1
|
Nandana V, Al-Husini N, Vaishnav A, Dilrangi KH, Schrader JM. Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness. Mol Biol Cell 2024; 35:ar104. [PMID: 38865176 PMCID: PMC11321048 DOI: 10.1091/mbc.e23-12-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.
Collapse
Affiliation(s)
- Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Arti Vaishnav
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | | | - Jared M. Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
2
|
Rathnayaka-Mudiyanselage IW, Nandana V, Schrader JM. Proteomic composition of eukaryotic and bacterial RNA decay condensates suggests convergent evolution. Curr Opin Microbiol 2024; 79:102467. [PMID: 38569418 PMCID: PMC11162941 DOI: 10.1016/j.mib.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.
Collapse
Affiliation(s)
- I W Rathnayaka-Mudiyanselage
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA; Wayne State University, Department of Chemistry, Detroit, MI, USA
| | - V Nandana
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA
| | - J M Schrader
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA.
| |
Collapse
|
3
|
Nandana V, Al-Husini N, Vaishnav A, Dilrangi KH, Schrader JM. Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571756. [PMID: 38168245 PMCID: PMC10760160 DOI: 10.1101/2023.12.15.571756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' UTR. While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal IDR of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase-separation correlates with enhanced 5' UTR cleavage, suggesting that phase-separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.
Collapse
Affiliation(s)
- Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | | | | | - Jared M. Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
4
|
Tejada-Arranz A, Lulla A, Bouilloux-Lafont M, Turlin E, Pei XY, Douché T, Matondo M, Williams AH, Raynal B, Luisi BF, De Reuse H. Acetylation regulates the oligomerization state and activity of RNase J, the Helicobacter pylori major ribonuclease. Nat Commun 2023; 14:8072. [PMID: 38057323 PMCID: PMC10700544 DOI: 10.1038/s41467-023-43825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
In the gastric pathogen Helicobacter pylori, post-transcriptional regulation relies strongly on the activity of the essential ribonuclease RNase J. Here, we elucidated the crystal and cryo-EM structures of RNase J and determined that it assembles into dimers and tetramers in vitro. We found that RNase J extracted from H. pylori is acetylated on multiple lysine residues. Alanine substitution of several of these residues impacts on H. pylori morphology, and thus on RNase J function in vivo. Mutations of Lysine 649 modulates RNase J oligomerization in vitro, which in turn influences ribonuclease activity in vitro. Our structural analyses of RNase J reveal loops that gate access to the active site and rationalizes how acetylation state of K649 can influence activity. We propose acetylation as a regulatory level controlling the activity of RNase J and its potential cooperation with other enzymes of RNA metabolism in H. pylori.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
- Biozentrum, University of Basel, Basel, Switzerland
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Maxime Bouilloux-Lafont
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
| | - Evelyne Turlin
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
| | - Xue-Yuan Pei
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Allison H Williams
- University of California San Francisco, Cellular Molecular Pharmacology, San Francisco, CA, USA
| | - Bertrand Raynal
- Département de Biologie structurale et chimie, Plateforme de biophysique moléculaire, Institut Pasteur, Paris, France
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Hilde De Reuse
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France.
| |
Collapse
|
5
|
Fefilova AS, Antifeeva IA, Gavrilova AA, Turoverov KK, Kuznetsova IM, Fonin AV. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022; 12:1441. [PMID: 36291650 PMCID: PMC9599104 DOI: 10.3390/biom12101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space. The LLPS leads to the formation of self-assembled membrane-less organelles (MLOs). MLOs are multicomponent and multifunctional biological condensates, highly dynamic in structure and composition, that allow them to fine-tune the regulation of various intracellular processes. IDPs play a central role in the assembly and functioning of MLOs. The LLPS importance for the regulation of chemical reactions inside the cell is clearly illustrated by the reorganization of the intracellular space during stress response. As a reaction to various types of stresses, stress-induced MLOs appear in the cell, enabling the preservation of the genetic and protein material during unfavourable conditions. In addition, stress causes structural, functional, and compositional changes in the MLOs permanently present inside the cells. In this review, we describe the assembly of stress-induced MLOs and the stress-induced modification of existing MLOs in eukaryotes, yeasts, and prokaryotes in response to various stress factors.
