes.
Collapse
Affiliation(s)
- Mélanie Legrand
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Priya Jaitly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Adeline Feri
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France; Current address: Pathoquest, BioPark, 11 rue Watt, 75013 Paris, France
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
19
|
Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux ME. Within-Host Genomic Diversity of Candida albicans in Healthy Carriers. Sci Rep 2019; 9:2563. [PMID: 30796326 PMCID: PMC6385308 DOI: 10.1038/s41598-019-38768-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic variations in Candida albicans, a major fungal pathogen of humans, have been observed upon exposure of this yeast to different stresses and experimental infections, possibly contributing to subsequent adaptation to these stress conditions. Yet, little is known about the extent of genomic diversity that is associated with commensalism, the predominant lifestyle of C. albicans in humans. In this study, we investigated the genetic diversity of C. albicans oral isolates recovered from healthy individuals, using multilocus sequencing typing (MLST) and whole genome sequencing. While MLST revealed occasional differences between isolates collected from a single individual, genome sequencing showed that they differed by numerous single nucleotide polymorphisms, mostly resulting from short-range loss-of-heterozygosity events. These differences were shown to have occurred upon human carriage of C. albicans rather than subsequent in vitro manipulation of the isolates. Thus, C. albicans intra-sample diversity appears common in healthy individuals, higher than that observed using MLST. We propose that diversifying lineages coexist in a single human individual, and this diversity can enable rapid adaptation under stress exposure. These results are crucial for the interpretation of longitudinal studies evaluating the evolution of the C. albicans genome.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Corinne Maufrais
- Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI), USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Natacha Sertour
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | | | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
20
|
Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact. mSphere 2019; 4:4/1/e00709-18. [PMID: 30760617 PMCID: PMC6374597 DOI: 10.1128/msphere.00709-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterozygous diploid genome of Candida albicans is highly plastic, with frequent loss of heterozygosity (LOH) events. In the SC5314 laboratory strain, while LOH events are ubiquitous, a chromosome homozygosis bias is observed for certain chromosomes, whereby only one of the two homologs can occur in the homozygous state. This suggests the occurrence of recessive lethal allele(s) (RLA) preventing large-scale LOH events on these chromosomes from being stably maintained. To verify the presence of an RLA on chromosome 7 (Chr7), we utilized a system that allows (i) DNA double-strand break (DSB) induction on Chr7 by the I-SceI endonuclease and (ii) detection of the resulting long-range homozygosis. I-SceI successfully induced a DNA DSB on both Chr7 homologs, generally repaired by gene conversion. Notably, cells homozygous for the right arm of Chr7B were not recovered, confirming the presence of RLA(s) in this region. Genome data mining for RLA candidates identified a premature nonsense-generating single nucleotide polymorphism (SNP) within the HapB allele of C7_03400c whose Saccharomyces cerevisiae ortholog encodes the essential Mtr4 RNA helicase. Complementation with a wild-type copy of MTR4 rescued cells homozygous for the right arm of Chr7B, demonstrating that the mtr4K880* RLA is responsible for the Chr7 homozygosis bias in strain SC5314. Furthermore, we observed that the major repeat sequences (MRS) on Chr7 acted as hot spots for interhomolog recombination. Such recombination events provide C. albicans with increased opportunities to survive DNA DSBs whose repair can lead to homozygosis of recessive lethal or deleterious alleles. This might explain the maintenance of MRS in this species.IMPORTANCE Candida albicans is a major fungal pathogen, whose mode of reproduction is mainly clonal. Its genome is highly tolerant to rearrangements, in particular loss of heterozygosity events, known to unmask recessive lethal and deleterious alleles in heterozygous diploid organisms such as C. albicans By combining a site-specific DSB-inducing system and mining genome sequencing data of 182 C. albicans isolates, we were able to ascribe the chromosome 7 homozygosis bias of the C. albicans laboratory strain SC5314 to an heterozygous SNP introducing a premature STOP codon in the MTR4 gene. We have also proposed genome-wide candidates for new recessive lethal alleles. We additionally observed that the major repeat sequences (MRS) on chromosome 7 acted as hot spots for interhomolog recombination. Maintaining MRS in C. albicans could favor haplotype exchange, of vital importance to LOH events, leading to homozygosis of recessive lethal or deleterious alleles that inevitably accumulate upon clonality.