Collapse
Affiliation(s)
| | | | | | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
6
|
Carpousis AJ, Campo N, Hadjeras L, Hamouche L. Compartmentalization of RNA Degradosomes in Bacteria Controls Accessibility to Substrates and Ensures Concerted Degradation of mRNA to Nucleotides. Annu Rev Microbiol 2022; 76:533-552. [PMID: 35671533 DOI: 10.1146/annurev-micro-041020-113308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA degradosomes are multienzyme complexes composed of ribonucleases, RNA helicases, and metabolic enzymes. RNase E-based degradosomes are widespread in Proteobacteria. The Escherichia coli RNA degradosome is sequestered from transcription in the nucleoid and translation in the cytoplasm by localization to the inner cytoplasmic membrane, where it forms short-lived clusters that are proposed to be sites of mRNA degradation. In Caulobacter crescentus, RNA degradosomes localize to ribonucleoprotein condensates in the interior of the cell [bacterial ribonucleoprotein-bodies (BR-bodies)], which have been proposed to drive the concerted degradation of mRNA to nucleotides. The turnover of mRNA in growing cells is important for maintaining pools of nucleotides for transcription and DNA replication. Membrane attachment of the E. coli RNA degradosome is necessary to avoid wasteful degradation of intermediates in ribosome assembly. Sequestering RNA degradosomes to C. crescentus BR-bodies, which exclude structured RNA, could have a similar role in protecting intermediates in ribosome assembly from degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , , .,TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nathalie Campo
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , ,
| | - Lydia Hadjeras
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , , .,Current affiliation: IMIB, University of Würzburg, Würzburg, Germany;
| | - Lina Hamouche
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , ,
| |
Collapse
|
7
|
Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird’s-Eye View. Int J Mol Sci 2022; 23:ijms23095010. [PMID: 35563401 PMCID: PMC9105482 DOI: 10.3390/ijms23095010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Stress is an inevitable part of life. An organism is exposed to multiple stresses and overcomes their negative consequences throughout its entire existence. A correlation was established between life expectancy and resistance to stress, suggesting a relationship between aging and the ability to respond to external adverse effects as well as quickly restore the normal regulation of biological processes. To combat stress, cells developed multiple pro-survival mechanisms, one of them is the assembly of special stress-induced membraneless organelles (MLOs). MLOs are formations that do not possess a lipid membrane but rather form as a result of the “liquid–liquid” phase separation (LLPS) of biopolymers. Stress-responsive MLOs were found in eukaryotes and prokaryotes, they form as a reaction to the acute environmental conditions and are dismantled after its termination. These compartments function to prevent damage to the genetic and protein material of the cell during stress. In this review, we discuss the characteristics of stress-induced MLO-like structures in eukaryotic and prokaryotic cells.
Collapse
|
8
|
Zhang J, Hess WR, Zhang C. "Life is short, and art is long": RNA degradation in cyanobacteria and model bacteria. MLIFE 2022; 1:21-39. [PMID: 38818322 PMCID: PMC10989914 DOI: 10.1002/mlf2.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/01/2024]
Abstract
RNA turnover plays critical roles in the regulation of gene expression and allows cells to respond rapidly to environmental changes. In bacteria, the mechanisms of RNA turnover have been extensively studied in the models Escherichia coli and Bacillus subtilis, but not much is known in other bacteria. Cyanobacteria are a diverse group of photosynthetic organisms that have great potential for the sustainable production of valuable products using CO2 and solar energy. A better understanding of the regulation of RNA decay is important for both basic and applied studies of cyanobacteria. Genomic analysis shows that cyanobacteria have more than 10 ribonucleases and related proteins in common with E. coli and B. subtilis, and only a limited number of them have been experimentally investigated. In this review, we summarize the current knowledge about these RNA-turnover-related proteins in cyanobacteria. Although many of them are biochemically similar to their counterparts in E. coli and B. subtilis, they appear to have distinct cellular functions, suggesting a different mechanism of RNA turnover regulation in cyanobacteria. The identification of new players involved in the regulation of RNA turnover and the elucidation of their biological functions are among the future challenges in this field.