Collapse
|
21
|
Bellido A, Hermosa B, Ciudad T, Larriba G. Role of homologous recombination genesRAD51,RAD52, andRAD59in the repair of lesions caused by γ-radiation to cycling and G2/M-arrested cells ofCandida albicans. Cell Microbiol 2018; 20:e12950. [DOI: 10.1111/cmi.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Alberto Bellido
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Belén Hermosa
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Toni Ciudad
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Germán Larriba
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| |
Collapse
|
22
|
Serif M, Dubois G, Finoux AL, Teste MA, Jallet D, Daboussi F. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat Commun 2018; 9:3924. [PMID: 30254261 PMCID: PMC6156588 DOI: 10.1038/s41467-018-06378-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 01/24/2023] Open
Abstract
Recently developed transgenic techniques to explore and exploit the metabolic potential of microalgae present several drawbacks associated with the delivery of exogenous DNA into the cells and its subsequent integration at random sites within the genome. Here, we report a highly efficient multiplex genome-editing method in the diatom Phaeodactylum tricornutum, relying on the biolistic delivery of CRISPR-Cas9 ribonucleoproteins coupled with the identification of two endogenous counter-selectable markers, PtUMPS and PtAPT. First, we demonstrate the functionality of RNP delivery by positively selecting the disruption of each of these genes. Then, we illustrate the potential of the approach for multiplexing by generating double-gene knock-out strains, with 65% to 100% efficiency, using RNPs targeting one of these markers and PtAureo1a, a photoreceptor-encoding gene. Finally, we created triple knock-out strains in one step by delivering six RNP complexes into Phaeodactylum cells. This approach could readily be applied to other hard-to-transfect organisms of biotechnological interest. The manipulation of diatom genomes is essential for industrial applications based on their metabolic abilities. Here the authors present an efficient multiplex DNA-free gene editing method using CRISPR-Cas9 and counter-selectable markers.
Collapse
Affiliation(s)
- Manuel Serif
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, LISBP, UMR792, 135 Avenue de Rangueil, F-31077, Toulouse, France.,CNRS, LISBP, UMR5504, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Gwendoline Dubois
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, LISBP, UMR792, 135 Avenue de Rangueil, F-31077, Toulouse, France.,CNRS, LISBP, UMR5504, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Anne-Laure Finoux
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, LISBP, UMR792, 135 Avenue de Rangueil, F-31077, Toulouse, France.,CNRS, LISBP, UMR5504, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Marie-Ange Teste
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, LISBP, UMR792, 135 Avenue de Rangueil, F-31077, Toulouse, France.,CNRS, LISBP, UMR5504, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Denis Jallet
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, LISBP, UMR792, 135 Avenue de Rangueil, F-31077, Toulouse, France.,CNRS, LISBP, UMR5504, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Fayza Daboussi
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, LISBP, UMR792, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,CNRS, LISBP, UMR5504, 135 Avenue de Rangueil, F-31077, Toulouse, France.
| |
Collapse
|
23
|
The Genome of the Human Pathogen Candida albicans Is Shaped by Mutation and Cryptic Sexual Recombination. mBio 2018; 9:mBio.01205-18. [PMID: 30228236 PMCID: PMC6143739 DOI: 10.1128/mbio.01205-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans lacks a conventional sexual program and is thought to evolve, at least primarily, through the clonal acquisition of genetic changes. Here, we performed an analysis of heterozygous diploid genomes from 21 clinical isolates to determine the natural evolutionary processes acting on the C. albicans genome. Mutation and recombination shaped the genomic landscape among the C. albicans isolates. Strain-specific single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) clustered across the genome. Additionally, loss-of-heterozygosity (LOH) events contributed substantially to genotypic variation, with most long-tract LOH events extending to the ends of the chromosomes suggestive of repair via break-induced replication. Consistent with a model of inheritance by descent, most polymorphisms were shared between closely related strains. However, some isolates contained highly mosaic genomes consistent with strains having experienced interclade recombination during their evolutionary history. A detailed examination of mitochondrial genomes also revealed clear examples of interclade recombination among sequenced strains. These analyses therefore establish that both (para)sexual recombination and mitotic mutational processes drive evolution of this important pathogen. To further facilitate the study of C. albicans genomes, we also introduce an online platform, SNPMap, to examine SNP patterns in sequenced isolates.IMPORTANCE Mutations introduce variation into the genome upon which selection can act. Defining the nature of these changes is critical for determining species evolution, as well as for understanding the genetic changes driving important cellular processes. The heterozygous diploid fungus Candida albicans is both a frequent commensal organism and a prevalent opportunistic pathogen. A prevailing theory is that C. albicans evolves primarily through the gradual buildup of mitotic mutations, and a pressing issue is whether sexual or parasexual processes also operate within natural populations. Here, we establish that the C. albicans genome evolves by a combination of localized mutation and both short-tract and long-tract loss-of-heterozygosity (LOH) events within the sequenced isolates. Mutations are more prevalent within noncoding and heterozygous regions and LOH increases towards chromosome ends. Furthermore, we provide evidence for genetic exchange between isolates, establishing that sexual or parasexual processes have contributed to the diversity of both nuclear and mitochondrial genomes.