Collapse
Affiliation(s)
- Ju‐Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Cheng‐Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
- Institut WUT‐AMUAix‐Marseille University and Wuhan University of TechnologyWuhanChina
| |
Collapse
|
9
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
10
|
Tejada-Arranz A, De Reuse H. Riboregulation in the Major Gastric Pathogen Helicobacter pylori. Front Microbiol 2021; 12:712804. [PMID: 34335549 PMCID: PMC8322730 DOI: 10.3389/fmicb.2021.712804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial pathogen that colonizes the stomach of about half of the human population worldwide. Infection by H. pylori is generally acquired during childhood and this bacterium rapidly establishes a persistent colonization. H. pylori causes chronic gastritis that, in some cases, progresses into peptic ulcer disease or adenocarcinoma that is responsible for about 800,000 deaths in the world every year. H. pylori has evolved efficient adaptive strategies to colonize the stomach, a particularly hostile acidic environment. Few transcriptional regulators are encoded by the small H. pylori genome and post-transcriptional regulation has been proposed as a major level of control of gene expression in this pathogen. The transcriptome and transcription start sites (TSSs) of H. pylori strain 26695 have been defined at the genome level. This revealed the existence of a total of 1,907 TSSs among which more than 900 TSSs for non-coding RNAs (ncRNAs) including 60 validated small RNAs (sRNAs) and abundant anti-sense RNAs, few of which have been experimentally validated. An RNA degradosome was shown to play a central role in the control of mRNA and antisense RNA decay in H. pylori. Riboregulation, genetic regulation by RNA, has also been revealed and depends both on antisense RNAs and small RNAs. Known examples will be presented in this review. Antisense RNA regulation was reported for some virulence factors and for several type I toxin antitoxin systems, one of which controls the morphological transition of H. pylori spiral shape to round coccoids. Interestingly, the few documented cases of small RNA-based regulation suggest that their mechanisms do not follow the same rules that were well established in the model organism Escherichia coli. First, the genome of H. pylori encodes none of the two well-described RNA chaperones, Hfq and ProQ that are important for riboregulation in several organisms. Second, some of the reported small RNAs target, through "rheostat"-like mechanisms, repeat-rich stretches in the 5'-untranslated region of genes encoding important virulence factors. In conclusion, there are still many unanswered questions about the extent and underlying mechanisms of riboregulation in H. pylori but recent publications highlighted original mechanisms making this important pathogen an interesting study model.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Tejada-Arranz A, Matos RG, Quentin Y, Bouilloux-Lafont M, Galtier E, Briolat V, Kornobis E, Douché T, Matondo M, Arraiano CM, Raynal B, De Reuse H. RNase R is associated in a functional complex with the RhpA DEAD-box RNA helicase in Helicobacter pylori. Nucleic Acids Res 2021; 49:5249-5264. [PMID: 33893809 PMCID: PMC8136821 DOI: 10.1093/nar/gkab283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
- Université de Paris, Sorbonne Paris Cité, 75006 Paris, France
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, UMR CNRS 5100, 31062 TOULOUSE Cedex 9, France
| | - Maxime Bouilloux-Lafont
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Eloïse Galtier
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Valérie Briolat
- Biomics, C2RT, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, 75724 Paris Cedex 15, France
- Hub Bioinformatique et Biostatistique, Département de Biologie Computationelle, USR CNRS 3756, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Cecilia M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Bertrand Raynal
- Plateforme de biophysique moléculaire, UMR CNRS 3528, Département de Biologie structurale et chimie, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
| |
Collapse
|
12
|
Roles of liquid-liquid phase separation in bacterial RNA metabolism. Curr Opin Microbiol 2021; 61:91-98. [PMID: 33878678 DOI: 10.1016/j.mib.2021.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023]
Abstract
While bacteria typically lack membrane bound organelles, the mechanisms of subcellular organization have been unclear. Bacteria have recently been found to harbor membraneless organelles containing enzymes of many biochemical pathways. These organelles, called biomolecular condensates, have been found to commonly form through the process of liquid-liquid phase separation and are typically enriched in nucleic acid binding proteins. Interestingly, eukaryote and bacterial transcription and RNA decay machinery have been found to form biomolecular condensates. Additionally, DEAD Box ATPases from eukaryotes and bacteria have also been found to modulate biomolecular condensates. The shared ability of RNA metabolic enzymes to assemble into biomolecular condensates across domains suggests that this mode of subcellular organization aids in the control of RNA metabolism.
Collapse
|
13
|
A peptide of a type I toxin-antitoxin system induces Helicobacter pylori morphological transformation from spiral shape to coccoids. Proc Natl Acad Sci U S A 2020; 117:31398-31409. [PMID: 33229580 DOI: 10.1073/pnas.2016195117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.
Collapse
|