Collapse
|
24
|
Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A 2018; 115:E8688-E8697. [PMID: 30150418 PMCID: PMC6140516 DOI: 10.1073/pnas.1806002115] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a heterozygous diploid yeast that is a commensal of the human gastrointestinal tract and a prevalent opportunistic pathogen. Here, whole-genome sequencing was performed on multiple C. albicans isolates passaged both in vitro and in vivo to characterize the complete spectrum of mutations arising in laboratory culture and in the mammalian host. We establish that, independent of culture niche, microevolution is primarily driven by de novo base substitutions and frequent short-tract loss-of-heterozygosity events. An average base-substitution rate of ∼1.2 × 10-10 per base pair per generation was observed in vitro, with higher rates inferred during host infection. Large-scale chromosomal changes were relatively rare, although chromosome 7 trisomies frequently emerged during passaging in a gastrointestinal model and was associated with increased fitness for this niche. Multiple chromosomal features impacted mutational patterns, with mutation rates elevated in repetitive regions, subtelomeric regions, and in gene families encoding cell surface proteins involved in host adhesion. Strikingly, de novo mutation rates were more than 800-fold higher in regions immediately adjacent to emergent loss-of-heterozygosity tracts, indicative of recombination-induced mutagenesis. Furthermore, genomes showed biased patterns of mutations suggestive of extensive purifying selection during passaging. These results reveal how both cell-intrinsic and cell-extrinsic factors influence C. albicans microevolution, and provide a quantitative picture of genome dynamics in this heterozygous diploid species.
Collapse
|
25
|
Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat Commun 2018; 9:2253. [PMID: 29884848 PMCID: PMC5993739 DOI: 10.1038/s41467-018-04787-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify. The fungal pathogen Candida albicans can undergo a parasexual process that may contribute to genetic diversity, but its actual relevance is unclear. Here, Ropars et al. analyse the genomic sequences of 182 C. albicans isolates collected worldwide and find evidence of gene flow and thus parasexuality in nature.
Collapse
|
26
|
Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in Candida albicans. Genetics 2018; 209:725-741. [PMID: 29724862 DOI: 10.1534/genetics.118.301019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.
Collapse
|
27
|
Vyas VK, Bushkin GG, Bernstein DA, Getz MA, Sewastianik M, Barrasa MI, Bartel DP, Fink GR. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi. mSphere 2018; 3:e00154-18. [PMID: 29695624 PMCID: PMC5917429 DOI: 10.1128/msphere.00154-18] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
We have created new vectors for clustered regularly interspaced short palindromic repeat (CRISPR) mutagenesis in Candida albicans, Saccharomyces cerevisiae, Candida glabrata, and Naumovozyma castellii These new vectors permit a comparison of the requirements for CRISPR mutagenesis in each of these species and reveal different dependencies for repair of the Cas9 double-stranded break. Both C. albicans and S. cerevisiae rely heavily on homology-directed repair, whereas C. glabrata and N. castellii use both homology-directed and nonhomologous end-joining pathways. The high efficiency of these vectors permits the creation of unmarked deletions in each of these species and the recycling of the dominant selection marker for serial mutagenesis in prototrophs. A further refinement, represented by the "Unified" Solo vectors, incorporates Cas9, guide RNA, and repair template into a single vector, thus enabling the creation of vector libraries for pooled screens. To facilitate the design of such libraries, we have identified guide sequences for each of these species with updated guide selection algorithms.IMPORTANCE CRISPR-mediated genome engineering technologies have revolutionized genetic studies in a wide range of organisms. Here we describe new vectors and guide sequences for CRISPR mutagenesis in the important human fungal pathogens C. albicans and C. glabrata, as well as in the related yeasts S. cerevisiae and N. castellii The design of these vectors enables efficient serial mutagenesis in each of these species by leaving few, if any, exogenous sequences in the genome. In addition, we describe strategies for the creation of unmarked deletions in each of these species and vector designs that permit the creation of vector libraries for pooled screens. These tools and strategies promise to advance genetic engineering of these medically and industrially important species.
Collapse
Affiliation(s)
- Valmik K Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - G Guy Bushkin
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Douglas A Bernstein
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Matthew A Getz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | | | | | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|